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Abstract
Accumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the character-
istic neuropathological feature of LB diseases, such as Parkinson’s disease (PD), Parkinson’s disease dementia (PDD) and 
dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, 
based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem 
tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage 
disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, 
perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The 
present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying 
catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could 
contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, 
highlighting the potential influence of impairments to these processes in the aetiology of LB formation.
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Introduction

The Lewy body (LB) diseases, including Parkinson’s disease 
(PD), Parkinson’s disease dementia (PDD) and dementia 
with LBs (DLB), are thought to lie on a clinical and patho-
logical continuum of motor and cognitive symptoms [60]. 

PD presents with a rest tremor, bradykinesia and an unsteady 
gait, that can develop into dementia termed PDD, whilst 
DLB presents with cognitive impairment that can later 
develop into motor symptoms similar to PD [75]. All LB 
diseases are characterised by the accumulation of the protein 
α-synuclein into spherical intracellular deposits termed LBs 
[75, 115]. The central role of α-synuclein in LB diseases 
originated from the finding of mutations in the α-synuclein 
gene SNCA causing familial PD [94], and the presence of 
α-synuclein in LB pathology [115]. Although there is con-
tinued controversy surrounding the direct relevance of LBs 
to the clinical features of LB diseases (LBDs), the aggrega-
tion of α-synuclein is thought to be a critical event in the 
development of LBDs [88].

The native structure of α-synuclein is thought to dynami-
cally shift between an unstructured monomer and a helically 
folded tetramer, with disassembly of tetramers into aggrega-
tion-prone monomers thought to be crucial for the aggrega-
tion propensity of α-synuclein [9, 25, 85]. The aggregation 
of α-synuclein is thought to occur in two stages, character-
ised initially by a nucleation phase where soluble monomers 
form into transient oligomers, prior to being built upon dur-
ing an exponential elongation phase that produces filaments 
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that are incorporated into fibrillary structures, such as LBs 
[82]. The application of exogenous fibrils to cells in culture 
induces the misfolding of monomeric α-synuclein, leading 
to accumulation of loosely organised filaments, prior to reor-
ganisation of fibrils into spherical LB-like lesions over time 
[72]. However, the direct functional consequences of LB 
formation on cell viability remains elusive, with some stud-
ies highlighting the potential importance of an ill-defined 
pool of pre-fibrillar oligomers as the primary causative 
agents of neurodegeneration in LB disease [2], recent studies 
have suggested LB-like aggregates to be the primary driv-
ers of neurodegeneration [72, 101]. Despite controversies 
surrounding the role of LBs in neurodegeneration in LB 
disease, the central role ascribed to α-synuclein aggrega-
tion in LB diseases means that understanding the genesis of 
α-synuclein aggregation is a pressing issue.

Although LBs are typically thought to be the hallmark 
pathological lesion associated with LB diseases, they are 
also observed in cases of several rare genetic disorders, 
including some forms of familial PD [8], neurodegenera-
tion with brain iron accumulation (NBIA) [104], lysosomal 
storage disorders [108] and mitochondrial diseases [28]. In 
these conditions, the proportion of cases that manifest LBs is 
higher than would be expected in a comparable control pop-
ulation, implying a relationship between the genetic defect 
giving rise to the disease and LB formation. Furthermore, as 
LB disease and asymptomatic incidental LBs are typically 
only observed in elderly individuals, the young age at which 
LBs have been reported in some disorders implies that these 
are not simply incidental occurrences.

If LBs are a consequence of perturbed functioning of par-
ticular cellular pathways, then understanding the underlying 
cause of rare genetic disorders characterised by LBs could 
provide insights into LB formation. The present review will 
summarise the range of disorders in which LBs have been 
reported, and discuss how a holistic view of this disparate 
range of diseases may generate insights into LB formation 
in idiopathic LB disease. The review is not intended to be a 
comprehensive summary of disorders with a parkinsonian 
phenotype, and is focused instead on attempting to under-
stand why LBs may form in idiopathic LBD by examining 
monogenic disorders with evidence of LB pathology on neu-
ropathological examination.

