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Gene expression is regulated at each step from chromatin remodeling through translation and
degradation. Several known RNA-binding regulatory proteins interact with specific RNA secondary
structures in addition to specific nucleotides. To provide a more comprehensive understanding of
the regulation of gene expression, we developed an integrative computational approach that
leverages functional genomics data and nucleotide sequences to discover RNA secondary structure-
defined cis-regulatory elements (SCREs). We applied our structural cis-regulatory element detector
(StructRED) to microarray and mRNA sequence data from Saccharomyces cerevisiae, Drosophila
melanogaster, and Homo sapiens. We recovered the known specificities of Vts1p in yeast and Smaug
in flies. In addition, we discovered six putative SCREs in flies and three in humans. We characterized
the SCREs based on their condition-specific regulatory influences, the annotation of the transcripts
that contain them, and their locations within transcripts. Overall, we show that modeling functional
genomics data in terms of combined RNA structure and sequence motifs is an effective method for
discovering the specificities and regulatory roles of RNA-binding proteins.
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Introduction

Gene expression is regulated at each step from chromatin
remodeling through translation and degradation. Yet, most
efforts to understand the regulation of gene expression have
been focused on transcription and DNA-binding regulatory
proteins. Although regulatory RNAs have received appreciable
attention (Bushati and Cohen, 2007; Coppins et al, 2007),
regulatory elements within mRNAs that are recognized by
nucleic acid-binding proteins have been largely ignored
until recently (Keene, 2007). This state exists despite observa-
tions that suggest changes in mRNA stability may account for
half of the changes in mRNA expression in some cells and
conditions (Fan et al, 2002; Cheadle et al, 2005). Moreover,
it is a mathematical certainty that mRNAs of average
stability can only be rapidly downregulated by altering
the mRNA decay rate (see Pérez-Ortı́n et al (2007)
for derivation). Thus, one way to execute rapid, large-scale
gene expression responses to unpredictable environmental
stimuli is through decay-regulating RNA-binding proteins

(RBPs), whose activity can be rapidly modulated post-
transcriptionally. Early metazoan embryogenesis also requires
mRNA stability and translation regulation to orchestrate the
activities of maternally deposited transcripts (for review see
Vardy and Orr-Weaver, 2007).

Despite the potential importance of RNA secondary struc-
tures as binding sites for regulatory RBPs, computational
methods for their discovery have failed to keep pace with
current functional genomics technology (e.g. microarrays).
Over 20 years ago, Sankoff (1985) described an algorithm for
the simultaneous alignment and folding of RNA sequences.
The Sankoff algorithm was computationally intractable for
even modestly sized datasets. Thus, nearly all subsequent
computational approaches to finding RNA structural motifs
sought shortcuts to making the RNA structural alignment
problem computationally feasible. Now, well into the era of
functional genomics, RNA structure finding algorithms are still
sequence-only methods, having so far failed to use the data-
integrative approaches that are becoming increasingly com-
mon for the discovery of DNA-binding protein specificities
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(Bussemaker et al, 2001, 2007; Foat et al, 2005, 2006). Small
regulatory RNA structures likely play a significant role in post-
transcriptional regulation of gene expression. However, due to
the lack of computational methods that fully leverage the
current wealth of genomics data, we are nearly blind to their
existence.

In this work, we present a novel, alignment-free method that
discovers secondary structure-defined cis-regulatory elements
(SCREs) in mRNAs by modeling the effects that their
occurrences exert on quantitative measurements of mRNA
behavior in the form of microarray data. This process is
embodied in a regression-based algorithm called structural cis-
regulatory element detector (StructRED). We accurately
recover the known stem–loop binding specificities of the
Drosophila RBP Smaug and Vts1p in Saccharomyces cerevisiae
from mRNA sequences and microarray data. We also provide
evidence of the post-translational regulatory activity of Smaug
that is consistent with earlier genetic and biochemical
characterization. We report other putative structure-sequence
specificities that likely play diverse roles in Drosophila and
humans. Finally, we find that SCREs exist in coding sequences

as often as in untranslated regions (UTRs), which presents a
caution against the common practice of restricting searches for
regulatory elements to non-coding sequences. Overall, we
show that structurally defined cis-regulatory elements can be
discovered through integrative modeling of functional geno-
mics and mRNA sequence data.

Results and discussion

Discovering RNA structural cis-regulatory
elements by observing their effects on mRNA
behavior using StructRED

To understand the later biological inference, we must first
provide an overview of our StructRED algorithm (Figure 1) and
supporting methods. In this work, we develop a way to infer
the activities of RBPs and the small RNA structural
cis-regulatory elements to which they bind by modeling how
the occurrences of SCREs could give rise to the observed
genomic mRNA measurements. We start with the simplest
model and pose that the observed microarray value for a

Structural
cis-
regulatory
elements

Trans-
factor
activity
profiles

Motif modelMicroarray dataNucleotide sequence

Figure 1 The flow of data for StructRED. As input, StructRED takes one or more multicolumn tables of microarray data and one or more associated FASTA sequence
files containing mRNA sequences for the spots on the arrays. The other major input to StructRED is a motif model that defines the search space in which explanatory
SCREs can exist. StructRED fits a simple physical model using each motif in the search space to identify the SCREs that best explain the observed microarray
measurements. The outputs of StructRED are SCRE matrices and their correlations with each experiment in the input set, called trans-factor activity profiles (TFAPs), as
they reflect changes in the activities of the regulators that bind to the SCREs.
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particular mRNA Ag is the result of a combination of additive
effects of the occurrences Mng of multiple SCREs n. We also
allow a base level of signal C and some unexplained signal eg.
Each SCRE has a corresponding effect Fn on the measurement
that is related to the regulatory activity of a corresponding
trans-factor under the measured condition.

Ag ¼
X

n

FnMng þ C þ eg ð1Þ

If we had definitions of each of the SCREs n, we could count
them in all mRNA sequences and use multiple linear
regression to define the global values of all Fn and C. However,
as we do not know the SCREs in advance, we define a space of
possibilities and test each one to see if its occurrences explain
why some mRNAs have different measurements than others.
We can then collect each SCRE that is significantly explana-
tory, in turn, to build an additive model for the measured
microarray value of each mRNA. One output of this search
process is a list of candidate SCREs n. The sequence
information in a discovered SCRE is in the form of a
position-specific affinity matrix (PSAM; Foat et al, 2005),
a kind of weight matrix. This means that ‘occurrences’ of an
SCRE have values that range between zero and one, depending
on the weights of each nucleotide at each position. The other
output is the inferred activities Fn of the corresponding trans-
factor in each dataset that we fit with the model. We call the
collection of Fn’s (divided by their standard errors) for a
particular SCRE across multiple microarray experiments the
trans-factor activity profile (TFAP) for that SCRE, as it reflects
changes in activity of the corresponding regulator.

