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In this work, we recast the collisional Vlasov–
Maxwell and Vlasov–Poisson equations as systems of
coupled stochastic and partial differential equations,
and we derive stochastic variational principles which
underlie such reformulations. We also propose
a stochastic particle method for the collisional
Vlasov–Maxwell equations and provide a variational
characterization of it, which can be used as a basis
for a further development of stochastic structure-
preserving particle-in-cell integrators.

1. Introduction
The collisional Vlasov equation

∂f
∂t

+ v · ∇xf + q
m

(E + v × B) · ∇v f = C[f ], (1.1)

describes the time evolution of the particle density
function f = f (x, v, t) of plasma consisting of charged
particles of charge q and mass m which undergo collisions
described by the collision operator C[f ], and are subject
to the electric E = E(x, t) and magnetic B = B(x, t) fields.
The vectors x = (x1, x2, x3) and v = (v1, v2, v3) denote
positions and velocities, respectively. For simplicity, we
restrict ourselves to one-piece plasmas. Usually, the
particle density function is normalized, so that the
total number of particles is Ntot = ∫∫

f (x, v, t)d3vd3x.
However, in this work we would like to treat f as a
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probability density function, and therefore we will use the normalization
∫∫

f (x, v, t)d3vd3x = 1
instead. A self-consistent model of plasma is obtained by coupling (1.1) with the Maxwell
equations

∇x · E = ρ, (1.2a)

∇x · B = 0, (1.2b)

∇x × E = −∂B
∂t

(1.2c)

and ∇x × B = ∂E
∂t

+ J, (1.2d)

where

ρ(x, t) = qNtot

∫
R3

f (x, v, t) d3v and J(x, t) = qNtot

∫
R3

vf (x, v, t) d3v, (1.3)

denote the charge density and the electric current density, respectively, and the factor Ntot is due to
our normalization. The system (1.1)–(1.3) is usually referred to as the Vlasov–Maxwell equations.
It will also be convenient to express the electric and magnetic fields in terms of the scalar ϕ(x, t)
and vector A(x, t) potentials

E = −∇xϕ − ∂A
∂t

(1.4a)

and
B = ∇x × A, (1.4b)

as is typical in electrodynamics. The Vlasov–Poisson equations are an approximation of the
Vlasov–Maxwell equations in the non-relativistic zero-magnetic field limit (see §6). The main
goal of this work is to provide a variational characterization of the Vlasov–Maxwell and
Vlasov–Poisson equations via a stochastic Lagrange–d’Alembert type of a principle.

Variational principles have proved extremely useful in the study of nonlinear evolution partial
differential equations (PDEs). For instance, they often provide physical insights into the problem
being considered; facilitate discovery of conserved quantities by relating them to symmetries
via Noether’s theorem; allow one to determine approximate solutions to PDEs by minimizing
the action functional over a class of test functions (e.g. [1]); and provide a way to construct a
class of numerical methods called variational integrators [2,3]. A variational principle for the
collisionless Vlasov–Maxwell equations was first proposed in [4]. It has been used to derive
various particle discretizations of the Vlasov–Maxwell and Vlasov–Poisson equations [5–9],
including structure-preserving variational particle-in-cell (PIC) methods [10–12]. It has also been
applied to gyrokinetic theory (e.g. [13,14]). For other formulations and extensions, see also [15].

A structure-preserving description of collisional effects is far less developed. A metriplectic
framework for the Vlasov–Maxwell-Landau equations has been presented in [16,17]. More
recently, a stochastic variational principle has been proposed in [18] to describe collisional effects
for the Vlasov equation with a fixed external electric field. To the best of our knowledge, to date
no variational principle has been derived for the collisional Vlasov–Maxwell and Vlasov–Poisson
equations. In this work, we extend the notion of the stochastic Lagrange–d’Alembert principle
presented in [18] to plasmas evolving in self-consistent electromagnetic fields. The main idea of
our approach is to interpret the Vlasov equation (1.1) as a Fokker–Planck equation and consider
the associated stochastic differential equations.

The idea of using stochastic differential equations to model collisions has been pursued by a
number of authors over the last few decades (e.g. [18–32], Y Fu, X Zhang, H Qin 2020, unpublished
data).

There has been an ever-growing body of the literature dedicated to stochastic variational
principles in recent years. Stochastic variational principles allow the introduction of noise into
systems in such a way that the resulting probabilistic models retain all or some of the geometric
properties of their deterministic counterparts. For this reason, stochastic variational principles
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have been considered in the context of Lagrangian and Hamiltonian mechanics [18,33–39], soliton
dynamics [40,41], fluid dynamics [42–49] and kinetic plasma theory [18].

Main content. The main content of the remainder of this paper is, as follows.

In §2, we recast the collisional Vlasov–Maxwell equations as a system of coupled stochastic and
partial differential equations.

In §3, we discuss the relationship between particle methods and stochastic modelling. We
formulate a stochastic particle discretization for the collisional Vlasov–Maxwell equations
and cast it in a form that allows the derivation of a variational principle.

In §4, we describe the variational structure underlying the stochastic particle discretization of
the Vlasov–Maxwell system. The main result of this section is theorem 4.2, in which a
stochastic Lagrange–d’Alembert principle for the particle discretization is proved.

In §5, we generalize the ideas from §4 to the original undiscretized equations. The main result of
this section is theorem 5.1, in which a stochastic Lagrange–d’Alembert principle is proved
for a class of the collisional Vlasov–Maxwell equations.

In §6, we prove a stochastic Lagrange–d’Alembert principle applicable to the Vlasov–Poisson
equations. The main result of this section is theorem 6.1.

Section 7 contains the summary of our work.

2. The Vlasov–Maxwell–Fokker–Planck equations

(a) Stochastic reformulation
Various collision models and various forms of the collision operator C[f ] are considered in the
plasma physics literature (e.g. [50,51]). A key step towards a stochastic variational principle is
a probabilistic interpretation of the Vlasov equation (1.1). Therefore, in this work we will be
interested only in those collision operators for which (1.1) takes the form of a linear or strongly
nonlinear Fokker–Planck equation (e.g. [52–54]). Namely, we will assume that the collision
operator can be expressed as

C[f ] = 1
2

3∑
i,j=1

∂2

∂vi∂vj

[
Dij(x, v; f )f

]−
3∑

i=1

∂

∂vi

[
Ki(x, v; f )f

]
, (2.1)

for some symmetric positive semi-definite matrix Dij(x, v; f ) and vector Ki(x, v; f ) functions, where
the dependence of Dij and Ki on f may in general be nonlinear, and may involve differential
and integral forms of f . In that case (1.1) is an integro-differential equation, the so-called strongly
nonlinear Fokker–Planck equation [52]. In case Dij and Ki are independent of f , that is, Dij(x, v; f ) =
Dij(x, v) and Ki(x, v; f ) = Ki(x, v), the Vlasov equation (1.1) reduces to the standard linear Fokker–
Planck equation. We will further assume that Dij and Ki can be expressed in the form