Monogenic diseases associated 
with α‑synuclein pathology

Familial PD

Whilst the majority of PD cases are idiopathic, a significant 
minority result from genetic mutations with varying patterns 

of clinical features and neuropathological lesion formation. 
An increasing number of genes have been associated with 
familial PD, with varying similarity to idiopathic PD, and 
these have been reviewed elsewhere [8]. Familial PD syn-
dromes are highly clinically heterogenous in terms of age of 
onset and clinical presentation, though all typically include 
parkinsonian motor features, but can vary from that observed 
in idiopathic LBD. However, the present review will only 
discuss those forms of familial PD that have documented 
evidence of LB pathology, or a higher rate of LB pathol-
ogy than would be expected in a comparable control popu-
lation, and includes mutations in SNCA [64, 73, 92, 106, 
137], LRRK2 [98], DNAJC13 [131], PRKN [103], PINK1 
[100, 116, 127], DJ-1/PARK7 [126], TMEM230 [24] and 
LRP10 [95, 129], as described in Table 1. While some, such 
as PRKN, may seem controversial as only approximately 
33% of cases manifest LBs, leading to its characterisation as 
a primary nigropathy [27], as incidental LBs occur in only 
10% of the normal elderly population [28] one could sug-
gest PRKN mutations are associated with increased risk of 
LB pathology. Rodent models of SNCA [30], LRRK2 [10], 
DNAJC13 [135], PRKN [70], and PINK1 [19] are associ-
ated with α-synuclein aggregation. In contrast, there have 
been no studies investigating α-synuclein in rodent models 
of PARK7, TMEM230, or LRP10.

NBIA

Iron is present throughout the brain, where it is involved 
in several important functions including energy production, 
DNA repair, phospholipid metabolism and myelination [20, 
33]. NBIA are a range of disorders characterised by cerebral 
iron accumulation, giving rise to a range of neurodegen-
erative diseases that are distinguished into sub-types on the 
basis of the gene that causes them. Irrespective of underlying 
genetic cause, spasticity and dystonia are typical presenting 
features, and onset is often in early life, including infancy 
[7, 104]. A comprehensive review of the genetics, patho-
physiology and neuropathology of NBIA has already been 
conducted [104]; therefore, the present discussion will focus 
only on NBIA disorders in which LBs have been reported: 
PLKA2G6-associated neurodegeneration (PLAN) [90] and 
mitochondrial membrane protein associated neurodegenera-
tion (MPAN) [44, 49, 54] as described in Table 1. LBs are 
an invariant finding in every neuropathological case reported 
in the literature, including in a PLAN case aged 8 and an 
MPAN case aged 23, much younger than the earliest age at 
which incidental LBs have been reported in control popula-
tions, which is typically approximately 60 years old [34, 
88]. A rodent model of PLA2G6 knockout demonstrated 
widespread α-synuclein aggregation, particularly on mito-
chondrial membranes [122], though there are no studies of 
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α-synuclein aggregation in rodents with C19orf12 mutation 
or deletion to our knowledge.

Lysosomal storage disorders and lipidoses

Lysosomal storage disorders (LSD) are caused by mutations 
in the genes that encode either lysosomal enzymes or mem-
branes, resulting in impaired lysosomal breakdown of cel-
lular components and accumulation of waste products within 
cells, particularly those within the central nervous system 
[108]. Lipidoses are disorders characterised by altered lipid 
metabolism, often by mutations in lysosomal enzymes, 
resulting in accumulated lipids in vulnerable cells [124]. 
LSD and lipidoses typically present in infancy or early child-
hood, though some cases can occur up to adulthood, and 
whilst clinically heterogeneous are usually characterised 
by developmental delay or regression, and hypotonia [31]. 
Detailed neuropathological reports from many of the rare 
mutations causing LSD and lipidoses are lacking, so the pre-
sent discussion will focus on those with reported α-synuclein 
pathology: Gaucher disease [84], GM2 gangliosidosis [124], 
Sanfilippo syndrome [47], Niemann–Pick disease Type CI 
[99], neuronal ceroid lipofuscinosis type 10 [21], Fabry dis-
ease [23] and Krabbe disease [113], as described in Table 1.

