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Abstract: In order to study the relationship between the distribution and aflatoxin production capacity
of Aspergillus species and soil types, 35 soil samples were collected from the main peanut planting
areas in Xiangyang, which has 19.7 thousand square kilometers and is located in a special area with
different soil types. The soil types of peanut planting areas in Xiangyang are mainly sandy loam
and clay loam, and most of the soil is acidic, providing unique nature conditions for this study. The
results showed that the Aspergillus sp. population in clay loam (9050 cfu/g) was significantly larger
than that in sandy loam (3080 cfu/g). The percentage of atoxigenic Aspergillus strains isolated from
sandy loam samples was higher than that from clay loam samples, reaching 58.5%. Meanwhile the
proportion of high toxin-producing strains from clay loam (39.7%) was much higher than that from
sandy loam (7.3%). Under suitable culture conditions, the average aflatoxin production capacity of
Aspergillus isolates from clay loam samples (236.97 µg/L) was higher than that of strains from sandy
loam samples (80.01 µg/L). The results inferred that under the same regional climate conditions, the
density and aflatoxin production capacity of Aspergillus sp. in clay loam soil were significantly higher
than that in sandy loam soil. Therefore, peanuts from these planting areas are at a relatively higher
risk of contamination by Aspergillus sp. and aflatoxins.

Keywords: Aspergillus species; distribution; aflatoxin-producing capacity; soil types

Key Contribution: Soil type affects the distribution and aflatoxin production potential of Aspergillus
species in peanut planting areas.

1. Introduction

Aspergillus flavus is one of the most important fungi causing global grain contamina-
tion [1]. Sampling investigations showed that Aspergillus flavus and aflatoxins were detected
in stored corn and peanuts in many places in China [2]. Aflatoxin is a secondary metabo-
lite produced by Aspergillus fungi, such as Aspergillus flavus, Aspergillus parasiticus and
Aspergillus nomius [3]. Aflatoxin is highly toxic, mutagenic and carcinogenic, and long-term
exposure to aflatoxin can induce primary liver cancer. In recent years, some studies have
shown that aflatoxins can also cause cancer in the pancreas, kidneys, bladder and other
organs, and may also lead to poor nutritional metabolism, immunosuppression and other
pathologies [4–6]. Aflatoxin production capacity differs in different strains. According to
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various studies, more than 20 types of different aflatoxins have been found, and the main
types of naturally occurring aflatoxins are AFB1, AFB2, AFG1, AFG2, etc. [7]. Aflatoxin B1
is recognized as the most toxic and carcinogenic natural mycotoxin, which was classified
as a Class I carcinogen by the International Agency for Research on Cancer (IARC) of the
World Health Organization (WHO) in 1993 [8].

Xiangyang is located in the middle and lower reaches of the Yangtze River. It now
has formed large-scale peanut-producing areas such as Zaoyang, Xiangzhou, Yicheng and
Gucheng, with a total planting area of nearly 66,667 hectares and a yield of 4400 kg per
hectare, approximately. As the main peanut-producing area and distributing center in the
Yangtze River Basin, Xiangyang has been included in aflatoxin contamination investigation
and research many times [9–11]. According to these investigations, the level of Aspergillus
flavus infestation and aflatoxin contamination in Xiangyang are slightly lower than the
national average [11]. However, most of these studies only focus on the infestation of
peanuts by Aspergillus flavus and less on the relationship between soil types and A. flavus
distribution and the aflatoxin level. Since soil is directly in contact with plant roots and
there is an exchange of nutrients, it has a great impact on the occurrence of aflatoxin
contamination in crops [12]. Previous studies have pointed out that soil is the main
source of aflatoxin contamination and Aspergillus flavus infection of peanuts and other
crops [13–18], and the distribution, toxin production capacity of Aspergillus flavus and the
degree of infestation of peanut vary greatly in different soil types [8,19]. Therefore, a study
on the relationship among the distribution, toxin production capacity and contamination
of Aspergillus flavus in the soil of peanut planting areas in Xiangyang and the local soil type
is of guiding significance for the future agronomic management of fertilization, irrigation
and Aspergillus flavus control in the peanut planting process.

Xiangyang has a unique geographical location and soil composition, which provides
natural conditions for conducting research related to different soil types under the same
climatic conditions. In this investigation, soil samples were collected from the peanut plant-
ing areas in Xiangyang, and the distribution and toxin production capacity of Aspergillus
species in two types of soils were studied. The results illustrated the specificity of soil in
Xiangyang and its connection with the distribution and aflatoxin production capacity of
Aspergillus sp. and can be meaningful in providing more solutions for future development
of prevention and control of aflatoxin contamination in peanuts.