For all analysis done for this study, the SCRE search space
included all small stem–loops of 9 to 12 nucleotides in length,
closed by three hybridizing nucleotides (allowing G-U pairs),
and containing up to seven positions with sequence informa-
tion. Stem–loops are attractive because, while being true
structures, the single-stranded loop allows for additional
specific protein–nucleotide interactions with the unpaired
Watson-Crick edges of the bases. Despite the simplicity of this
stem–loop structural constraint, it provides enough additional
specificity information for the discovered SCREs to display
significant correlations with one or more microarray datasets.
To confirm the utility of the structural constraint using the
Drosophila SCREs discussed below, we tested only the
sequence specificity of each SCRE for its ability to explain
the best-correlating dataset for the structurally constrained
SCRE. In all cases, the stem–loop-constrained SCRE better
explained the data than the sequence-only specificity (Supple-
mentary Table 1).

Modeling gene expression regulation: hold the
thresholds

Our equation for the predicted occupancy of an mRNA by a
trans-factor (see Materials and methods) sums over all
possible binding site positions in the mRNA. Why is this more
rational than other expressions of sequence scores (e.g.
maximum score)? As we illustrate using a recently character-
ized concrete example of mRNA stability regulation, a
sequence score that sums over all possible binding sites is a
way of representing the in vivo total average occupancy of an

mRNA by trans-factors, and under reasonable assumptions of
regulatory mechanisms, increased occupancy could result in
increased regulatory strength. When bound to an mRNA, the
Smaug RBP recruits the CCR4–NOT complex, promoting
deadenylation and decay of the transcript (Semotok et al,
2005). Semotok et al (2008) predicted that the Hsp83 transcript
contained eight high-affinity binding sites for the Smaug RBP.
The authors tested a variety of fragments of the Hsp83
transcript for their sufficiency in conferring instability to the
mRNA. They found that a fragment containing six predicted
Smaug-binding sites caused the greatest instability, followed
by fragments containing three, two, one or no predicted
binding sites. Thus, Semotok et al (2008) observed a rough
correlation between Smaug binding opportunities on the test
transcripts and actual destabilization. One can mechanistically
motivate this observation in at least two ways: First, if Smaug
is at a sufficiently low concentration that none of the sites are
saturated, an mRNA with six binding sites will have, on
average, a Smaug protein bound to it six times more often than
an mRNA with one binding site, resulting in six times more
opportunities for deadenylation. Another possibility is that
interactions between Smaug and the CCR4–NOT complex are
rare (low CCR4–NOT concentration). Thus, even if Smaug-
binding sites are always saturated, a transcript with six binding
sites, again, has six times more opportunities to bind
a deadenylase than a transcript with one site and a single
bound Smaug protein.

The above discussion leads us to address a common
shortfall in regulatory sequence analysis, which is the
application of thresholds, either to the sequence score or to
functional genomics data. First, why not treat regulation as an
on/off, binary variable? If one were to assume that regulation
is an on/off event and that an mRNA requires a threshold
number of high-affinity binding sites to be regulated, the
appropriate statistical test would be a t-test between the
sample of mRNAs that were above the threshold for predicted
binding versus the sample of mRNAs below the threshold.
However, it can be shown that the Pearson correlation, when
applied to categorical data, reduces to a t-test (Lev, 1949; Tate,
1954). Thus, using standard regression statistics can detect
binary or gradual relationships between the predicted occu-
pancy and microarray data equally well. Also if a threshold
was imposed on the sequence score when the relationship was
indeed gradual, there would be a cost in sensitivity, as
informative covariance was discarded. Supplementary Figure
1 shows scatter plots and regression lines for the correlation
between occurrences of our Drosophila SCREs with mRNA
expression data. Moreover, plotted are curves that follow the
t-value that would be calculated if each predicted occupancy
was used as a threshold to perform a t-test. The
t-value calculated by the two-sample t-test never becomes
much more significant than the t-value of the regression (only
slightly higher for one SCRE). Moreover, although a reasonable
threshold could be chosen in many cases, the multiple
hypothesis correction required to choose a good threshold
would greatly reduce the statistical power of the analysis.
Upon inspection (Supplementary Figure 1), some SCREs (e.g.
Smg-4, Smg-5) seem to have a gradual relationship between
predicted binding and observed regulation, but others are less
clear. Thus, whether regulation of mRNA stability and
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translation is executed in a binary or gradual manner remains
an open question for future investigation. Nevertheless, our
regression-based computational approach based on gradual
regulation assumptions is an efficient and powerful method to
discover regulatory specificities and activities, which could
then serve as starting points for detailed mechanistic studies.

Thresholds on functional genomics data may also discard
informative covariance between sequence features and ob-
served mRNA levels. Although the study was performed on
transcription factors and not RBPs, Tanay (2006) provided
evidence suggesting that transcription factor binding is analog
rather than digital, and this variable binding is detectable in
corresponding microarray measurements. Such observations
combined with our discussion in the last paragraph lead us to
question the ultimate sensitivity of common approaches to
regulatory sequence analysis where a threshold is placed on
the microarray data and then sequence features enriched in the
above-threshold set are analyzed. Rabani et al (2008) recently
performed such an analysis to discover RNA structural
elements within mRNAs related to the processes measured in a
variety of microarray datasets. Their method discovers a
candidate structure that can be seen in as many of the input
sequences as possible using a stochastic context-free grammar-
based method. Although their approach is powerful and valid, it
is essentially placing thresholds on both the sequence score and
the microarray values, possibly discarding usable signal from
both. Our method does not discover structures as complex as
those found by Rabani et al (2008), but our biophysically
motivated regression approach represents a radical conceptual
departure from the sequence-only methods RNA structure-
discovery algorithms that have dominated for 25 years (Sankoff,
1985). Moreover, our method is particularly well suited to
discovering small structures (o20nt), which may be too small to
provide sufficient signal to sequence-only methods.

Annotating SCREs by scoring the responding
mRNAs

Given our model, every sequence window in an mRNA
contributes to the predicted occupancy of a transcript by the
SCRE-binding regulator. mRNAs that actually contain func-
tional, high-affinity instances of a SCRE, should have both a
high occurrence score based on the mRNA sequence and a
high predicted occurrence score based on its microarray
measurement. Rather than assume an arbitrary sequence score
threshold, a ranking based on a combination of these scores
should give a sense for how likely it is that a particular mRNA
responds to the SCRE sites that it contains (see Materials and
methods). Functional gene annotations can be scored for
uneven distribution toward highly ranked genes by using the
Mann–Whitney–Wilcoxon test. We scored the Gene Ontology
annotations (Ashburner et al, 2000) in this way for S. cerevisiae
and Drosophila. In addition, Drosophila genes have been
annotated by allele phenotype (Wilson et al, 2008) and in situ
expression (Tomancak et al, 2002) using controlled, hierarch-
ical vocabularies similar to Gene Ontology. Thus, these two
annotation systems were similarly scored. The various
annotations can give valuable insights into the biological roles
of the newly discovered SCREs.