Dij(x, v; f ) =
M∑

ν=1

gi
νgj

ν and Ki(x, v; f ) = Gi + 1
2

M∑
ν=1

3∑
j=1

∂gi
ν

∂vj
gj
ν , (2.2)

for a vector function G(x, v; f ), and a family of vector functions gν (x, v; f ) with ν = 1, . . . , M. Note
that given a symmetric positive semi-definite matrix Dij, a decomposition (2.2) can always be
found, but it may not be unique. For instance, one may take M = 3 and assume that gi

ν = gν
i

for i, ν = 1, 2, 3. Then the first equation in (2.2) implies that the family of functions gi
ν can be

determined by calculating the square root of the matrix Dij, and the second equation in (2.2) can be
used to calculate the function G. If (1.1) has the form of a Fokker–Planck equation, then the particle
density function f can be interpreted as the probability density function for a stochastic process
(X(t), V(t)) ∈ R

3 × R
3. This stochastic process then satisfies the Stratonovich stochastic differential
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equation [52–55]

dX = V dt (2.3a)

and

dV =
(

q
m

E(X, t) + q
m

V × B(X, t) + G(X, V; f )
)

dt +
M∑

ν=1

gν (X, V; f ) ◦ dWν (t), (2.3b)

where W1(t), . . . , WM(t) denote the components of the standard M-dimensional Wiener process
and ◦ denotes Stratonovich integration. Note that the terms G and gν can be interpreted as
external forces, and that in their absence the equations (2.3) reduce to the equations of motion
of a charged particle in an electromagnetic field. We will therefore refer to G and gν as forcing
terms. The electric and magnetic fields are coupled via the Maxwell equations (1.2). It should
also be noted that unless (1.1) is linear, the right-hand side of (2.3) depends on f . In order to
obtain a self-consistent system, one can express f in terms of the stochastic processes X and V
as f (x, v, t) = E[δ(x − X(t))δ(v − V(t))], where E denotes the expected value, and δ is Dirac’s delta.
This can be further plugged into (1.3). Together, we get

f (x, v, t) = E[δ(x − X(t))δ(v − V(t))], (2.4a)

ρ(x, t) = qNtotE[δ(x − X(t))] (2.4b)

and J(x, t) = qNtotE[V(t)δ(x − X(t))]. (2.4c)

Equations (1.2), (2.3) and (2.4) form a self-consistent system of stochastic and partial differential
equations whose solutions are the stochastic processes X(t), V(t), and the functions E(x, t), B(x, t).

Remark. Upon substituting (2.4a), the forcing terms G and gν become functionals of the
processes X and V, that is, G(x, v; f ) = G(x, v; X, V) and gν (x, v; f ) = gν (x, v; X, V). However, for
convenience and simplicity, throughout this work we will stick to the notation G(x, v; f ) and
gν (x, v; f ), understanding that the probability density is given by (2.4a) (or by (3.2a) for particle
discretizations; see §3).

(b) Examples
Below we list a few examples of collision operators that fit the description presented in §2a.

(i) Lenard–Bernstein operator

The Lenard–Bernstein collision operator

C[f ] = νc

(
μ∇v · (vf ) + γ 2

2
�v f

)
, (2.5)

where νc > 0, μ > 0 and γ > 0 are parameters, models small-angle collisions, and was originally
used to study longitudinal plasma oscillations [50,51,56]. It can be easily verified that an example
decomposition (2.2) for M = 3 is given by the functions

G(x, v) = −νcμv, g1(x, v) =

⎛
⎜⎝

√
νcγ

0
0

⎞
⎟⎠ ,

g2(x, v) =

⎛
⎜⎝ 0√

νcγ

0

⎞
⎟⎠ and g3(x, v) =

⎛
⎜⎝ 0

0√
νcγ

⎞
⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

Note that these functions do not explicitly depend on f , therefore in this case (1.1) is a linear
Fokker–Planck equation.
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(ii) Lorentz operator

The Lorentz collision operator models electron–ion interactions via pitch-angle scattering and is
given by the formula

C[f ] = νc(|v|)
2

∇v · (|v|2I − v ⊗ v
)∇v f , (2.7)

where νc(|v|) is the collisional frequency as a function of the absolute value of velocity, I is the
3 × 3 identity matrix and ⊗ denotes tensor product. The primary effect of this type of scattering is
a change of the direction of the electron’s velocity with negligible energy loss. More information
about the Lorentz collision operator, including the exact form of the collision frequency, can be
found in, e.g. [50,51,57,58]. It can be verified by a straightforward calculation that an example
decomposition (2.2) for M = 3 is given by the functions

G(x, v) = 0, g1(x, v) =
√

νc(|v|)

⎛
⎜⎝ 0

−v3

v2

⎞
⎟⎠ ,

g2(x, v) =
√

νc(|v|)

⎛
⎜⎝ v3

0
−v1

⎞
⎟⎠ and g3(x, v) =

√
νc(|v|)

⎛
⎜⎝−v2

v1

0

⎞
⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

Note that these functions do not explicitly depend on f , therefore also in this case (1.1) is a linear
Fokker–Planck equation.

(iii) Coulomb/Landau operator

The more general Coulomb collision operator has the form (2.1) with

Dij(x, v; f ) = NtotΓ

∫
R3

|v − u|2δij − (vi − ui)(vj − uj)

|v − u|3 f (x, u, t) d3u

and Ki(x, v; f ) = −2NtotΓ

∫
R3

vi − ui

|v − u|3 f (x, u, t) d3u,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.9)

where Ntot appears due to our normalization of f , δij is Kronecker’s delta, and Γ = (4πq4/m2) ln Λ,
with ln Λ denoting the so-called Coulomb logarithm. The Coulomb operator describes collisions
in which the fundamental two-body force obeys an inverse square law, and makes the assumption
that small-angle collisions are more important than collisions resulting in large momentum
changes [50,51,59]. A decomposition (2.2) can be found, for example, via the procedure outlined
in §2a. However, the expressions for G and gν are complicated, therefore we are not stating them
here explicitly. Note that Dij and Ki explicitly depend on f . Therefore, for the Coulomb operator
the Vlasov equation (1.1) is a strongly nonlinear Fokker–Planck equation. Note also that Dij and
Ki can be explicitly written as functionals of the stochastic processes X and V as

Dij(x, v; X, V) = NtotΓ · E

[ |v − V(t)|2δij − (vi − Vi(t))(vj − Vj(t))

|v − V(t)|3 δ(x − X(t))
]

and Ki(x, v; X, V) = −2NtotΓ · E

[
vi − Vi(t)
|v − V(t)|3 δ(x − X(t))

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.10)

The collision operator (2.1) with Dij and Ki as in (2.9) can also be expressed in an equivalent,
although more symmetric form, known as the Landau form of the Coulomb operator, or simply
the Landau collision operator (e.g. [50]).
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3. Stochastic particle discretization of the Vlasov–Maxwell equations
Particle modelling is one of the most popular numerical techniques for solving the Vlasov
equation (e.g. [60,61]). In this section, we discuss the connections between particle methods and
stochastic modelling.