Many lipidoses are plausibly linked to the aggregation 
of α-synuclein as they result from loss of function of lipid-
degrading enzymes, the substrates of which have been 
demonstrated to induce the aggregation of α-synuclein 
in vitro. For example, Krabbe disease results from muta-
tions in GALC encoding the enzyme galactosylceramidase, 

resulting in the accumulation of the cytotoxic lipid psycho-
sine which has been demonstrated to induce to fibrilliza-
tion of α-synuclein in vitro [113] through direct interac-
tions with its C-terminal region that expose the central 
amyloidogenic region [1]. Sanfillipo Type B results from 
loss-of-function mutations in the lysosomal enzyme α-N-
acetylglucosaminidase, leading to accumulation of its 
substrate heparan sulphate [3], which increases the rate 
of α-synuclein fibrillization in a dose-dependent manner 
in vitro, possibly by binding the N-terminus and inducing 
conformational changes permissive to fibrillation [18]. The 
influence of lipidosis-causing genetic mutations may be 
two-fold, with both reduced clearance of α-synuclein due 
to autophagic impairments leading to a state of increased 
abundance of α-synuclein within cells, combined with the 
accumulation of lipids known to promote α-synuclein aggre-
gation, as has been demonstrated for GBA1 [119].

It is notable that most cases in the literature have reported 
α-synuclein pathology in cases deceased in infancy or child-
hood, much earlier than incidental LBs typically develop. 
However, it is not clear to what extent α-synuclein pathol-
ogy in LSDs and lipidoses is similar to that observed in 
idiopathic LBD in terms of its capacity to induce native 
α-synuclein to misfold, underlying the need for further stud-
ies on the ultrastructure and seed-competency of LB pathol-
ogy in rare LSDs and lipidoses. Representative images of 
α-synuclein immunoreactivity in an infantile Krabbe disease 
case obtained prospectively can be found in Fig. 1 (A–B.i.). 
Rodent models of Gaucher disease (GBA1) [56], Sandhoff 
disease (HEXA) [62], Tay–Sachs disease (HEXB) [14], 

Fig. 1   α-Synuclein immunoreactivity in rare monogenic disorders in 
comparison to idiopathic LB diseases. α-Synuclein-positive punctae 
and small, LB-like structures, in temporal cortex grey-white mat-
ter junction in a 10 month old boy with Krabbe disease (a and a.i.) 
in comparison to superficial pyramidal layer of temporal cortex in 
a 91-year-old female with dementia with LBs (b–b.i.). LBs in sub-
stantia nigra (c) and nucleus basalis of Meynert (d) of a 87-year-

old female with dementia with LBs in comparison to the substantia 
nigra (e) and nucleus basalis of Meynert (f) of a 79-year-old male 
with a POLG mutation and longstanding progressive external opthal-
moplegia taken from our previous report of LB pathology in mito-
chondrial disease [28]. Antibodies used were BD Transductions 
Clone 42 (1:1,000; a–b.i.) and Novocastra KM51 (1:250; c–f). Scale 
bars = 100 µm (a and b), 50 µm (c and e) and 200 µm (d and f)
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neuronal ceroid lipofuscinosis type 10 (CATD) [21], Krabbe 
disease (GALC) [113], and Fabry disease (GLA) [83] mani-
fest accumulated insoluble α-synuclein. In contrast, no study 
has yet investigated whether α-synuclein is accumulated in 
Sanfillipo syndrome (NAGLU) or Niemann–Pick Type C1 
(NPC1) rodent models.

Mitochondrial diseases

Mitochondrial diseases result from mutations in either 
nuclear or mitochondrial DNA, inducing perturbed cellular 
respiration and degeneration of cellular populations with 
the highest energy requirement [42]. Mitochondrial dis-
eases are heterogeneous entities, even across cases with the 
same mutation, and age of onset, clinical presentation and 
neuropathological features can vary [42]. POLG encodes 
polymerase gamma, a nuclear-encoded DNA polymerase for 
mitochondrial DNA, mutations in which give rise to several 
clinical syndromes, including: Alpers–Huttenlocher syn-
drome (AHS), myocerebrohepatopathy spectrum (MCHS), 
myoclonic epilepsy myopathy sensory ataxia (MEMSA), 
ataxia neuropathy spectrum (ANS) and progressive exter-
nal ophthalmoplegia (PEO) [120]. We have reported a 
higher prevalence of LB pathology in a prospective series 
of older mitochondrial disease cases, particularly those with 
POLG mutations, compared to a control population [28], 
as described in Table 1. Representative images of cortical 
and midbrain LBs in a 79-year-old individual with a POLG 
mutation, in comparison to an individual with dementia with 
LBs, can be found in Fig. 1c–f. To the best of our knowl-
edge, no study has yet evaluated α-synuclein aggregation in 
POLG mice.