Testing StructRED in S. cerevisiae—the specificity
of Vts1p

We first turned our attention to analyzing data from the yeast
S. cerevisiae. One of the few RBPs that is known to recognize a
specific SCRE is the yeast protein Vts1p (Aviv et al, 2003,
2006a, b; Edwards et al, 2006; Johnson and Donaldson, 2006;
Oberstrass et al, 2006). Vts1p has a RNA-binding specificity
that is similar to another, better characterized sterile alpha
motif (SAM)-containing protein, Smaug in Drosophila (Aviv
et al, 2003). Vts1p recognizes a small stem–loop structure with
a four or five nucleotide loop with a ‘G’ at the third position of
the loop and complementary bases at positions one and four of
the loop (Aviv et al, 2006a, b; Edwards et al, 2006; Johnson and
Donaldson, 2006; Oberstrass et al, 2006). The biological role of
Vts1p is unknown, although there is some evidence that
suggests that Vts1p regulates the poly(A) tail length of mRNAs
through interaction with the Ccr4–Pop2–Not complex and thus
affects mRNA stability (Aviv et al, 2003; Oberstrass et al, 2006;
Rendl et al, 2008). Two groups have performed functional
genomics experiments to identify possible Vts1p target
mRNAs. Motivated by the observation that a reporter
transcript containing three Smaug-binding sites was less stable
in wild-type yeast than it was in a Dvts1 strain, Oberstrass et al
(2006) used microarrays to look for mRNAs that were
differentially expressed in a wild-type versus a Dvts1 strain
(Gene Expression Omnibus (GEO) accession GSE3859). They
confirmed with Northern blots that a few transcripts were
present at different levels between the two strains and
contained predicted Vts1p-binding sites. Aviv et al (2006b)
used a pull-down/microarray approach to identify those
mRNAs that were most often associated with Vts1p (GEO
accession GSE3741). They also confirmed that some of the
mRNAs had lower steady state levels in a wild-type strain than
in a Dvts1 strain.

We applied the StructRED algorithm to search for any stem–
loop SCREs in the wild-type versus Dvts1 (Oberstrass et al,
2006) and the Vts1p pull-down (Aviv et al, 2006b) microarray
data in addition to approximately 6500 other microarray
experiments retrieved from the NCBI GEO (Barrett et al, 2007).
We confirmed the specificity of Vts1p (Figure 2) using the
pull-down microarray data (Aviv et al, 2006b; Figure 3A).
This Vts1p specificity is in good agreement with the Vts1p
specificity shown in earlier work (Aviv et al, 2006a, b; Edwards
et al, 2006; Johnson and Donaldson, 2006; Oberstrass et al,
2006). Thus, StructRED successfully performs the task for
which it was designed—to detect SCREs based on genome-
wide measurements of the effects that their occurrences exert
on mRNAs. Those mRNAs that we predict are most likely to
contain Vts1p SCREs are enriched for functional categories
involving carbohydrate metabolism and transmembrane
transport (Supplementary Table 2). However, too little is
known about the biological role of Vts1p to draw conclusions
from these observations.

Vts1p-binding site occurrences did not significantly explain
genome-wide mRNA expression in the wild-type versus Dvts1
microarray dataset (Oberstrass et al, 2006) or any of the other
approximately 6500 other microarray experiments that we
analyzed (Supplementary information). This suggests at least
three possibilities: first, we discovered the Vts1p SCRE using
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pull-down microarray data in which both regulated and
unregulated Vts1p-bound mRNAs get pulled down and
contribute specificity information. Vts1p may actually regulate
only a few genes, and therefore, its specificity may not explain
a significant amount of the genome-wide variation in mRNA
expression. The second possible explanation is that none of
the microarray experiments tested a physiological condition in
which mRNA stability regulation by Vts1p causes a significant
global expression difference between the measured samples.
The final possibility is that the primary role of Vts1p is to
regulate translation and that none of the approximately 6500
microarray experiments contained information relevant to this
role. The SAM-containing protein Smaug has both mRNA
stability (Semotok et al, 2005) and translation-regulating
effects (Dahanukar et al, 1999; Smibert et al, 1999), which
may suggest that a role in regulating translation is possible for
Vts1p.

On to Drosophila melanogaster—the specificity
and function of Smaug

Smaug is a multifunctional RBP that regulates the stability of at
least one transcript (Semotok et al, 2005) and regulates the
translation of at least one other transcript (Dahanukar et al,
1999; Smibert et al, 1999) in Drosophila. Although the
experimentally confirmed target mRNAs of Smaug are few,
its regulatory activities have been intensely studied due to its
role in translationally repressing maternally deposited nanos
mRNA everywhere but in the posterior of the early embryo,
thus helping to establish the anterior–posterior axis during

0–2 h 0–2 h 4–6 h 4–6 h

4–6 h2–4 h0–2 h4–6 h2–4 h0–2 h

Vts1–5

Vts1–4

Correlation t-valueA

B

C

Figure 3 Vts1p and Smaug activities. Each square represents the strength of the correlation between genome-wide occurrences of a SCRE and genome-wide mRNA
measurements for a particular microarray experiment. Yellow represents a positive correlation and blue represents a negative correlation. An absolute t-value of about
6.7 corresponds to a P-value of 0.01, when strictly correcting for the number of motifs tested. (A) The Vts1p specificities for the length four loop (Vts1–4) and length five
loop (Vts1–5) were discovered using microarray data measured mRNA association with Vts1p in a pull-down experiment in four trials (Aviv et al, 2006b). (B) The Smaug
specificities for the length four (Smg-4) and length five (Smg-5) loops were discovered using mRNA expression microarray data performed over Drosophila melanogaster
embryonic development. The first two time courses measured the first 6 h of development in Dsmg and wild-type (WT) activated eggs (Tadros et al, 2007). The third time
course (Pilot et al, 2006) compares the slow phase (T1), fast phase (T2), cellularization and beginning gastrulation (T3), and end of gastrulation (T4) to embryos before
zygotic transcription begins in wild-type (WT) embryos. (C) Occurrences of the Smg-4 and Smg-5 specificities also had strong negative correlations (corrected P-value
o0.001) with ribosome association in the first 2 h of development (Qin et al, 2007). Triangles represent increasing density of sucrose gradient fractions, corresponding to
increasing numbers of ribosomes.

54

Smg

Vts1p

Loop

Figure 2 Vts1p and Smaug specificities. Vts1p and Smaug (Smg) are sterile
alpha motif (SAM)-containing RNA-binding proteins in Saccharomyces
cerevisiae and Drosophila melanogaster, respectively. These proteins are
known to bind stem–loop RNA motifs with loops of four or five nucleotides. The
structural logos shown here were discovered using StructRED on relevant
microarray data and mRNA sequences without any prior information. The
specificities of the SAM-containing proteins are in good agreement with each
other and with the known specificities of these proteins. Here, the length four
loops are represented by length six loops with a bias toward G-C on the first and
last nucleotides of the loop, perhaps indicating a need for a strong G-C pair to
close the shorter loop.
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development (Dahanukar et al, 1999; Smibert et al, 1999;
Semotok et al, 2005).