The standard particle method for the collisionless Vlasov equation (1.1) (with C[f ] = 0) consists
of substituting the Ansatz f (x, v, t) =∑N

a=1 waδ(x − Xa(t))δ(v − Va(t)) for the particle density
function, and deriving the corresponding ordinary differential equations satisfied by the ‘particle’
positions Xa(t) and velocities Va(t), which turn out to be the characteristic equations. Note that we
did a qualitatively similar thing in §2a, where we turned the original collisional Vlasov equation
into the system of stochastic differential equations (2.3), which in the absence of the forcing terms
G and gν have the same form as the characteristic equations, and in fact the ‘particles’ Xa(t)
and Va(t) can be interpreted as realizations of the stochastic processes X(t) and V(t) for different
elementary events ω ∈ Ω .

When the right-hand side of (2.3) does not depend on f , then (2.3) can in principle be solved
numerically with the help of any standard stochastic numerical method (e.g. [55]), and each
realization of the stochastic processes can be simulated independently of others. When the right-
hand side of (2.3) depends on f , then all realizations of the stochastic processes have to be
solved for simultaneously, so that at each time step the probability density function f can be
numerically approximated (e.g. [52]). Such an approach, however, does not quite lend itself to a
geometric formulation. Therefore, in order to be able to introduce a variational principle in §4,
let us consider 2N stochastic processes X1, V1, . . . , XN , VN , with each pair (Xa, Va) satisfying the
stochastic differential system

dXa = Va dt (3.1a)

and

dVa =
(

q
m

E(Xa, t) + q
m

Va × B(Xa, t) + G(Xa, Va; f )
)

dt

+
M∑

ν=1

gν (Xa, Va; f ) ◦ dWν
a (t), (3.1b)

for a = 1, . . . , N, where Wa = (W1
a , . . . , WM

a ) are N independent M-dimensional Wiener processes.
Note that the systems (3.1) are decoupled from each other for different values of a, and each
system is driven by an independent Wiener process Wa. Therefore, the pairs (Xa, Va) for a =
1, . . . , N are independent identically distributed stochastic processes, each with the probability
density function f that satisfies the original Fokker–Planck equation (1.1). In that sense (3.1)
is equivalent to (2.3). The advantage is that instead of considering N realizations of the
six-dimensional stochastic process (X, V) in (2.3), one can consider one realization of the 6N-
dimensional process (X1, V1, . . . , XN , VN) in (3.1). Such a reformulation will allow us to identify
an underlying stochastic variational principle in §4. The last step leading to the stochastic particle
discretization is approximating the probability density function f in (3.1). This can be done with
the help of the law of large numbers, namely, one can approximate (2.4) for large N as

f (x, v, t) ≈ 1
N

N∑
a=1

δ(x − Xa(t))δ(v − Va(t)), (3.2a)

ρ(x, t) ≈ qNtot

N

N∑
a=1

δ(x − Xa(t)) (3.2b)

and J(x, t) ≈ qNtot

N

N∑
a=1

Va(t)δ(x − Xa(t)). (3.2c)

It is easy to see that (3.2a) coincides with the standard Ansatz used in particle modelling (with
the weights wa = 1/N). Therefore, the system of stochastic differential equations (3.1) with the



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210167

..........................................................

approximation (3.2), and with the electromagnetic field coupled via the Maxwell equations
(1.2), can be considered as a stochastic particle discretization of the collisional Vlasov–Maxwell
equations.

Remark. Upon substituting (3.2a), the forcing terms G and gν become functionals of
the processes X1, . . . , XN and V1, . . . , VN . Similar to the discussion in §2a, for convenience
and simplicity, throughout this work we will stick to the notation G(x, v; f ) and gν (x, v; f ),
understanding that the probability density is given by (3.2a) for particle discretizations.

4. Variational principle for the particle discretization
In this section, we propose an action functional which can be understood as a stochastic
version of the Low action functional [4], and we prove a variational principle underlying the
particle discretization introduced in §3, akin to the stochastic Lagrange–d’Alembert principle first
introduced in [18].

(a) Function spaces
Before we introduce the action functional, we need to identify suitable function spaces on which
it will be defined. For simplicity, let our spatial domain be the whole three-dimensional space
R

3, and let us consider the time interval [0, T] for some T > 0. Let (Ω ,F , P) be the probability
space with the filtration {Ft}t≥0, and let Wa = (W1

a , . . . , WM
a ) for a = 1, . . . , N denote N independent

M-dimensional Wiener processes on that probability space (such that Wν
a (t) is Ft-measurable for

all t ≥ 0). The stochastic processes Xa(t) and Va(t) satisfy (3.1), so they are in particular Ft-adapted
semimartingales, and have almost surely continuous paths [62]. We also notice that there is no
diffusion term in (3.1), therefore we even have that the processes Xa(t) are almost surely of class
C1. We introduce the notation

Ck
Ω ,T = {

X ∈ L2(Ω × [0, T], R3)
∣∣X is a Ft-adapted semimartingale,

almost surely of class Ck}. (4.1)

Note that this set is a vector space [62]. The potentials ϕ and A satisfy the Maxwell equations
(1.2) and (1.4), therefore we require them to be of class C2. However, since our spatial domain is
unbounded, we further need to assume that the vector fields E and B are square integrable. We
introduce the notation

X(Rn) = {
A ∈ C2(R3 × [0, T], Rn) ∩ L∞(R3 × [0, T], Rn)

∣∣
∀i, j :

∂Ai

∂xj
,
∂Ai

∂t
∈ L2(R3 × [0, T])

}
and X0(Rn) = C2

0(R3 × [0, T], Rn),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.2)

where X0(Rn) is simply the space of compactly supported elements of X(Rn).

(b) Action functional
Let us consider the action functional

S : Ω × (
C1

Ω ,T
)N × (

C0
Ω ,T

)N × (
C0

Ω ,T
)N × X(R) × X(R3) −→ R, (4.3)
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defined by the formula

S[X1, . . . , XN , V1, . . . , VN , P1, . . . , PN , ϕ, A]

= Ntot

N

N∑
a=1

[ ∫T

0

(
m
2

|Va|2 − qϕ(Xa, t) + qVa · A(Xa, t) + Pa · (Ẋa − Va)
)

dt

]

+
∫T

0

∫
R3

1
2

(|E|2 − |B|2) d3xdt, (4.4)

where Ẋa denotes the time derivative of Xa, and the electric and magnetic fields E and B are
expressed in terms of the partial derivatives of the potentials ϕ and A as in (1.4). Following
the standard convention in stochastic analysis, we will omit writing elementary events ω ∈ Ω

as arguments of stochastic processes unless otherwise needed, i.e. Xa(t) ≡ Xa(ω, t). The action
functional (4.4) resembles the Low action functional introduced in [4]. In fact, it can be viewed
as a particle discretization of the Low action functional, written in terms of stochastic processes
[5,6,8,10–12]. The term Pa · (Ẋa − Va) is the so-called Hamilton–Pontryagin kinematic constraint
(e.g. [63,64]) that enforces that Ẋa = Va using the Lagrange multiplier Pa, which turns out to
be the conjugate momentum. In principle, this constraint is not necessary in our context—we
could omit it and replace Va with Ẋa in (4.4). We will, however, keep it in order to make a
clear connection with the theory developed in [35]. It also makes the notation in the proof of
the stochastic Lagrange–d’Alembert principle in §4c more convenient and elegant. Note that the
action functional S is itself a random variable, as ω ∈ Ω is one of its arguments. The variations of
S with respect to its arguments are given by (see appendix A for the details of the derivations)