RAB39B‑associated neurodegeneration

A number of RAB39B mutations resulting in the loss of 
expression/function of the protein are associated with 
X-linked mental retardation, autistic spectrum disorder and 
early onset PD, as described in Table 1 [40, 133]. Although 
somewhat heterogeneous in terms of symptom presenta-
tion, lifelong non-progressive cognitive impairment with 
underlying macrocephaly is common, as is early onset PD, 
occurring between 10 and 50 years of age [40, 133]. In 
those limited cases where α-synuclein immunoreactivity has 
been investigated, both subcortical and cortical LBs were 
reported [36, 133]. Furthermore, we have recently reported 
RAB39B as reduced in post-mortem LBD brain tissue and 
sequestered into some LBs, potentially indicating a role for 
RAB39B in idiopathic LBD [67]. To the best of our knowl-
edge, α-synuclein aggregation has not yet been investigated 
in RAB39B rodent models.

Gene ontology analysis of risk genes for LB 
pathology

To better understand commonalities across the range of 
genetic disorders in which LBs are observed, we used both 
the Gene Ontology Resource [6, 128] with PANTHER gene 
enrichment software [77], and ShinyGO [38], to identify 
common biological processes enriched in these genes associ-
ated with LB pathology.

Analysis using PANTHER demonstrated enrichment 
of biological processes related to mitochondrial function 
(negative regulation of hydrogen peroxide-induced neu-
ron intrinsic apoptotic signalling pathway, regulation of 
peroxidase activity, mitochondrion to lysosome transport, 
positive regulation of mitochondrial electron transport, posi-
tive regulation of mitophagy in response to mitochondrial 

Table 2   Analysis with PANTHER [77] demonstrated enrichment for genes implicated in mitochondrial function

Top ten enriched processes when ranked based on FDR are shown

GO biological process Fold enrichment P value FDR

Negative regulation of hydrogen peroxide-induced neuron intrinsic apoptotic signal-
ling pathway

 > 100 5.23E-06 1.11E-03

Regulation of peroxidase activity  > 100 8.71E-06 1.65E-03
Mitochondrion to lysosome transport  > 100 8.71E-06 1.61E-03
Positive regulation of mitochondrial electron transport, NADH to ubiquinone  > 100 8.71E-06 1.56E-03
Regulation of synaptic vesicle transport  > 100 8.99E-08 7.15E-05
Regulation of retrograde transport, endosome to Golgi  > 100 1.83E-05 2.69E-03
Positive regulation of histone deacetylase activity  > 100 2.43E-05 3.25E-03
Ganglioside catabolic process  > 100 3.13E-05 3.95E-03
Glycosylceramide catabolic process  > 100 3.13E-05 3.92E-03
Positive regulation of mitophagy in response to mitochondrial depolarization  > 100 4.77E-05 5.15E-03
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depolarization), lysosomal degradation (regulation of per-
oxidase activity, mitochondrion to lysosome transport, 
regulation of retrograde transport endosome to Golgi, posi-
tive regulation of mitophagy in response to mitochondrial 
depolarization) and lipid catabolism (ganglioside catabolic 
process, glycosylceramide catabolic process; Table 2).

Evaluation of the genes associated with LB pathology 
using ShinyGo largely confirmed the findings from PAN-
THER, with enriched biological processes functionally 
clustered around two sub-groups of mitochondrial func-
tion/autophagy, and lipid metabolism, linked by catabolism 
(Fig. 2).

Lipids, lysosomes, mitochondria and LB 
pathology

One of the primary reasons for the ascendency of 
α-synuclein in LB disease is that it is responsible for muta-
tions causing the first identified form of familial PD and 
is a component of LBs [88]; however, a recent study has 
reported that the core of LBs may be composed of lipids 
and surrounded by dystrophic mitochondria [109]. The novel 
report of LBs as having a lipid core has led to considerable 
debate in the field as to whether LBDs are indeed proteopa-
thies or whether they should be considered a lipidopathy 
[29]. By evaluating the spectrum of monogenic disorders in 
which LBs are frequently observed we have continued this 
debate by identifying that alterations to lipid metabolism, 

Fig. 2   ShinyGO [38] analysis demonstrated three broad clusters into which enriched biological processes clustered: lipid metabolism, catabolic 
processes, and mitochondrial homeostasis and autophagy
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autophagy and mitochondrial function are common path-
ways affected in the genetic mutations associated with LB 
pathology. Thus, a key question is how alterations to these 
distinct processes contribute to α-synuclein aggregation and 
the formation of LBs.