Knowing the importance of post-transcriptional regulation
in early embryogenesis (see Vardy and Orr-Weaver, 2007 for
review), we applied StructRED to microarray time courses that
measured mRNA expression and ribosome association in early
Drosophila development. We identified the specificity of
Smaug (Figure 2), which is strikingly similar to that of Vts1p,
considering that Vts1p has little overall homology to Smaug
except for 40% sequence identity to the 61 amino-acid SAM
domain. The TFAPs for the Smaug SCREs support the
established roles of Smaug as both a translation and mRNA
stability regulator (Figure 3B and C). The three microarray
time courses in Figure 3B examined gene expression in
activated Drosophila eggs or embryos during early embry-
ogenesis (Pilot et al, 2006; Tadros et al, 2007; GEO accessions
GSE8910, GSE3955). In both wild-type time courses, having
high-affinity Smaug-binding sites correlates with reduced
mRNA concentration starting at the 2–4 h time point and T1
(slow phase). This observation is consistent with the timing
observed earlier for Smaug destabilizing Hsp83 mRNA
(Semotok et al, 2005). As this large-scale mRNA destabiliza-
tion is not observed in the time course data for the Dsmg
embryos (Figure 3B, left), it is likely that we identified the
specificity and activity of Smaug. Tadros et al (2007) likewise
noted an enrichment in Smaug-binding sites in unstable
maternal mRNAs.

We also observe the translation-repressing effects of Smaug.
An increasingly common microarray method for gaining
insight into translation regulation are polysome association
microarrays. In this method, cell lysate is run through a
sucrose gradient column. mRNAs associated with different
numbers of ribosomes separate into different density fractions
in the column, with mRNAs associated with multiple
ribosomes, presumably caught while being actively translated,
moving into the heavier fractions. Qin et al (2007) performed
such microarray profiling of mRNA–ribosome association
during a time course of the first 10 h of Drosophila develop-
ment (GEO accession GSE5430). By examining the TFAPs of
the Smaug specificities over two replicates each of a 0–2 h
sample and a 4–6 h sample, we see that mRNAs that are bound
by Smaug are being specifically excluded from ribosome
association during the 0–2 h time point, as indicated by a
strong negative correlation between the Smaug specificity and
enrichment in the denser gradient fractions (Figure 3C). This
presumed translational repression by Smaug is relieved by the
4–6 h time point. The timing of Smaug-effected translational
repression that we observed genome-wide mirrors the
characterized ability of Smaug to translationally repress nanos
mRNAs (Dahanukar et al, 1999; Smibert et al, 1999). This
observation suggests that the temporal regulation of all
embryonic mRNA targets by Smaug is similar to that of nanos
transcripts. Our observed change in Smaug’s global regulatory
activity is likely due to the earlier observed reduction in Smaug
expression after the first 3 h of embryogenesis (Dahanukar
et al, 1999; Smibert et al, 1999).

We scored the ranking of Smaug target genes (see Materials
and methods) against Gene Ontology categories, phenotypes,
and in situ expression annotations. The high-scoring in situ
categories ‘Stages 1–3 maternally deposited’ and ‘Stages 4–6

rapidly degraded,’ reflected the degradation function of
Smaug. Other significantly enriched categories (P-value
p0.001) for in situ expression included categories involving
the early stage development of the female reproductive system
and categories relating to later development of the nervous
system. Significant Gene Ontology categories and allele
phenotype annotations similarly support the role of Smaug
in the development of the reproductive and nervous systems
(Supplementary Table 2).

Tadros et al (2007) provided data that suggests that Smaug
may regulate the stability of about 712 transcripts. In order for
StructRED to detect the specificity and regulatory activity of a
trans-factor, it must regulate at least tens or hundreds of
transcripts to make the correlation statistically significant.
Thus, merely detecting the Smaug specificity and activities
from genome-wide polysome association data suggests that
Smaug has a similarly large role in regulating translation
during early embryogenesis. As we have microarray data
reflecting both the mRNA stability and translational repression
activities of Smaug, we have the opportunity to evaluate
whether the mRNA targets that are destabilized by Smaug are
the same as those that are translationally repressed. First, we
took theDsmg and wild-type time course data from Tadros et al
(2007) and transformed it so the data compared the wild-type
versus Dsmg mRNA levels, thus primarily displaying the
Smaug-dependent changes in mRNA levels. We also took the
0–2 h time point data (polysome fractions 8–12) from the
mRNA–ribosome association time course of Qin et al (2007)
and subtracted the contribution of all SCREs except those
belonging to Smaug, leaving the data depleted for any
unrelated translation regulation. Finally, we tested how well
having Smaug-dependent mRNA stability regulation was
predicted by Smaug-enriched translation repression in early
development. We saw a significant correlation between
Smaug-dependent destabilization and putatively Smaug-re-
lated translation repression (P-value o10�11), suggesting that
there are at least some transcripts that have both their
translation and stability regulated by Smaug.

The predicted specificities and roles of other
SCREs in Drosophila development

When we applied StructRED to the Drosophila development
time courses and other microarray data, we did not specifically
try to find the Smaug specificity. In fact, in addition to the
Smaug SCREs, we discovered six other putative SCREs, which
we have labeled Dm1 through Dm6, that have coherent
supporting TFAPs and annotation (Figure 4). First, Dm1 and
Dm2 were discovered from the same mRNA expression
microarray time course for Drosophila embryogenesis that
we discussed for the Smaug SCREs (Tadros et al, 2007). Those
transcripts that contain high-affinity instances of Dm1 and
Dm2 are expressed at decreasing levels as development
proceeds, suggesting that they are involved in destabilizing
these transcripts at specific developmental stages. Dm1- and
Dm2-containing transcripts have weak enrichments for Gene
Ontology categories related to development and protein
transport (Supplementary Table 2). Transcripts that
contain Dm1 or Dm2 display a bias for expression in the
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developing female reproductive system. Notably, Dm1 and
Dm2 occurrences do not correlate with decreasing expression
in Dsmg embryos (data not shown), suggesting that the
putative destabilizing effect of Dm1 and Dm2 depends on
Smaug. However, Dm1 and Dm2 do not show the translational
repression activity that we see with the Smaug SCREs.

The Dm3 and Dm4 specificities were detected using
microarray data that compared expression in wild-type flies
and flies lacking the Kep1 RBP (GEO accession GSE6086),
suggesting that they may represent the specificity of Kep1.
There were no significant themes among Gene Ontology,
phenotype, or in situ annotations for Dm3 and Dm4, besides
that their targets seem to be membrane associated (Supple-
mentary Table 2). Earlier genetic and biochemical character-
ization of Kep1 suggests that it may be involved in regulating
splicing (Fruscio et al, 2003; Robard et al, 2006).

Finally, Dm5 and Dm6 both were detected using polysome
association data from the early Drosophila embryo (Qin et al,
2007; GEO accession GSE5430). Both have strong correlations
during the 0–2 h time point and have almost no effect by 4–6 h.
Dm5 has a strong positive correlation with the lightest fraction,
suggesting that transcripts that contain instances of Dm5 are
more often without ribosomes or associated with only a
partially assembled ribosome, perhaps indicating ribosome
pausing in the 50 UTR. Dm6 increases the likelihood that its
transcripts are associated with a moderate number of
ribosomes during the 0–2 h time point, suggesting active

translation. Annotations for the genes most likely to contain
high-affinity Dm5 or Dm6 sites are similar. Gene Ontology
annotations for Dm5 and Dm6 center around oogenesis,
nervous system development, and appendage development.
Concordantly, phenotype annotations for Dm5 and Dm6
responders involve the nervous system, germ band, wing,
and leg. In situ expression for Dm5 and Dm6 responding genes
show them in the ectoderm and neurogenic regions in later
embryonic stages (Supplementary Table 2).