δXa S = Ntot

N

(
Pa(T) · δXa(T) − Pa(0) · δXa(0)

)

+ Ntot

N

[
−

∫T

0
δXa ◦ dPa +

∫T

0

(
−q∇xϕ(Xa, t) · δXa

+ q
3∑

i,j=1

Vj ∂Aj

∂xi
(Xa, t)δXi

a

)
dt

]
, (4.5a)

δVa S = Ntot

N

∫T

0

(
mVa + qA(Xa, t) − Pa

) · δVa dt, (4.5b)

δPa S = Ntot

N

∫T

0

(
Ẋa − Va

) · δPa dt, (4.5c)

δAS =
∫T

0

∫
R3

(
J + ∂E

∂t
− ∇x × B

)
· δA d3xdt

−
∫
R3

(
E(x, T) · δA(x, T) − E(x, 0) · δA(x, 0)

)
d3x (4.5d)

and δϕS =
∫T

0

∫
R3

(∇x · E − ρ
) · δϕ d3xdt, (4.5e)

where ρ and J are defined in (3.2b) and (3.2c), respectively. The total variation of S with respect to
the variations of all arguments equals

δS =
N∑

a=1

(
δXa S + δVa S + δPa S

)
+ δϕS + δAS. (4.6)

(c) The stochastic Lagrange–d’Alembert principle
While the standard rules of the calculus of variations apply to the variations (4.5d,e), the
variations (4.5a–c) involve stochastic processes and stochastic integrals. Therefore, before we can
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formulate a stochastic variational principle, we need the following lemma, whose proof is given in
appendix B.

Lemma 4.1. Let X ∈ C1
Ω ,T and V, P ∈ C0

Ω ,T, and let R, rν : R
3 × R

3 −→ R
3 be of class C1 for ν =

1, . . . , M. Then

∀Z ∈ C1
Ω ,T :

∫T

0

(
Z(t) ◦ dP − R(X, V) · Z(t) dt

−
M∑

ν=1

rν (X, V) · Z(t) ◦ dWν (t)
)

= 0 a.s., (4.7)

if and only if

∀t ∈ [0, T] :
∫ t

0

(
dP(τ ) − R(X(τ ), V(τ )) dτ

−
M∑

ν=1

rν (X(τ ), V(τ )) ◦ dWν (τ )
)

= 0 a.s., (4.8)

where ‘a.s.’ means almost surely.

Remark. Equation (4.8) means that P(t), X(t) and V(t) satisfy a stochastic differential equation,
which can be written in the differential form as

dP(t) = R(X(t), V(t)) dt +
M∑

ν=1

rν (X(t), V(t)) ◦ dWν (t). (4.9)

We are now in a position to formulate and prove a stochastic variational principle that generalizes
the deterministic Lagrange–d’Alembert principle for forced Lagrangian and Hamiltonian
systems, akin to the stochastic variational principle introduced in [18].

Theorem 4.2 (Stochastic Lagrange–d’Alembert principle for particles). Let Xa ∈ C1
Ω ,T and

Va, Pa ∈ C0
Ω ,T for a = 1, . . . , N be stochastic processes, and let A ∈ X(R3), ϕ ∈ X(R) be functions. Assume

that G(·, ·; f ) and gν (·, ·; f ) for ν = 1, . . . , M are C1 functions of their arguments, where f is given by (3.2a).
Then Xa, Va, Pa, A and ϕ satisfy the system of stochastic differential equations

Ẋa = Va, (4.10a)

Pa = mVa + qA(Xa, t) (4.10b)

and dPi
a =

(
−q

∂ϕ

∂xi
(Xa, t) + q

3∑
j=1

Vj
a
∂Aj

∂xi
(Xa, t) + m Gi(Xa, Va; f )

)
dt

+ m
M∑

ν=1

gi
ν (Xa, Va; f ) ◦ dWν

a (t), (4.10c)

for i = 1, 2, 3 and a = 1, . . . , N, together with the Maxwell equations (1.2), (1.4) and (3.2) on the time
interval [0, T], if and only if they satisfy the following variational principle

δS + mNtot

N

N∑
a=1

[ ∫T

0
G(Xa, Va; f ) · δXa dt +

M∑
ν=1

∫T

0
gν (Xa, Va; f ) · δXa ◦ dWν

a (t)
]

= 0 (4.11)

for arbitrary variations δXa ∈ C1
Ω ,T, δVa, δPa ∈ C0

Ω ,T, δA ∈ X0(R3), and δϕ ∈ X0(R), with δXa(0) =
δXa(T) = 0 almost surely, and δA(x, 0) = δA(x, T) = 0 for all x ∈ R

3, where the action functional S is given
by (4.4).

Proof. Let us first consider the variations with respect to A in (4.11). Given the boundary
conditions for δA, from the standard calculus of variations we have that δAS = 0 (see equation
(4.5d)) for all δA if and only if (1.2d) is satisfied. Similarly, δϕS = 0 (see equation (4.5e)) holds for all
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δϕ if and only if (1.2a) holds. Further, for variations with respect to Va we have that δVa S = 0 (see
equation (4.5b)) for all δVa if and only if (4.10b) is satisfied almost surely, which follows from the
standard theorem of the calculus of variations, since the integral in (4.5b) is a standard Lebesgue
integral, and the integrands are almost surely continuous. Similarly, δPa S = 0 (see equation (4.5c))
for all δPa if and only if (4.10a) is satisfied almost surely. Finally, for variations with respect to Xa,
equations (4.5a) and (4.11) give

∫T

0

(
− δXa ◦ dPa +

(
−q∇xϕ(Xa, t) · δXa

+ q
3∑

i,j=1

Vj ∂Aj

∂xi
(Xa, t)δXi

a + mG(Xa, Va; f ) · δXa

)
dt

+ m
M∑

ν=1

gν (Xa, Va; f ) · δXa ◦ dWν
a (t)

)
= 0, (4.12)

which, by lemma 4.1, holds for all δXa if and only if (4.10c) is satisfied. �

Remark. Equation (4.10) is expressed in terms of the Lagrange multipliers Pa, which, as can be
seen in (4.10b), turn out to be the conjugate momenta. The conjugate momenta can be eliminated,
and equation (4.10) can be recast as equation (3.1b), which is shown in the following theorem.

Theorem 4.3. Equations (3.1) and (4.10) are equivalent.

Proof. By calculating the stochastic differential on both sides of (4.10b) and substituting (4.10a),
we obtain

dPi
a = m dVi

a + q
3∑

j=1

Vj
a
∂Ai

∂xj
(Xa, t) dt + q

∂Ai

∂t
(Xa, t) dt, (4.13)

for each i = 1, 2, 3 and a = 1, . . . , N. Comparing this with (4.10c), and using (1.4), one eliminates
the conjugate momenta and obtains equation (3.1d). �

Remark. Theorems 4.2 and 4.3 provide a variational formulation of the stochastic particle
method from §3. One can further perform a variational discretization of the electromagnetic
fields A and ϕ, for instance along the lines of [10,65] or [66], thus obtaining a stochastic PIC
discretization of the collisional Vlasov–Maxwell equations. The resulting structure-preserving
numerical methods will be investigated in a follow-up work.