Deficits in mitochondrial energy production have long 
been implicated in LB diseases, from the early identifica-
tion of complex I inhibitors causing parkinsonism and 
α-synuclein aggregation, to the identification of mutations 
in mitochondrial proteins causing familial PD [16]. Altera-
tions to the mitochondrial respiratory chain are a consist-
ent finding in LB diseases, and we have previously reported 
reductions in Complex I of the mitochondrial respiratory 
chain in cholinergic nucleus basalis of Meynert neurons in 
LB dementia (Fig. 3) [50]. Energy production is an attrac-
tive hypothesis to explain the potential contribution of lipid 

metabolism, autophagy and mitochondrial function to LB 
formation, as catabolic processes were implicated in the GO 
analysis. Cellular energy in the form of adenosine triphos-
phate (ATP) is primarily produced in mitochondria, where 
glucose is broken down by glycolysis to form pyruvate, 
which is then converted to the metabolic intermediate acetyl-
Coenzyme A (acetyl-CoA) to enter the citric acid cycle 
and mitochondrial respiratory chain to generate ATP [87]. 
Deficient energy production may contribute to α-synuclein 
aggregation through excessive production of reactive oxy-
gen species (ROS), leading to the accumulation of oxidised 
α-synuclein that is more resistant to degradation [74]. It has 
also been suggested that increasingly oxidised intracellular 
environments may lead to reductions in binding partners of 
α-synuclein, increasing levels of unbound α-synuclein, cul-
minating in its aggregation [102].

Fig. 3   LB dementia is associ-
ated with changes to the 
mitochondrial respiratory 
chain. Representative images 
from our previous study in the 
nucleus basalis of Meynert 
[50] demonstrating respiratory 
chain subunit expression in 
control (A.i.–A.iv.), incidental 
LB disease (iLBD) (B.i.–B.
iv.) and LB dementia (LBD) 
(C.i.–C.iv.) cases, highlighting 
reductions in Complex I in LBD 
compared to iLBD and control. 
As detailed in [50], sections 
were stained with ChAT (Sigma 
HPA048547, 1:100), NDUFB8 
(Abcam ab110242, 1:100), 
COX4 (Abcam ab110261, 
1:100) and VDAC1/porin 
(Abcam ab14734, 1:200). Scale 
bars = 10 µm. Dot plots show 
group level z scores of Complex 
I NDUFB8 and IV/COXIV 
integrated densities normalised 
to porin integrated density, 
as explained in detail in [50], 
from approximately 50 neurons 
per case (control N = 8, LBD 
N = 8, iLBD N = 2). Bars are 
means and standard deviation. 
*p < 0.05. Originally published 
in [50] by BioMed Central and 
provided here under a Creative 
Commons Attribution Licence 
4.0
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Autophagy is a critical process that degrades mitochon-
dria, lipids, and many other organelles or macromolecules, 
the accumulation of which can significantly impair cellu-
lar functioning, and there are multiple lines of evidence 
from model systems and post-mortem tissue indicating it 
is deficient in LB disease [55]. Whilst autophagic deficits 
have intuitive appeal for promoting α-synuclein aggrega-
tion by impeding its degradation, it is not clear how deficits 
in a relatively non-specific process like autophagy would 
selectively induce α-synuclein accumulation and not that of 
other aggregation-prone proteins. A recent study reported 
that LBs contain numerous lipids, dystrophic mitochondria 
and other organelles, and thus one could speculate they are 
accumulating and compartmentalising damaged organelles 
and macromolecules as a protective mechanism in the con-
text of deficient autophagic processes [109]. In this context, 
α-synuclein aggregation could be a stereotyped response to 
autophagy failure with the aim of protecting the cell from 
the deleterious effects of accumulated macromolecules and 
organelles such as mitochondria. Consistent with a putative 
protective role for LBs, we have previously reported that 
neurons of the nucleus basalis of Meynert harbour mito-
chondrial respiratory chain deficits and increased levels of 
mitochondria in LB dementia, but that neurons with LBs 
have fewer deficits [50]. However, autophagic processes 
play a critical role in mitochondrial quality control through 
selective mitochondrial degradation termed mitophagy, and 
there is evidence to suggest this is impaired in LB diseases, 
thus suggesting autophagic deficits could induce accumula-
tion of dysfunctional mitochondria [32, 91]. Furthermore, 
our recent work indicates NAD(H), an essential cofactor for 
mitochondrial metabolism, is depleted by selective inhibi-
tion of autophagy, demonstrating that deficient autophagy 
induces mitochondrial dysfunction [105]. In summary, 
whilst autophagy may relate to α-synuclein aggregation by 
impeding its degradation, this seems a sub-optimal expla-
nation given the likely impact this would have on aggrega-
tion-prone proteins beyond α-synuclein. Therefore, it seems 
more likely that the impact of autophagy impairments on 
α-synuclein aggregation may implicate other cellular pro-
cesses, such as a hypothesised protective role or an impact 
upon mitochondrial function or quality control, and that this 
underlies the apparent selective accumulation of α-synuclein 
in the context of autophagic deficits.