SCREs are in coding sequences and UTRs

Cis-regulatory elements in mRNAs are commonly assumed to
reside in the 30 UTR or occasionally the 50 UTR. Although there
are undoubtedly more examples of characterized regulatory
elements in UTRs than in coding sequences, this may simply
reflect reporting bias. Coding sequences are often assumed
only to contain coding information, and as they are under
selective pressure to maintain their coding properties, it seems
less likely that cis-regulatory elements would reside there.
However, although actively translating ribosomes may reduce
the binding of trans-factors, nothing excludes the possibility of
cis-regulatory elements existing in coding sequences.

Contributing to this problem is the success of cross species
comparisons for the identification of putative cis-regulatory
elements. These methods rely on mutations occurring over
evolutionary time to lay bare those parts of the genome that are

0–2 h 0–2 h 4–6 h 4–6 h

Correlation t-value

4–6 h2–4 h0–2 hΔkep1

A

B

C

Figure 4 Putative Drosophila structural cis-regulatory elements. (A) The structural logos of the six putative Drosophila SCREs. (B) Dm1, Dm2, Dm3, and Dm4 were
detected using mRNA expression microarray data. Dm1 and Dm2 had strong negative correlations with mRNA levels over early Drosophila development. Dm1 and Dm2
did not correlate with mRNA levels in similarly treated Dsmg eggs (not shown). Dm3 and Dm4 correlated with mRNA levels changing between wild-type and Dkep1 flies
(GEO accession GSE6086), suggesting that Dm3 and Dm4 may reflect the specificity of Kep1, an RNA-binding protein. (C) Dm5 and Dm6 were detected from
microarray data measuring mRNA association with ribosomes in early drosophila development (Qin et al, 2007). Triangles represent increasing density of sucrose
gradient fractions, corresponding to increasing numbers of ribosomes.
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under strong selective pressures. The simplest interpretation
for conserved sequences in non-coding regions is that they
serve regulatory functions for adjacent genes. However, if
regulatory elements exist in coding sequences, conservation-
based methods need to be more sophisticated to detect them,
as they must differentiate between conservation of codons in a
coding sequence and conservation of regulatory nucleotide
sequence. When looking for cis-regulatory elements in coding
sequences, regression-based methods like StructRED have a
major advantage. As StructRED does not use sequence
conservation, all sequences, coding and non-coding, are
treated equally. StructRED detects structural cis-regulatory
elements based on the effect that they have on the mRNAs that
contain them, as observed in genome-wide measurements.
The functional signal will be equally strong from a SCRE in a
coding sequence as in a UTR.

The SCRE discovery in this work was always performed on
approximated full-length mRNAs. However, to answer the
question of where the discovered SCREs commonly occur in
the mRNAs, we scored the occurrences of each SCRE in the 50

UTRs, 30 UTRs, and coding sequences separately and then
checked which of these mRNA subsequences performed best
at explaining the microarray data. If most of the functional
SCREs are in the 30 UTRs, as is commonly assumed, then the
TFAPs for the 30 UTRs alone should be strongly significant and
appear similar to the TFAPs when the full-length mRNA
sequences are used. For most of the Drosophila SCREs,
especially the Smaug SCREs, the occurrences that appear in
the coding sequences perform best at explaining the micro-
array measurements of gene expression and polysome
association (Figure 5). Thus, most of the functional sites for
Dm2, Dm3, Dm4, Dm6, and the Smaug SCREs reside in coding
sequences. Recent characterization of Smaug stability regula-
tion of the Hsp83 transcript showed that all eight predicted
binding sites for Smaug do indeed reside in the coding
sequence (Semotok et al, 2008). Dm1, Dm5, and Dm6 still
have appreciable signal in the 30 UTRs, and Dm5 has signal in
the 50 UTRs. We also calculated the length-normalized scores
for the UTRs and the coding sequences for each SCRE. Dm3,
Dm4, Dm5, Dm6, and the Smaug SCREs had the highest
concentration of binding sites in the same regions that strongly
predicted expression (Supplementary Figure 4). Only Dm1 and
Dm2 were inconsistent, with Dm1 having a higher density of
sites in coding sequences, while the scores in the 30 UTRs were
more predictive, and Dm2 having a higher density of sites in
the 30 UTRs, while the scores in the coding sequences were
more predictive. SCREs frequently appearing in coding
sequences provides a strong argument for including whole
transcripts when searching for cis-regulatory elements.

Explaining published observations

Tadros et al (2007) investigated the role of Smaug in early
Drosophila development by measuring genome-wide mRNA
expression in both wild-type and Dsmg activated eggs. Thus,
they identified maternally deposited transcripts that were
degraded by both Smaug-dependent and independent me-
chanisms. The authors do not provide candidate regulators
that affect the degradation of the Smaug-independent mRNAs.
With the hopes of identifying the specificity of such a regulator,

we looked for any of our SCREs that negatively correlated with
mRNA levels in both the wild-type and Dsmg activated eggs.
We found none. However, as part of the preprocessing steps
before the SCRE search, we discovered all of the significantly
explanatory single-stranded mRNA motifs. The intention of
this step was to increase the likelihood that any discovered
SCREs reflected real structural elements and not a structure-
like reflection of an otherwise single-stranded regulatory
element. Although we do not discuss most of those results
here, inspecting them for any motifs that correlated with
mRNA degradation in the Dsmg eggs revealed two such motifs
(Figure 6). The Dm7 motif and activity profile may belong to a
yet uncharacterized RBP in Drosophila. Dm7 has the correct
TFAP for a Smaug-independent regulator of mRNA stability
during early embryogenesis, having strong negative correla-
tions with mRNA levels as time elapses to 4–6 h in both wild-
type and Dsmg activated eggs. Dm7 is similar to the UUGUU
motifs identified in maternal unstable transcripts by De Renzis
et al (2007). Another motif that we label ‘Pum’ is almost
certainly the specificity of Pumilio, the founding member of
the Puf family of RBPs (Zhang et al, 1997). We confirmed that
the Pum motif is the Pumilio specificity by testing how well its
sequence scores predicted genome-wide association of
mRNAs with Pumilio, using the microarray data of (Gerber
et al, 2006; P-value o10�25). Strangely, the Pum motif only
correlates with the degradation of mRNAs in the Dsmg
activated eggs. This observation suggests that there is a more
complex relationship between the regulatory activities of
Pumilio and Smaug that could benefit from future experi-
mental characterization.

A peek into human mRNAs

With hopes of making similar inferences about regulatory
RBPs in humans, we applied StructRED to human microarray
data that measured genome-wide RBP binding or polysome
association. However, we had a few handicaps in performing
the analysis. First, rather than well-annotated mRNA se-
quences as are available for Drosophila, we needed to retrieve
ESTsequences from NCBI Entrez Nucleotide that were relevant
to each microarray platform that we used. Moreover,
systematic functional annotation of these sequences do not
exist. Thus, we could only discover SCREs and follow their
regulatory effects through the analyzed microarray conditions.