5. Variational principle for the Vlasov–Maxwell equations
The form of the action functional (4.4) and of the Lagrange–d’Alembert principle (4.11)
suggests that it should be possible to formulate a similar variational principle for the stochastic
reformulation of the Vlasov–Maxwell system discussed in §2a. In this section, we provide such a
variational principle for a class of collision operators.

(a) Action functional
Let us consider the action functional defined by the formula

S̄[X, V, P, ϕ, A] = Ntot · E

[ ∫T

0

(
m
2

|V|2 − qϕ(X, t) + qV · A(X, t) + P · (Ẋ − V)
)

dt

]

+
∫T

0

∫
R3

1
2

(|E|2 − |B|2) d3xdt, (5.1)

where Ẋ denotes the time derivative of X, the electric and magnetic fields E and B are expressed
in terms of the partial derivatives of the potentials ϕ and A as in (1.4), and E[Y] ≡ ∫

Ω Y dP
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denotes the expected value of the random variable Y. Note that unlike S in (4.4), the action
functional S̄ is not a random variable, as the dependence on ω ∈ Ω is integrated out with respect
to the probability measure by calculating the expected value. In fact, S could be regarded as a
Monte Carlo approximation of S̄ when the processes X1, . . . , XN are independent and identically
distributed as X, and similarly for V and P. An important issue to consider is the domain of this
action functional. In a similar manner to (4.3), one may want to take as the domain the set

C1
Ω ,T × C0

Ω ,T × C0
Ω ,T × X(R) × X(R3), (5.2)

on which the formula (5.1) is well defined. This domain, however, turns out to be too big, in the
sense that, as will be discussed below, due to the presence of the expected value the variations
of S̄ do not uniquely determine the set of stochastic evolution equations (2.3). It is therefore
necessary to restrict (5.2) to a smaller subspace or submanifold which is compatible with the
considered collision operator. Below we will demonstrate how this can be done for a class of
collision operators (2.1) for which Dij(x, v; f ) = const, that is, we have

gν (x, v; f ) =χχχν = const. (5.3)

This class encompasses, for instance, the Lenard–Bernstein operator (2.6), or the more general
nonlinear energy and momentum preserving Dougherty collision operator and its modifications
[67–74]. For a given collision operator of the form (5.3), we define a compatible subset of C0

Ω ,T,
namely,

Ccol =
{

P ∈ C0
Ω ,T

∣∣∣∃Z ∈ C0
Ω ,T : dP = Z dt + m

M∑
ν=1

χχχν dWν (t)
}

. (5.4)

Note that for any P1, P2 ∈ Ccol we have that d(P1 − P2) = (Z1 − Z2) dt, that is, P1 − P2 ∈ C1
Ω ,T.

Therefore, the pair (Ccol, C1
Ω ,T) is an affine subspace of C0

Ω ,T. The action functional S̄ can now
be defined as

S̄ : C1
Ω ,T × C0

Ω ,T × Ccol × X(R) × X(R3) −→ R. (5.5)

Similar to the calculations in §4b, the variations of S̄ with respect to V and P are given by,
respectively,

δVS̄ = Ntot · E

[ ∫T

0

(
mV + qA(X, t) − P

) · δV dt
]

(5.6)

and

δPS̄ = Ntot · E

[ ∫T

0

(
Ẋ − V

) · δP dt
]

, (5.7)

except that here δP ∈ C1
Ω ,T, so that P + εδP ∈ Ccol. For the variation of S̄ with respect to X we have

δXS̄ = Ntot · E

(
P(T) · δX(T) − P(0) · δX(0)

)
+ Ntot · E

[
−

∫T

0
δX ◦ dP

+
∫T

0

(
−q∇xϕ(X, t) · δX + q

3∑
i,j=1

Vj ∂Aj

∂xi
(X, t)δXi

)
dt

]
. (5.8)

Since P ∈ Ccol, we have that dP = Z dt + m
∑M

ν=1 χχχν dWν (t). Furthermore, the variations δX are
almost surely of class C1, and therefore have sample paths of almost surely finite variation.
Consequently, the quadratic covariation [χχχν · δX, Wν ]T

0 = 0 almost surely [62]. Since the expected
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value of the Itô integral with respect to the Wiener process is zero, we altogether have that

E

[ ∫T

0
χχχν · δX ◦ dWν (t)

]
= 0, for all ν = 1, . . . , M. (5.9)

By plugging this in (5.8), we finally obtain

δXS̄ = Ntot · E

(
P(T) · δX(T) − P(0) · δX(0)

)

+ Ntot · E

[ ∫T

0

(
− Z · δX − q∇xϕ(X, t) · δX + q

3∑
i,j=1

Vj ∂Aj

∂xi
(X, t)δXi

)
dt

]
. (5.10)

The variations with respect to A and ϕ are the same as in (4.5d,e), respectively, only with the charge
and electric current densities given by (2.4) rather than (3.2). The total variation of S̄ with respect
to the variations of all arguments is given by

δS̄ = δXS̄ + δVS̄ + δPS̄ + δϕ S̄ + δAS̄. (5.11)

(b) The stochastic Lagrange–d’Alembert principle
In the following theorems, we establish a variational principle for the system of equations (1.2),
(2.3) and (2.4) for a class of collision operators with gν (x, v; f ) =χχχν = const for all ν = 1, . . . , M.

Theorem 5.1 (Stochastic Lagrange–d’Alembert principle for the VM equations). Let X ∈ C1
Ω ,T,

V ∈ C0
Ω ,T, P ∈ Ccol be stochastic processes, and let A ∈ X(R3), ϕ ∈ X(R) be functions. Assume that G(·, ·; f )

is a C1 function of its arguments, where f is given by (2.4a). Then X, V, P, A and ϕ satisfy the system of
stochastic differential equations

Ẋ = V, (5.12a)

P = mV + qA(X, t) (5.12b)

and dPi =
(

−q
∂ϕ

∂xi
(X, t) + q

3∑
j=1

Vj ∂Aj

∂xi
(X, t) + mGi(X, V; f )

)
dt

+ m
M∑

ν=1

χ i
ν dWν (t), (5.12c)

for i = 1, 2, 3, together with the Maxwell equations (1.2), (1.4) and (2.4) on the time interval [0, T], if and
only if they satisfy the following variational principle

δS̄ + mNtot · E

[ ∫T

0
G(X, V; f ) · δX dt

]
= 0 (5.13)

for arbitrary variations δX, δP ∈ C1
Ω ,T, δV ∈ C0

Ω ,T, δA ∈ X0(R3), and δϕ ∈ X0(R), with δX(0) = δX(T) = 0
almost surely, and δA(x, 0) = δA(x, T) = 0 for all x ∈ R

3, where the action functional S̄ is given by (5.1)
and (5.5).