Lipid homeostasis is vital for cellular health as the accu-
mulation of lipids within cells induces the cellular stress 
response and lysosomes play a key role in preventing lipid 
accumulation by degrading lipids in a selective autophagic 
process termed lipophagy, and also by acting as a nutri-
ent sensor to regulate lipophagy [58]. Thus, autophagy is 
critical for the maintenance of lipid homeostasis. However, 
mitochondria are also a major site of intracellular lipid deg-
radation as they are the site of fatty acid β-oxidation, the 

catabolic process that breaks down fatty acids to generate 
acetyl-CoA [80]. Intracellular accumulation of lipids leads 
to excessive production of ROS and decreased mitochon-
drial biogenesis, inducing a state of decreased mitochon-
drial respiratory function and diminished ATP production, 
in turn leading to decreased mitochondrial degradation of 
lipids and further lipid accumulation [59]. Accumulation of 
lipids, or at least dyshomeostasis amongst lipid species in 
the brain, may have a direct influence on α-synuclein aggre-
gation as lipid membrane surfaces have been proposed as a 
potential site of α-synuclein aggregation, with the degree of 
membrane binding inversely proportional to the propensity 
of α-synuclein to polymerise [130]. Furthermore, exposure 
of α-synuclein to polyunsaturated fatty acids such as ara-
chidonic acid and linoleic acid has been demonstrated to 
induce rapid aggregation of α-synuclein [35, 93], and we 
have previously demonstrated that α-synuclein aggrega-
tion also promotes accumulation of lipids [89], potentially 
creating a cycle of increasing lipid and α-synuclein aggre-
gation. Therefore, it is plausible to suggest that accumula-
tions of particular lipids contribute to the aggregation of 
α-synuclein, perhaps by inducing conformational changes 
that are permissive to aggregation [81]. It is notable that 
accumulation of lipids within cells could occur secondarily 
to diminished mitochondrial capacity to perform β-oxidation 
or impaired autophagic degradation of lipids.

Given the interrelated nature of lipid homeostasis, mito-
chondrial function and autophagy, it would be possible to 
make a case for any one of these three aspects underlying 
α-synuclein aggregation in LBD, either directly or indirectly 
(Fig. 4). However, such reductionism overlooks the dynamic 
nature of cellular metabolism, and thus one could speculate 
that these impairments may act in concert to drive vulner-
ability to LB formation. Such a triad of impairments could 
potentially explain why cell death precedes LB formation in 
the substantia nigra [78], and neuronal loss occurs in regions 
without LB pathology in PD [4], as factors that govern cel-
lular vulnerability to LB formation and cell death would 
likely differ between distinct neuronal sub-types. For exam-
ple, if LB formation was driven by lipid dyshomeostasis, but 
cell death by mitochondrial dysfunction, then LBs would 
form first in neurons that normally have highest levels of the 
fatty acids permissive to α-synuclein aggregation and cell 
death would occur first in neurons with the highest energy 
demands. It is plausible to suggest that the neuronal sub-
class with the highest energy demands may not be that with 
the highest levels of fatty acids permissive to α-synuclein 
aggregation. Such a hypothesis does not preclude LBs being 
deleterious for cellular health, but rather would suggest they 
occur as a result of, and alongside, other changes that are 
likely to impact neuronal health.
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Conclusion

The present review has discussed a range of rare monogenic 
diseases that are disproportionately affected by LB pathol-
ogy, on the basis that commonalities in biological pathways 
in which the protein products of the affected genes partici-
pate may provide insights into LB formation in idiopathic 
LB disease. In summarising the current published literature 
on α-synuclein pathology in a diverse array of monogenic 
disorders, followed by GO analysis of the genes implicated 
in these disorders, autophagy, lipid metabolism and mito-
chondrial function emerge as common biological pathways. 
Impairments to these pathways could occur as a trio of 
impairments that underlie both the selective nature of LB 
formation in distinct neuronal populations and the selectiv-
ity of neurodegeneration in LB disease. It is important to 
note that there are many metabolic disorders, the majority 
of which do not seem to be vulnerable to LB formation, and 
thus it seems likely that there are specific pathways involved 
that are permissive to α-synuclein aggregation, rather than 
general alterations to cellular metabolism.