We discovered three SCREs with functionally coherent
TFAPs (Figure 7A and B). Occurrences of the first SCRE, Hs1,
correlated with decreased translation in the metastatic color-
ectal cancer cell line, SW620, versus a non-metastatic cell line
from the same patient, SW480, as measured in a polysome
association microarray study (Provenzani et al, 2006; GEO
accession GSE2509). Transcripts containing Hs2 SCREs are
expressed at a lower level in U937 cells that have been exposed
to 12-myristate 13-acetate (PMA) and caused to differentiate
into a macrophage-like state (Kitamura et al, 2004; GEO
accession GSE1783). Finally, occurrences of Hs3 in mRNAs
correlate with increased association with ribosomes in human
mammary epithelial cells, regardless of whether translation
initiation factor 4F is overexpressed (Larsson et al, 2007; GEO
accession GSE6043).
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Although a Smaug homolog exists in the human genome, we
did not detect a Smaug/Vts1p-like specificity in the data that
we analyzed. Nevertheless, we could calculate TFAPs
for the Drosophila Smaug specificities across the human data
to look for Smaug activities that were too weak to detect in the
original search. Indeed, there were two RBP pull-down
microarray studies, one for poly-pyrimidine tract binding
protein (PTB; GEO accession GSE6021; Gama-Carvalho et al,
2006) and one for Staufen1 and Staufen2 (Furic et al, 2008;
GEO accessions GSE8437, GSE8438), where pulled-down
mRNAs were enriched for Smaug-binding sites (Figure 7C).
This suggests that Smaug binds to many of the same targets as
PTB, Staufen1, and Staufen2. Our observed correlation
between the Smaug specificity and Staufen1 binding
is consistent with earlier observations that hSmaug is found

in cytoplasmic granules with Staufen1 (Baez and Boccaccio,
2005).

Final thoughts and looking ahead

This work has two major themes: first, we showed that
functional genomics data such as microarrays can be used to
find cis-regulatory elements in mRNAs defined by both
sequence and structure by posing a model for their existence
and then using the data to identify which modeled SCREs are
supported by the data. We implemented this approach in our
algorithm StructRED. We successfully applied StructRED to
discover known and putative stem–loop cis-regulatory ele-
ments using only full-length mRNA sequence data and
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Figure 5 Explanatory structural cis-regulatory element content of mRNA regions. These trans-factor activity profiles (TFAPs) are for all of the Drosophila SCREs over
all of the same conditions shown in Figures 3 and 4. However, these TFAPs display how well each SCRE explained the measured RNA levels when occurrences of the
SCREs are only scored in the 50 untranslated regions (UTRs), 30 UTRs, coding sequences (CDS), or full-length mRNAs. Thus, by comparing each subsequence TFAP to
the full-length mRNA TFAP, one can see in which region of mRNAs functional instances of the SCRE tend to exist. Most of the SCREs have their strongest signal in the
CDSs, followed by the 30 UTRs.
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functional genomics data, without needing to perform any
kind of sequence alignment. Second, we applied our
StructRED algorithm to data from yeast, flies, and humans
both to validate the approach and to contribute significant

knowledge to the field of inquiry into post-transcriptional
regulation of gene expression. We accurately recover the
specificities of the stem–loop RBPs Vts1p from yeast and
Smaug from flies. We also discover and computationally
characterize putative SCREs in flies and humans involved in
diverse roles. Finally, we show that many of our discovered
SCREs in flies are found in coding regions as much or more
than in UTRs and they are conserved in multiple species of
Drosophila.

The StructRED algorithm represents a novel method for
determining cis-regulatory RNA structures. Although the
current implementation is limited to finding short stem–loop
motifs, it may be extensible to other small structures (dsRNA,
internal bulges) and perhaps more complex structures. Given
its strengths, we expect that StructRED may become the basis
of a class of RNA regulatory element search tools that will
expand computational and experimental inquiries into post-
transcriptional gene regulation.

Materials and methods

Nucleotide sequence

We performed the search for SCREs on best estimates of full-length
mRNAs. Unfortunately, the yeast transcriptome had not been
completely sequenced at the time of this analysis, so we did not know
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Figure 6 Explaining Smaug-independent mRNA degradation. Not all
maternally deposited mRNAs degrade in a Smaug-dependent manner.
(A) These are the logos of two single-stranded RNA motifs that had strong
correlations with decreasing mRNA levels in early embryogenesis in Drosophila.
The Dm7 motif likely represents the specificity of an unknown trans-factor. The
Pum motif is likely the specificity of Pumilio. (B) Both of these motifs correlated
with decreasing mRNA levels in Dsmg activated eggs.
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Figure 7 Putative human structural cis-regulatory elements. (A) We discovered three putative SCREs when applying the StructRED algorithm to human data (Hs1–3).
(B) Hs1 was discovered using data that measured ribosome association in a metastatic colorectal cancer cell line, SW620, versus a non-metastatic cell line, SW480
(Provenzani et al, 2006). Hs2 correlated with decreased mRNA levels in U937 cells that have been exposed to 12-myristate 13-acetate (PMA; Kitamura et al, 2004). Hs3
was discovered through a positive correlation with ribosome association in human mammary epithelial cells (with and without overexpressed translation initiation factor
4F, eIF4E; Larsson et al, 2007). (C) We did not discover a Smaug/Vts1p-like specificity from the human data. However, when the Drosophila Smaug specificities were
scored against the human data, we observed significant correlations with the RBP pull-down microarray data for poly-pyrimidine tract binding protein (PTB; GEO
accession GSE6021; Gama-Carvalho et al, 2006) and Staufen1 and Staufen2 (Furic et al, 2008; GEO accessions GSE8437, GSE8438), suggesting that hSmaug shares
many target mRNAs with these RBPs.
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the transcription start and 30 processing sites for most genes. However,
David et al (2006) measured the mRNA levels for every yeast gene
using a genome tiling microarray. Thus, they created a nucleotide-
resolution map of the transcriptome expressed under log-growth
conditions. Also, Miura et al (2006) sequenced two yeast cDNA
libraries. Although neither dataset contains measurements for every
gene, we averaged the annotated UTR lengths from these two sources
to provide real full-length mRNAs for about half of the genome. We
used the mean 50 and 30 UTR lengths from the known half to provide
approximate mRNA sequences for the unknown half. Drosophila
transcript sequences were downloaded from FlyBase (Wilson et al,
2008), and the longest transcript representing each gene in Drosophila
melanogaster was used for further analysis. When estimating full-
length mRNAs in other Drosophila species, the lengths of the
annotated UTRs from D. melanogaster were used. Human sequences
were downloaded from NCBI Entrez Nucleotide based on associated
microarray annotations. To prevent errors in the regression procedure,
the sequence sets were purged of redundant entries by using Blast
(Altschul et al, 1990) to compare each sequence to every other
sequence in the same set. One representative sequence was then
chosen to represent each group that was hard clustered by having
E-values for similarity o10�10. An example of problematic sequences
that this process removes are transposons. As a particular transposon
type can have nearly identical sequences in multiple places in the
genome and be represented by multiple microarray measurements, it
can cause false correlations.