2. Results
2.1. Isolation and Verification of Aspergillus Strains from Two Types of Soil

By the method described in Section 5.2.1, 116 Aspergillus strains which produced
yellow-green spores were initially screened. The 116 strains obtained from the initial
screening were cultured on DG-18 plates to obtain a single colony and then sent to a
third-party testing institution (Beijing Prime Sequencing Company (Wuhan, China)) for
molecular biological identification by sequencing with ITS universal primers. The sequence
files were aligned in NCBI using the Blast program, and 99 isolates were identified with
99–100% similarity to the A. flavus strains in the database. The comparison results indi-
cated that the isolates were dominated by A. flavus, with a possibility of small amount of
A. parasiticus present.

2.2. Relationship between Soil Types and Distribution of Aspergillus Isolates

Based on soil properties, the soil samples collected from the four main peanut planting
areas in Xiangyang could be classified into two categories which were sandy loam and
clay loam. As shown in Figure 1, there were 19 sandy loam samples mainly distributed in
the planting areas in Yicheng and Gucheng, while the clay loam samples were mainly in
Zaoyang. The clay loam and the sandy loam were both found in Xiangzhou, with sample
numbers of 7 and 7, respectively. The number of Aspergillus sp. colonies in sandy loam
ranged from 0 to 12,000 cfu/g, and the average number was 3080 cfu/g (Table 1). Mean-
while the number of Aspergillus sp. colonies in clay loam was in the range of 0–24,000 cfu/g,
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and the average number was 9050 cfu/g (Table 1). It can be seen that the density of
Aspergillus sp. in sandy loam was significantly lower than that in clay loam.

Toxins 2022, 14, x FOR PEER REVIEW 3 of 15 
 

 

ranged from 0 to 12,000 cfu/g, and the average number was 3080 cfu/g (Table 1). Mean-

while the number of Aspergillus sp. colonies in clay loam was in the range of 0–24,000 cfu/g, 

and the average number was 9050 cfu/g (Table 1). It can be seen that the density of Asper-

gillus sp. in sandy loam was significantly lower than that in clay loam. 

 

Figure 1. Numbers of Aspergillus sp. colonies in different soil types. 

Table 1. Distribution of Aspergillus sp. colonies in different soil types. 

Soil Type Quantity of Soil Sample 
Range of Colony 

Count (cfu/g) 

Average of Colony 

Count (cfu/g) 

Standard Deviation 

(SD) 

Sandy loam 19 0–12,000 3080 4403 

Clay loam 16 0–24,000 9050 8003 

p value   0.0074 **  

The p-value was calculated by Duncan’s new multiple range test. **, indicates a very significant 

difference. 

2.3. Aflatoxin-Producing Types in Different Soil Types 

As shown in Figure 2, there were some differences in the distribution of toxigenic 

types of Aspergillus isolates between sandy loam and clay loam. On the whole, the strains 

producing AFB1, AFB2 and AFG2 accounted for the highest proportion in both types of 

soils, with 46.2% and 58.7%, respectively (Figure 2). These were followed by strains pro-

ducing AFB1 in sandy loam and strains producing AFB2 in clay loam, with 23.1% and 

28.3%, respectively (Figure2). The percentage of Aspergillus sp. isolates only producing 

AFB1 in sandy loam was higher (19.2%) than that in clay loam soils (6.5%). The isolates 

producing both AFB2 and AFG2 were only found in sandy loam, while isolates producing 

both AFB1, AFB2 and AFG1 and A. flavus producing all four aflatoxins were only found in 

clay loam. 

Figure 1. Numbers of Aspergillus sp. colonies in different soil types.

Table 1. Distribution of Aspergillus sp. colonies in different soil types.

Soil Type Quantity of Soil Sample Range of Colony
Count (cfu/g)

Average of Colony
Count (cfu/g)

Standard Deviation
(SD)

Sandy loam 19 0–12,000 3080 4403
Clay loam 16 0–24,000 9050 8003

p value 0.0074 **

The p-value was calculated by Duncan’s new multiple range test. **, indicates a very significant difference.