Future studies are warranted to better characterise the 
structure of LBs, to further elucidate the lipid components 
within LBs and the lipid species that are most abundant. 

Such studies may highlight aspects of lipid metabolic 
pathways that may be altered and give rise to LB pathol-
ogy, directing future studies to explore mechanistic links 
between such dyshomeostasis and α-synuclein aggregation. 
Furthermore, better characterisation of cellular metabolism, 
and how it is affected in LBD post-mortem brain tissue is 
also warranted, to better model how it may contribute to 
LB formation. For example, there is considerable evidence 
of mitochondrial respiratory chain dysfunction in LBD, 
but relatively little is known about peroxisomal function, 
despite their role in degrading very long chain fatty acids 
for mitochondrial β-oxidation and scavenging ROS placing 
them at a potentially pivotal juncture between lipid catabo-
lism and mitochondrial energy production [132]. The role 
of processes other than α-synuclein aggregation in LBDs is 
critically important for the field as considerable expense and 
effort is being expended targeting α-synuclein aggregation 
as a potential disease-modifying therapy for LBD. However, 
if LB formation is itself a by-product of other altered cellular 
processes such as metabolic balance, then it would seem 
more likely to be effective to target amelioration of cellular 
metabolism than α-synuclein aggregation.

A limitation of the present review is that some of the dis-
orders covered are exceptionally rare, with neuropathological 

Fig. 4   Multiple pathways leading to Lewy body formation. a Muta-
tions causing mitochondrial dysfunction may contribute to Lewy 
body formation by increasing oxidation of α-synuclein, leading to 
aggregation and eventual formation of a Lewy body. b Mutations in 
genes encoding lipid-degrading enzymes such as GALC, GBA and 
CATD can directly lead to increased levels of lipid substrates known 
to be permissive to α-synuclein aggregation, including psychosine, 
glucosylsphingosine and heparan sulphate, respectively. Alternatively, 
mitochondrial dysfunction (a) leads to increased abundance of lipid 
droplets known to facilitate α-synuclein aggregation. Elevated lev-
els of lipids are likely to overwhelm autophagic mechanisms within 
neurons, leading to autophagy failure after sustained elevations in 

lipid species (c). c Autophagy failure induces mitochondrial dysfunc-
tion (a) by impeding mitochondrial quality control by reductions in 
mitophagy, and potentially also leads to α-synuclein aggregation by 
reduced turnover (dashes). (d) Accumulation of α-synuclein may 
occur directly due to disassembley of tetramers into aggregation-
prone monomers or increased abundance of α-synuclein protein, 
or indirectly through (a), (b), or (c). Increased accumulation of 
α-synuclein over time leads to assembly into Lewy bodies. Black 
lines indicate the mechanism directly affected by specific mutations, 
blue lines indicate indirect influences on α-synuclein aggregation 
through interactions between mechanisms, and red lines indicate 
direct influences on α-synuclein aggregation
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data limited to a small number of reports. Therefore, whilst 
the present review summarises the current state of knowl-
edge on rare monogenic disorders disproportionately vulner-
able to LBs, it is likely that there are further similar condi-
tions vulnerable to LB pathology that have not been subject 
to detailed neuropathological evaluation of α-synuclein. 
Furthermore, there may be a reporting bias in the preva-
lence of LBs in some conditions, as the presence of an age-
associated feature like LBs in young individuals may be 
more likely to be reported than more banal findings. It is 
also not clear whether α-synuclein accumulations in many 
of the rare monogenic disorders has similar attributes to that 
observed in idiopathic LB disease, such as the propensity to 
seed aggregation of native α-synuclein to spread in a ‘prion-
like’ manner, or its contribution to clinical phenotype. The 
present review underlines the importance of further study of 
α-synuclein aggregation in rare diseases to better understand 
the aetiology of LB formation in idiopathic LB disease and 
its biological relevance to the pathobiology of the rare dis-
eases in which it is also observed.
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