Genome-wide expression data

Data were downloaded from the NCBI GEO (Barrett et al, 2007). All
data were purged of extreme outliers by using the Grubbs’ test
(Grubbs, 1969; P-valuep10�9). We used datasets for further analysis if
(1) we could automatically resolve the data in terms of systematic ORF
identifiers and (2) after removing outliers, the dataset contained data
for at least 3000 genes.

StructRED algorithm

RNA StructRED is a data integrative, regression-based algorithm with
similarities to the algorithms represented by Stormo et al (1986),
REDUCE (Bussemaker et al, 2001), and MatrixREDUCE (Foat et al,
2005, 2006). As input, StructRED takes one or more FastA sequence
files with one or more entries per ORF identifier and one or more
microarray datasets indexed by the same ORF identifiers. StructRED
then builds a model to explain the observed mRNA levels in terms of
small stem–loop motifs contained in the associated sequence data. The
output of StructRED is a list of candidate SCREs as well as the inferred
activity of the corresponding trans-factors across the input microarray
conditions, a TFAP (Figure 1).

Assume we have spotted cDNA microarray data that provides a log2-
ratio of an experimental condition intensity to a control condition
intensity for each gene in the genome. Now let us assume that one or
more RBPs are actively regulating under the tested condition and each
one binds to a different SCRE. We pose the simplest possible starting
model: We assume that binding by each RBP to an mRNA g causes an
independent and therefore additive change in the observed log2-ratio
Ag that is proportional by Fn to the number Mng of its specifically bound
SCREs n present in that particular mRNA sequence. We also allow for
an intercept term C to account for any overall changes in the measured
intensities between the two conditions and some experimental noise
eg. Thus, we have a linear model that expresses the log2-ratio of an
mRNA in terms of the SCREs that it contains:

Ag ¼
X

n

FnMng þ C þ eg ð2Þ

Even if the simplifications of this model are questionable, fitting the
microarray data and nucleotide sequence to this model will still detect
correspondences between the microarray values and SCRE occur-
rences. The magnitude of Fn is indicative of the regulatory strength of
the trans-factor in that particular tested condition. If we normalize
these coefficients by their standard error (resulting in a t-value) and
track them across multiple microarray experiments, we have a TFAP.

If we have a dictionary of possible SCREs, we can discover the real
SCREs by iteratively building the model explaining the microarray data
through forward parameter selection. First, we score all candidate
SCREs in the dictionary by performing ordinary least squares (OLS)
regression on the counts of SCREs within mRNA sequences Mng and
the respective microarray log2-ratios Ag. The most explanatory SCRE,
the one whose counts best fit the data, is selected from the dictionary,
transformed into a matrix (see below), and added to the model. Next,
the expression value predicted by the model (which now only contains
one SCRE) is subtracted from each expression value, leaving a residual
value. Each time using the residuals of the earlier iteration, the process
repeats performing OLS on the entire dictionary, adding a SCRE term to
the linear model, performing a multivariate fit including all SCRE
terms, and calculating the residuals of the current model. When the
last SCRE term added to the model does not significantly improve the
fit beyond a predefined threshold P-value (corrected for multiple
hypothesis testing), the process is stopped. The SCREs in the resulting
model are the best candidates for real, functional SCREs that play a role
in mRNA regulation for the process measured by the microarray
experiment.

In practice, the model is not developed for a single experiment at a
time. At every iteration, the best scoring SCRE in any experiment is
added to the model and then scored for its fit to all experiments,
resulting in its TFAP. Thus, a single model is built to explain all input
experiment data. If a particular SCRE is not relevant to a particular
experiment, its coefficient for that experiment will simply be near zero.

The dictionary of SCREs that this version of StructRED searches
includes small stem–loop structures with stem and loop sizes that can
be selected at the beginning of a run. The user can specify whether to
include sequence information on the stem, loop, or both. The size of
the stem–loop SCREs is limited only by available computational
power. For all runs in this work, we used stems of length three and
loops of lengths three to six nucleotides and allowed sequence
information in one to seven positions on the stem and loop.

Concise pseudocode for the StructRED algorithm can be found as
Supplementary Figure 2. The full software code will be made available
upon request.

Converting oligonucleotide motifs into
position-specific affinity matrices

In a PSAM, the definition of the weight wjb for a particular nucleotide b
at a particular position j is the ratio of equilibrium association
constants Ka for the binding of a trans-factor to a reference
oligonucleotide Sref and an oligonucleotide that has a single base
mutated Smut, changing base position j to base b (see Foat et al, 2006 for
a derivation):

wjb ¼
KaðSmutÞ
KaðSrefÞ

ð3Þ

To understand the later equations, we need to expand on equation
(2). Composing Fn is a protein concentration [Pn], an affinity Ka(Pn,
Sref) of protein Pn for a reference binding site Sref, and a catch-all term b
that includes unmodeled technology parameters.

Ag ¼
X

n

b½Pn�KaðPn; SrefÞMng þ C þ eg ð4Þ

In the case of scoring exact oligonucleotide structures, rather than
weight matrix structures, Mng just represents the count of occurrences
of the oligonucleotide structure n in the sequence of mRNA g, and
Ka(Pn, Sref) becomes the Ka for the interaction of protein Pn with the
oligonucleotide structure.

If the occurrences of a reference oligonucleotide Sref and a mutant
oligonucleotide Smut were fit for genome-wide correlation with mRNA
measurements, they would have two different coefficients Fref and
Fmut, respectively. The difference in the magnitude of Fref and Fmut

would be due to the different Ka’s for these two sequences, as all else is
constant. Thus, for a genome large enough to define Fref and Fmut, wjb is
the ratio of these coefficients:
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wjb ¼
b½Pn�KaðSmutÞ
b½Pn�KaðSrefÞ

¼ Fmut

Fref
ð5Þ

StructRED uses this last equation to convert a best scoring
oligonucleotide stem–loop motif into a stem–loop matrix SCRE. For
each nucleotide in the best scoring stem–loop motif, the wjb value in
the matrix equals one. All other values of wjb, are calculated by taking
the ratio of the coefficients for each motif differing by a single
nucleotide from the best motif versus the coefficient of the best motif. If
the ratio is negative, meaning one motif has a positive correlation and
one has a negative correlation, it is set to zero, as it suggests that the
trans-factor cannot bind to the site with that particular single base
change. Better estimates of the wjb values are obtained by calculating
their geometric mean across all microarray experiments in which the
best motif correlated nearly as well with expression as in the best
experiment (within one standard error of the best t-value). As only
significantly correlating data contributes to the SCRE matrix, a matrix
will not worsen if more, unrelated data are included as input.

If the assumption that nucleotides contribute independently to the
binding of the trans-factor is valid, then this calculation loses
information from motifs with more than one base change from the
best scoring oligonucleotide. However, the above calculation is
essentially free when compared with the calculations required in
other PSAM-producing methods (Foat et al, 2005, 2006). This
approximation creates both a faster and a simpler algorithm that
maintains most of the information provided by more elaborate PSAM
calculations.