2.3. Aflatoxin-Producing Types in Different Soil Types

As shown in Figure 2, there were some differences in the distribution of toxigenic
types of Aspergillus isolates between sandy loam and clay loam. On the whole, the strains
producing AFB1, AFB2 and AFG2 accounted for the highest proportion in both types
of soils, with 46.2% and 58.7%, respectively (Figure 2). These were followed by strains
producing AFB1 in sandy loam and strains producing AFB2 in clay loam, with 23.1% and
28.3%, respectively (Figure 2). The percentage of Aspergillus sp. isolates only producing
AFB1 in sandy loam was higher (19.2%) than that in clay loam soils (6.5%). The isolates
producing both AFB2 and AFG2 were only found in sandy loam, while isolates producing
both AFB1, AFB2 and AFG1 and A. flavus producing all four aflatoxins were only found in
clay loam.
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Figure 2. Distribution of toxigenic types of Aspergillus isolates from different soil types. (a) Toxigenic
types of Aspergillus isolates from sandy loam; (b) toxigenic types of Aspergillus isolates from clay loam.

2.4. Aflatoxin Production Capacity of Aspergillus Isolates in Different Types of Soils

Aspergillus sp. isolated from the soil samples were cultured by the method described in
Section 5.2.2, and then the content of aflatoxin in the culture solution was measured by LC.
According to the toxin-producing level, Aspergillus isolates were classified into non-aflatoxin
detected, low toxin and high toxin-producing strains, corresponding to the content of
aflatoxin (AFT) of non-detected (N.D.), 0–100 µg/L and over 100 µg/L. The data in Figure 3
showed that the proportion of non-aflatoxin detected strains was higher in sandy loam
samples than in clay loam samples. The proportions of low toxin-producing strains in clay
loam (39.7%) and sandy loam (34.1%) were similar, while the differences in proportions of
high toxin-producing strains in two types of soils were huge, with 39.7% in clay loam and
7.3% in sandy loam, respectively. It indicated the predominance of high toxin-producing
strains in clay loam samples.
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Analysis of the data in Figure 4 and Table 2 showed that more toxigenic strains were
isolated from clay loam samples, and that the majority of strains isolated from sandy loam
samples had a theoretical toxin production capacity in the range of 0 to 50 µg/L, with only
two higher points exceeding 1400 µg/L. However, under theoretical conditions, most of the
toxin-producing isolates from clay loam had more toxin-producing ability than the isolates
from the sandy loam did. By analyzing the toxin production of the Aspergillus sp. isolated
from the soil samples, it was found that the average toxin production of the Aspergillus sp.
isolated from the clay loam samples (236.7 µg/L) was significantly higher than that of the
isolates from the sandy loam samples (80.01 µg/L). According to the content of aflatoxin in
the culture broth of isolates, the toxin-producing potential in each gram of soil sample was
calculated. The results showed that one gram of sandy loam sample could theoretically
produce 246.44 mg/L of aflatoxin under suitable conditions, and clay loam could produce
2144.58 mg/L of aflatoxin. Therefore, not only the density of Aspergillus sp. colonies in clay
loam, but also the average production of aflatoxin by the strains was higher.
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Figure 4. Toxin-producing capacity of Aspergillus isolates in sandy loam and clay loam. a, b indicate
there is a significant difference between these two values.

Table 2. Distribution of Aspergillus isolates in sandy loam and clay loam and the amount of toxin
production.

Soil Types

Numbers of Strains
The Average Amount of

Aflatoxin Produced by the
Strains (µg/L)

The Range of the
Amount of Aflatoxin

Produced by the
Strains (µg/L)

The Theoretical
Amount of Aflatoxin
Produced in the Soil

(mg/L/g)
Non-Aflatoxin

Detected
Strains

Toxin-
Producing

Strains
Average SD

Sandy loam 24 17 80.01 320.53 0–1482.81 246.44
Clay loam 12 46 236.97 336.09 0–1485.16 2144.58
p values 0.029 *

* indicates a significant difference.

2.5. The Relationship between Soil Properties and the Number of Aspergillus sp. Colonies and
Toxin Production Capacity

All soils samples were sent to a third-party testing institution (Wuhan Ziyu Testing
Technology Co., Ltd. (Wuhan, China)) for detecting the major properties of soil. The results
presented in Table 3 illustrated that there was no significant difference between sandy loam
samples and clay loam samples in terms of the contents of total nitrogen, phosphorous and
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potassium. In addition, the R values presented in Figure 5 showed that the correlations
between the contents of these three substances and Aspergillus sp. population were very low.
Thus, the correlations of these properties and the propagation of strains were not attempted.

Table 3. Major properties of different types of soil and the number of Aspergillus sp. colonies.