Proof. Similar to the proof of theorem 4.2, the equations δϕ S̄ = 0 and δAS̄ = 0 are equivalent to
(1.2a) and (1.2d), respectively. Note that C0

Ω ,T is a subspace of L2(Ω × [0, T], R3), and 〈Y1, Y2〉 =
E[

∫T
0 Y1 · Y2 dt] is an inner product on that space. Therefore, by substituting equations (5.6), (5.7)

and (5.10) in equation (5.13), and using the fact that the variations are arbitrary, we establish
equivalence with equations (5.12a,b), as well as with the equation

Zi = −q
∂ϕ

∂xi
(X, t) + q

3∑
j=1

Vj ∂Aj

∂xi
(X, t) + mGi(X, V; f ), (5.14)

for i = 1, 2, 3, which in turn is equivalent to equation (5.12c), given the assumption P ∈ Ccol. �
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Theorem 5.2. Equation (2.3) with gν (x, v; f ) =χχχν = const for ν = 1, . . . , M and equation (5.12) are
equivalent.

Proof. Similar to the proof of theorem 4.3, by calculating the stochastic differential on both sides
of equation (5.12b) and comparing with equation (5.12c), one eliminates P and obtains equation
(2.3b). �

Remark. Note that the forcing terms gν do not explicitly appear in the variational equation
(5.13). By comparing theorem 4.2 and theorem 5.1, one could intuitively expect that the relevant
variational principle should read

δS̄ + mNtot · E

[ ∫T

0
G(X, V; f ) · δX dt +

M∑
ν=1

∫T

0
gν (X, V; f ) · δX ◦ dWν (t)

]
= 0. (5.15)

However, due to the presence of the expected value in this equation, part or all of the information
about the Stratonovich integral term is lost, as we saw in (5.9) for instance. Therefore, if the
domain (5.2) is chosen for S̄, then the variational equations (5.13) or (5.15) do not determine a
unique set of stochastic differential equations that need to be satisfied by the considered stochastic
processes. Consequently, it is necessary to encode the missing information about the forcing terms
gν in the definition of the action functional S̄ by restricting its domain to a subset compatible with
the considered collision operator. For the class of collision operators (5.3) a suitable choice of the
domain is proposed in (5.5). For other collision operators appropriate domains will be nonlinear
subspaces of (5.2), and they will be investigated in a follow-up work.

6. Variational principle for the Vlasov–Poisson equations
In the full Vlasov–Maxwell system, the scalar ϕ and vector A potentials are independent dynamic
variables, and as such have to appear explicitly in the action functional alongside the stochastic
processes X, V and P. In order to ensure the correct coupling between the stochastic processes
and the electromagnetic field, an expected value was necessary in the definition of the action
functional (5.1). This created a difficulty in deriving a variational principle, as pointed out in
the remark following theorem 5.2. This difficulty can be circumvented for the Vlasov–Poisson
equations because in this case the electrostatic potential ϕ is uniquely determined by the stochastic
process X, as will be demonstrated below.

(a) The collisional Vlasov–Poisson equations
The collisional Vlasov–Poisson equations

∂f
∂t

+ v · ∇xf + q
m

E · ∇v f = C[f ], (6.1)

where
E = −∇xϕ (6.2a)

and
�xϕ = −ρ, (6.2b)

and the charge density ρ is given by (1.3), are an approximation of the Vlasov–Maxwell equations
in the non-relativistic zero-magnetic field limit. The associated stochastic differential equations
take the form

dX = V dt (6.3a)

and

dV =
(

q
m

E(X, t) + G(X, V; f )
)

dt +
M∑

ν=1

gν (X, V; f ) ◦ dWν (t). (6.3b)

The equations (2.4b), (6.2) and (6.3) form a stochastic reformulation of the Vlasov–Poisson
equations. A stochastic particle discretization and the corresponding stochastic variational
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principle can be derived just like in §§3 and 4, respectively. Also, a variational principle analogous
to the Lagrange–d’Alembert principle presented in §5 can be derived in a similar fashion.
However, by doing so, one encounters the same difficulty with including the Stratonovich
integral. In the case of the Vlasov–Poisson equations a different variational principle can be
obtained by observing that the electrostatic potential ϕ can be expressed as a functional of the
stochastic process X,

ϕ : R
3 × R × C1

Ω ,T −→ R, (6.4)

by solving Poisson’s equation (6.2b). Given the charge density function (2.4b) and specific
boundary conditions, the solution of Poisson’s equation can be written using an appropriate
Green’s function for the Laplacian. Assuming the spatial domain is unbounded, the standard
Green’s function yields

ϕ(x, t, X) = 1
4π

∫
R3

ρ(y, t)
|x − y|d3y = qNtot

4π
E

[
1

|x − X(t)|
]

. (6.5)

From (6.2a) we have the electric field

E(x, t, X) = qNtot

4π
E

[
x − X(t)

|x − X(t)|3
]

. (6.6)

(b) Action functional
Let us consider the action functional

Ŝ : Ω × C1
Ω ,T × C1

Ω ,T × C0
Ω ,T × C0

Ω ,T −→ R (6.7)

defined by the formula

Ŝ[X, Y, V, P] =
∫T

0

(
m
2

|V(t)|2 − qϕ
(
X(t), t, Y

)+ P(t) · (Ẋ(t) − V(t)
))

dt, (6.8)

where the electrostatic potential ϕ is given by (6.5). Note that similar to S in (4.4), the functional
Ŝ is itself random, and can be viewed as the action functional of particles represented by the
process X which are moving in the electric field generated by particles represented by the process
Y. Similar to the calculations in §4b, the variations of Ŝ with respect to X, V and P are given by,
respectively,

δXŜ[X, Y, V, P] = P(T) · δX(T) − P(0) · δX(0)

−
∫T

0
δX(t) ◦ dP(t) +

∫T

0
qE
(
X(t), t, Y

) · δX(t) dt, (6.9a)

δVŜ[X, Y, V, P] =
∫T

0

(
mV(t) − P(t)

) · δV(t) dt (6.9b)

and δPŜ[X, Y, V, P] =
∫T

0

(
Ẋ(t) − V(t)

) · δP(t) dt, (6.9c)

where the electric field E is given by (6.6). Note that we are not considering variations with respect
to Y. Let us for convenience define the joint variation of Ŝ with respect to X, V and P as

δ(X,V,P)Ŝ = δXŜ + δVŜ + δPŜ. (6.10)

(c) The stochastic Lagrange–d’Alembert principle
In the following theorem, we formulate a variational principle for the system of equations (2.4b),
(6.2) and (6.3). Note that E(X(t), t, X) is the electric field generated by a distribution of charged
particles represented by the process X at time t, and evaluated at the random point x = X(t) in
space. Furthermore, the notation δXŜ[X, X, V, P] means that the variation of Ŝ is evaluated for the
arguments X, Y, V, P with Y = X.
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Theorem 6.1 (Stochastic Lagrange–d’Alembert principle for the VP equations). Let X ∈ C1
Ω ,T

and V, P ∈ C0
Ω ,T be stochastic processes, and let ϕ(·, ·, X) ∈ X(R) be given by (6.5). Assume that G(·, ·; f )

and gν (·, ·; f ) for ν = 1, . . . , M are C1 functions of their arguments, where f is given by (2.4a). Then X, V
and P satisfy the system of stochastic differential equations

Ẋ(t) = V(t), (6.11a)

P(t) = mV(t) (6.11b)

and dP(t) =
(

qE
(
X(t), t, X

)+ m G
(
X(t), V(t); f

))
dt

+ m
M∑

ν=1

gν

(
X(t), V(t); f

) ◦ dWν (t), (6.11c)

on the time interval [0, T], if and only if they satisfy the following variational principle

δ(X,V,P)Ŝ[X, X, V, P] + m
∫T

0
G(X, V; f ) · δX dt

+ m
M∑

ν=1

∫T

0
gν (X, V; f ) · δX ◦ dWν (t) = 0, (6.12)

for arbitrary variations δX ∈ C1
Ω ,T, and δV, δP ∈ C0

Ω ,T, with δX(0) = δX(T) = 0 almost surely, where the

action functional Ŝ is given by (6.8).