Once the PSAM is derived, the sequence score Mng of mRNA g for
SCRE n is:

Mng ¼
XNi

i¼1

OnðSiÞ
YLi

j¼1

wjSiðjÞ; ð6Þ

where Ni is the number of sequence windows i in mRNA g; Li is the
length of the window i; wjSiðjÞ is the weight in the PSAM at position j for
the base Si( j ) that appears at position j in the current window
sequence Si; andOn (Si) is a function that returns one if the sequence Si

in window i forms the correct structure and zero otherwise. This form
of the model, having separate terms for the RNA structure and the
nucleotide specificities, assumes that the RNA structure exists
independent of the trans-factor’s binding and that the trans-factor
then recognizes specific nucleotides in a specific three-dimensional
RNA configuration. An ‘induced fit’ scenario for the binding of the
trans-factor would require a more complex relationship between the
nucleotide specificities and the structure definition. The current
StructRED method with a the binary On(Si) function could be
considered a simple approximation of a hypothetical algorithm in
which On(Si) would return values between zero and one depending on
how likely it is that a particular window will form the correct
secondary structure. The potential for such an algorithm is explored in
Supplementary Figure 3.

Ensuring the discovered elements are structurally
defined

To reduce the possibility that discovered SCREs actually represent
single-stranded RNA-binding sites that contain inverted repeat
sequences, we first fit a model to the microarray data that is composed
of all significantly explanatory single-stranded RNA matrices, using a
method similar to that described by Foat et al (2005). We then
performed the search for SCREs using the residual microarray values
after subtracting the model composed of single-stranded RNA
matrices. This single-stranded matrix search is not strictly necessary.
It would be possible to check the SCREs after the analysis to ensure that
they could not be represented equally well without the stem–loop
constraint. Factoring out single-stranded matrices first simply cuts
down on false positives later, possibly at the expense of false negatives.
However, any SCRE that could be well represented solely by its
sequence composition would be discoverable by many existing
sequence analysis tools and would not highlight the strengths of our
method. To be certain that, the single-stranded matrix search worked

as intended, all Drosophila SCREs were tested to make sure that the
sequence specificity alone did not explain the data as well as the
combined sequence/structure SCRE specificity (P-value o0.001;
Supplementary Table 1). All discovered Drosophila and human SCREs
were also checked to confirm that they did not explain mRNA
measurements when the SCREs were scored on the strand comple-
mentary to the mRNA sequences. This check supported the premise
that they are binding sites within mRNA transcripts and not
transcriptional regulatory binding sites in UTRs or coding sequence
on the DNA.

Structural cis-regulatory element responder
ranking and annotation

One would expect that for a SCRE-containing mRNA to be a real,
regulated target, it would have two major characteristics: It has one or
more predicted high-affinity instances of a SCRE, and when the SCRE-
binding factor is predicted to have a strong, genome-wide effect, the
mRNA is regulated in the predicted direction. Thus, by combining the
sequence score of each mRNA for a SCRE with its microarray
measurements for important conditions for the SCRE, all genes in
the genome can be ranked by how likely they are to contain real
instances of the SCRE.

First, for each significantly correlating (P-value p0.001) microarray
experiment a for a particular SCRE m, we calculate a residual mRNA
expression value ega that only contains the effect of the SCRE of
interest. This value is the original value Aga minus the model for n�1
of the SCREs, where the excluded SCRE is the SCRE of interest:

emga ¼ Aga �
X
n6¼m

FnaMng � C ð7Þ

We then divide emga by its coefficient Fma to obtain a predicted
sequence score M̂mg. All genes are then ranked by M̂mg for each
experiment a.

The probability of a particular gene g having a rank as good or better
than its rank x is simply its rank divided by the number of genes G:

Ptop;a ¼
xga

G
ð8Þ

Assuming independence over experiments a, the probability of the
gene g having ranks as good or better than its observed ranks in all
significantly correlating experiments Na is:

Ptop;all ¼
Y

a

xga

G
¼ G�Na

Y
a

xga ð9Þ

Taking the 1/Na power, of this probability gives us a mean probability
across all a:

Ptop;mean ¼ G�1
Y

a

xga

 ! 1
Na

ð10Þ

Now if we want to have a mean probability that equally weights the
probability of the predicted sequence score with the probability of a
ranking yg or better for the actual sequence score Mmg, we take another
geometric mean:

Ptop;mean; combined ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yg

G
G�1

Y
a

xga

 ! 1
Na

vuuut

¼ G�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yg

Y
a

xga

 ! 1
Na

vuuut ð11Þ

In the end all we want is a new ranking zg by this combined
probability, so the G�1 scaling factor is irrelevant. Thus, we rank all
genes by this two-step, geometric mean of ranks:
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zg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yg

Y
a

xga

 ! 1
Na

vuuut ð12Þ

The only way for an mRNA to have a high responder rank zg for a
particular SCRE m is to have a high actual sequence score Mmg and to
be predicted to have a high sequence score for the SCRE by M̂mg, based
on the mRNA’s behavior in conditions in which the SCRE is correlated
with a large genome-wide effect. The probabilistic motivation of this
ranking scheme is similar to that used in the rank product method for
microarray analysis (Breitling et al, 2004).

Once all mRNAs in the genome are ranked by their responder
scores, functional categories of genes are scored for enriched
representation among the top-ranked mRNAs by using the Mann–
Whitney–Wilcoxon test. Thus, the Gene Ontology (Ashburner et al,
2000) annotations for S. cerevisiae (Cherry et al, 1998) and D.
melanogaster (Wilson et al, 2008) were used to score all category levels
of the ontology trees. In addition, the fly community has created
hierarchical controlled vocabularies for fly development and anatomy
and have created gene annotations for allele phenotypes (Wilson et al,
2008) and in situ expression (Tomancak et al, 2002) using those
controlled vocabularies. Thus, these two annotation systems were
scored in a similar manner to the Gene Ontology system. No
annotations were available for the human sequences.

SCRE location analysis

For the SCRE discovery and TFAP calculation, full-length mRNAs were
used. However, it is possible to score subsequences to determine
where in transcripts particular SCREs tend to occur genome-wide.
Every mRNA was divided up into its 50 UTR, CDS, and 30 UTR, and
TFAPs were recalculated for each SCRE using only each subsequence
individually. Thus, the subsequence TFAP that most resembles the full-
length mRNATFAP is indicative of in which piece of the transcripts the
SCRE tends to occur.

We also calculated the genome-wide averaged, length-normalized
scores in the CDS and UTRs for each SCRE. Although no inference can
be drawn from these calculations, it is interesting to observe if
increased predictive power of a sequence region corresponds with
increased density of predicted high-affinity binding sites (Supplemen-
tary Figure 4).

Visualizing SCRE position-specific affinity
matrices with LoopLogo

StructRED produces representations of cis-regulatory elements con-
sisting of both a weight matrix and a RNA structure. We developed
LoopLogo, a script that generates the structural logos seen in Figures 1,
2, 4, and 7. In this representation, squares mark positions that contain
sequence information. The height of each nucleotide character is
proportional to its relative affinity. Nucleotides of weaker affinity are
smaller and stacked on the larger higher-affinity nucleotides. Dark
circles represent nucleotide positions that do not contain nucleotide
information. Open circles on the 30 side of the stem were not allowed to
contain independent sequence information, as their sequence is
largely specified by the sequence on the 50 side of the stem (with the
exception of G-U pairs). LoopLogo is implemented in Perl and creates
Scalable Vector Graphics output.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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