Proof. Analogous to the proof of theorem 4.2. �

Remark. It is straightforward to see that equations (6.11), together with (6.5) and (6.6), are
equivalent to the system of equations (2.4b), (6.2) and (6.3). The Lagrange–d’Alembert principle
(6.12) is unusual in that the variations of the action functional Ŝ with respect to the argument Y are
omitted. Thanks to such a form, however, the action functional does not require an expected value,
and the collisional effects can be correctly included. A similar idea to solve Poisson’s equation and
plug the solution into the action functional was presented in [15], where the authors proposed a
variational principle for the collisionless Vlasov–Poisson equations. In that approach the energy of
the electric field was also included in the variational principle, and the variations were taken with
respect to all arguments of the action functional. This approach could be adapted to the stochastic
reformulation of the Vlasov–Poisson equations, but the corresponding action functional would
have a form similar to (5.1), that is, it would need to contain an expected value, and therefore we
would face a similar difficulty as for the Vlasov–Maxwell equations in §5b.

7. Summary and future work
In this work, we have considered novel stochastic formulations of the collisional Vlasov–Maxwell
and Vlasov–Poisson equations, and we have identified new stochastic variational principles
underlying these formulations. We have also proposed a stochastic particle method for the
Vlasov–Maxwell equations and proved the corresponding stochastic variational principle.

Our work can be extended in several ways. The stochastic variational principle introduced
in §4 can be used to construct stochastic variational PIC numerical algorithms for the collisional
Vlasov–Maxwell and Vlasov–Poisson equations. Variational integrators are an important class of
geometric integrators. This type of numerical scheme is based on discrete variational principles
and provides a natural framework for the discretization of Lagrangian systems, including forced,
dissipative or constrained ones. These methods have the advantage that they are symplectic
when applied to systems without forcing, and in the presence of a symmetry, they satisfy a
discrete version of Noether’s theorem. For this reason, they demonstrate superior performance
in long-time simulations; see [3,75–84]. Variational integrators were introduced in the context of
finite-dimensional mechanical systems, but were later generalized to Lagrangian field theories [2]
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and applied in many computations, for example in elasticity, electrodynamics, fluid dynamics, or
plasma physics; see [10–12,65,72,85–87]. Stochastic variational integrators were first introduced in
[35] and further studied in [18,34,37,39,40].

In §5, we have proposed a general action functional for the collisional Vlasov–Maxwell
equations. However, we have also determined that in order to prove a relevant variational
principle, the domain of this action functional has to be restricted in a way compatible with
the collision operator of interest. We have shown that for a class of collision operators with
constant diffusion terms, a suitable subdomain is an affine subspace (i.e. a submanifold). A
natural continuation of our work would be to investigate submanifolds of (5.2) which are suitable
for other collision operators.

Another aspect worth a more detailed investigation is the issue of existence and uniqueness
of the solutions of the stochastic reformulations presented in this work, which are non-trivial
systems of coupled stochastic and partial differential equations. This question is closely connected
to the issue of existence and uniqueness of the solutions of the original collisional Vlasov–Maxwell
and the Vlasov–Poisson equations. General results are available in the collisionless case (e.g. [88–
90]), but the theory for the collisional equations is less developed (see [29,91–96] and references
therein).

Furthermore, our stochastic Lagrange–d’Alembert approach could also be adapted to
relativistic plasmas [97], and to variational principles with phase-space Lagrangians appearing in
gyrokinetic [13,14,98] and guiding-centre theories [99–102]. In particular, considering stochastic
extensions of the variational principles proposed in [99] could offer an alternative stochastic
description of anomalous transport in magnetically confined plasmas [103,104].

Finally, as is typical for particle methods in general, the stochastic particle discretization
proposed in §3 will require a large number of particles for accurate numerical simulations, which
is computationally expensive. Structure-preserving model reduction methods [105,106] have been
recently successfully applied to particle discretizations of the collisionless Vlasov equation [107].
It would be of great practical interest to combine our results with model reduction techniques
in order to develop new efficient structure-preserving data-driven numerical methods for the
collisional Vlasov–Maxwell equations.
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Appendix A. The variations of the action functional S
We will define the variation of S with respect to the variation δXa ∈ C1

Ω ,T of the argument Xa as

δXa S = d
dε

∣∣∣∣
ε=0

S[X1, . . . , Xa + εδXa, . . . , XN , V1, . . . , VN , P1, . . . , PN , ϕ, A]. (A 1)

Since the potentials ϕ and A are C2, and the processes Xb, Vb and Pb are almost surely continuous,
we can use a dominated convergence argument to interchange the differentiation with respect to
ε and integration with respect to t to obtain

δXa S = Ntot

N

∫T

0

(
−q∇xϕ(Xa, t) · δXa + q

3∑
i,j=1

Vj ∂Aj

∂xi
(Xa, t)δXi

a + Pa · δẊa

)
dt. (A 2)

Since δXa is almost surely differentiable, we have that its stochastic differential is simply dδXa =
δẊa dt. Furthermore, both δXa and Pa are almost surely continuous semimartingales, therefore
using the integration by parts formula for semimartingales [62] we can write

∫T

0
Pa · δẊa dt =

∫T

0
Pa ◦ dδXa = Pa(t) · δXa(t)

∣∣∣T
0

−
∫T

0
δXa ◦ dPa, (A 3)
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where the Stratonovich integrals are understood in the sense that
∫

δXa ◦ dPa =∑
i
∫

δXi
a ◦ dPi

a. By
substituting (A 3) in (A 2), we obtain (4.5a). Variations with respect to δVa, δPa ∈ C0

Ω ,T are defined
analogously to (A 1). Similar computations (note that integration by parts is not necessary) yield
(4.5b) and (4.5c), respectively.

The variation of S with respect to the variation δA ∈ X0(R3) of the vector potential A is defined
as

δAS = d
dε

∣∣∣∣
ε=0

S[X1, . . . , XN , V1, . . . , VN , P1, . . . , PN , ϕ, A + εδA]. (A 4)

Switching the order of differentiation and integration, integrating by parts, and using the fact that
δA is compactly supported, one arrives at (4.5d), where in the derivations we have used (3.2c) and

Ntot

N

N∑
b=1

[ ∫T

0
qVb(t) · δA(Xb, t) dt

]

=
∫T

0

∫
R3

qNtot

N

N∑
b=1

[
qVb(t)δ(x − Xb(t))

] · δA(x, t) d3xdt

=
∫T

0

∫
R3

J(x, t) · δA(x, t) d3xdt, (A 5)

and the remaining calculations are standard, and can be found in, e.g. [108,109]. The variation of
S with respect to the variation δϕ ∈ X0(R) of the scalar potential ϕ is defined in a similar fashion,
and after similar calculations one obtains (4.5e).

Appendix B. Proof of lemma 4.1
Proof. Suppose that (4.8) holds. Then (4.7) follows from the associativity property of the

Stratonovich integral (see, e.g. the proof of theorem 2.1 in [37]). Conversely, assume that (4.7)
is satisfied, and let us prove that (4.8) follows. Our reasoning very closely follows the proof of
theorem 3.3 in [35]. Pick any time t ∈ [0, T]. We will use e1, e2 and e3 to denote the standard
Cartesian basis vectors for R

3. Pick a basis vector ei. The condition (4.7) in particular holds for
Z’s which are C1 functions of time, i.e. non-random. The main idea of the proof is to construct a
one-parameter family of C1 functions Zε which converge to 1[0,t]ei as ε −→ 0, and show that the
integral in (4.7) converges almost surely to the integral in (4.8). Let us introduce the notation

I(X, V, P, Z) =
∫T

0

(
Z(τ ) ◦ dP(τ ) − R(X, V) · Z(τ ) dτ

−
M∑

ν=1

rν (X, V) · Z(τ ) ◦ dWν (τ )
)

(B 1)

and

I∗(X, V, P) =
∫T

0

(
1[0,t]ei ◦ dP(τ ) − R(X, V) · 1[0,t]ei dτ

−
M∑

ν=1

rν (X, V) · 1[0,t]ei ◦ dWν (τ )
)

=
∫ t

0

(
dPi(τ ) − Ri(X(τ ), V(τ )) dτ −

M∑
ν=1

ri
ν (X(τ ), V(τ )) ◦ dWν (τ )

)
. (B 2)
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Define the functions h1 : [0, ε] −→ [0, 1] and h2 : [t − ε, t] −→ [0, 1] by the formulae

h1(τ ) = 2
τ

ε
− τ 2

ε2 and h2(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

− 2
ε2 (τ − t + ε)2 + 1 if t − ε ≤ τ ≤ t − ε

2
,

2
ε2 (τ − t + ε)2 − 4

ε
(τ − t + ε) + 2 if t − ε

2
< τ ≤ t.

(B 3)

Note that h1(0) = h2(t) = 0, h1(ε) = h2(t − ε) = 1 and h′
1(ε) = h′

2(t − ε) = h′
2(t) = 0. Define further the

family of functions Zε by the formula

Zε(τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1(τ )ei if 0 ≤ τ ≤ ε,

ei if ε < τ < t − ε,

h2(τ )ei if t − ε ≤ τ ≤ t,

0 if t < τ ≤ T.

(B 4)

It is easy to see that Zε is continuously differentiable1 on [0, T], and converges to 1[0,t]ei in the L2

norm as ε goes to zero. Using (B 1)–(B 4), we have

I∗(X, V, P) − I(X, V, P, Zε)

=
∫ ε

0

(
(1 − h1(τ )) ◦ dPi(τ ) − (1 − h1(τ ))Ri(X, V) dτ −

M∑
ν=1

(1 − h1(τ ))ri
ν (X, V) ◦ dWν

)

+
∫ t

t−ε

(
(1 − h2(τ )) ◦ dPi(τ ) − (1 − h2(τ ))Ri(X, V) dτ −

M∑
ν=1

(1 − h2(τ ))ri
ν (X, V) ◦ dWν

)
. (B 5)

By definition, the Stratonovich integrals in (B 5) can be expressed in terms of the Itô integrals as

∫ ε

0
(1 − h1(τ ))ri

ν (X, V) ◦ dWν

=
∫ ε

0
(1 − h1(τ ))ri

ν (X, V) dWν + 1
2

[
(1 − h1(τ ))ri

ν (X, V), Wν (τ )
]ε

0

and
∫ t

t−ε

(1 − h2(τ ))ri
ν (X, V) ◦ dWν

=
∫ t

t−ε

(1 − h2(τ ))ri
ν (X, V) dWν + 1

2

[
(1 − h2(τ ))ri

ν (X, V), Wν (τ )
]t

t−ε
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 6)

for each ν = 1, . . . , M, where [·, ·] denotes the quadratic covariation process. Since the quadratic
covariation of almost surely continuous semimartingales is itself a semimartingale with almost
surely continuous paths (see theorem 23 in ch. II.6 of [62]), we have that

[
(1 − h1(τ ))ri

ν (X(τ ), V(τ )), Wν (τ )
]ε

0

−→ (1 − h1(0))ri
ν (X(0), V(0))Wν (0) = 0 a.s. as ε −→ 0, (B 7)

since Wν (0) = 0 almost surely. In a similar fashion, we show

[
(1 − h2(τ ))ri

ν (X(τ ), V(τ )), Wν (τ )
]t

t−ε
−→ 0 a.s. as ε −→ 0. (B 8)

1Note that our definition (B 4) is slightly different from the corresponding definition in [35], because the test functions used
in [35] are in fact not differentiable at τ = t. This, however, is of little consequence for the rest of the proof.
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Using (B 5) and (B 6), we have the estimate

|I∗(X, V, P) − I(X, V, P, Zε)|

≤
∣∣∣∣
∫ ε

0

(
(1 − h1(τ )) ◦ dPi(τ ) − (1 − h1(τ ))Ri(X, V) dτ −

M∑
ν=1

(1 − h1(τ ))ri
ν (X, V) dWν

)∣∣∣∣︸ ︷︷ ︸
Γ1

+
∣∣∣∣
∫ t

t−ε

(
(1 − h2(τ )) ◦ dPi(τ ) − (1 − h2(τ ))Ri(X, V) dτ −

M∑
ν=1

(1 − h2(τ ))ri
ν (X, V) dWν

)∣∣∣∣︸ ︷︷ ︸
Γ2

+ 1
2

M∑
ν=1

∣∣∣∣[(1 − h1(τ ))ri
ν (X, V), Wν (τ )

]ε
0

∣∣∣∣+ 1
2

M∑
ν=1

∣∣∣∣[(1 − h2(τ ))ri
ν (X, V), Wν (τ )

]t

t−ε

∣∣∣∣. (B 9)

By bounding the integrands and using the Itô isometry theorem, it is shown in [35] that Γ1 −→ 0
and Γ2 −→ 0 in mean-square as ε −→ 0, and consequently, by invoking the Borel–Cantelli lemma,
there exists a subsequence (εn) such that εn −→ 0 as n −→ ∞, for which Γ1 −→ 0 and Γ2 −→ 0
almost surely. Together with (B 7) and (B 8), this means that I(X, V, P, Zεn ) −→ I∗(X, V, P) almost
surely. Given the assumption (4.7), we have that I∗(X, V, P) = 0 almost surely, which completes
the proof. �
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