Soil Type

Organic
Matter (%)

Total Nitrogen
(mg/g)

Phosphorous
(mg/g) Potassium (mg/g) pH Average of Colony

Count (cfu/g)

Average SD Average SD Average SD Average SD Average SD Average SD

Sandy loam 5.45 1.71 1.45 0.53 0.05 0.05 0.15 0.11 6.07 1.48 3080 4403

Clay loam 8.31 0.86 1.39 0.44 0.03 0.02 0.18 0.07 5.34 0.65 9050 8003

p value 0.0001 ** 0.7726 0.1331 0.4205 0.0784 0.0074 **

p value was calculated by Duncan’s new multiple range test. ** represents a very significant difference.
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Figure 5. Correlation analysis of soil properties and Aspergillus strains population. (a) Correlation
analysis of total nitrogen in soil samples and an Aspergillus strains population; (b) correlation analysis
of phosphorous in soil samples and an Aspergillus strains population; (c) correlation analysis of
potassium in soil samples and an Aspergillus strains population.

While the level of organic matter showed an extremely significant difference (p = 0.001)
between sandy loam and clay loam samples, which might be related to the difference
between Aspergillus sp. populations in two soil types. It can be seen from Figure 6 that the
sandy loam samples had less organic matter than the clay loam samples, with 5.45% and
8.31%, respectively. Likewise, the mean propagule density of Aspergillus sp. in sandy loam
samples was 3080 cfu/g, much lower than that in clay loam samples.
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By measuring the pH value of the collected soil samples, there were 28 samples
with pH < 7 (weakly acidic) and 7 samples with pH > 7 (weakly alkaline) out of 35 soil
samples. It can be seen that the soils of the main peanut planting areas in Xiangyang were
predominantly weakly acidic, and most of the soil samples had pH values in the range of
4.0–6.0 (Figure 7). The pH values of the clay loam samples were all less than 7 (4 to 6.5),
which were all weakly acidic, while the pH values of the sandy loam samples ranged from
4.0 to 8.2, of which 36.8% was weakly alkaline, 63.2% was weakly acidic. The mean pH
value of sandy loam samples (pH = 6.14) was slightly higher than that of clay loam samples
(pH = 5.33). As can be seen from Table 4, the average number of Aspergillus sp. colonies
from the weakly acidic soil samples (7100 cfu/g) was significantly higher than that from the
weakly alkaline soil samples (1086 cfu/g). The range of aflatoxin produced by the strains
isolated from weakly acid soil samples was much wider than that from weakly alkaline
soil samples, and the average amount of aflatoxin produced by strains from weakly acid
soils was also much higher than that from weakly alkaline soils.
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Table 4. The relationship between Aspergillus sp. colonies’ distribution and toxin-producing capacity
and soil pH.

pH of Soils

Numbers of Strains Number of
Colonies

The Average Amount of
Aflatoxin Produced by the

Strains (µg/L)
The Range of the Amount
of Aflatoxin Produced by

the Strains (µg/L)Non-Aflatoxin
Detected Strains

Toxin-Producing
Strains Average SD Average SD

<7 (weakly acidic) 34 58 7100 6885 182.6 363.5 0–1485.16
>7 (weakly

alkaline) 2 5 1086 1124 32.3 82.7 0–219.8

p value 0.015 *

* represents a significant difference.

To clearly show the correlations between the toxin-producing capacity and soil pH,
the toxin-producing capacity of Aspergillus isolates was exhibited in two groups (Figure 8).
Both in low and high toxin-producing groups, the toxin-producing capacity of the strains
isolated from soil samples with low pH was higher than that from soil samples with high
pH, regardless of the soil types from which the strains were isolated.
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3. Discussion
3.1. Characteristics of Aspergillus Isolates Differ in Two Typical Soil Types

The soil in the major peanut planting areas in Xiangyang was mainly divided into
sandy loam and clay loam. The sandy loam samples came from areas located along the
Han River and the Tangbai River, while the clay loam soil came from the hilly or hill
areas far away from rivers. According to Zhang Chushu’s survey of aflatoxin-producing
Aspergillus sp. from peanut field soils in four agroecological zones of China, there are
nearly 94.2% of strains identified as A. flavus and 5.8% identified as A. parasiticus in main
peanuts planting areas [20], which is very similar to the sequencing results in this survey.
The density of Aspergillus sp. in clay loam was higher than that in sandy loam, which is
consistent with in the results presented in Zhang Xing’s [11] study conducted in China. Plus,
Jaime-Garcia, R. and Cotty believe that soil types with large clay and small sand contents
provide favorable conditions for large aflatoxin contamination in southern Texas soils,
where the amount of A. flavus populations was positively correlated with clay content [21],
probably because clay loam has good water retention properties, which is most conducive
to the growth of A. flavus. In this study, the texture and particle size of the clay loam in
peanut production areas of Xiangyang were more biased towards clay, with better water
retention performance. In addition, peanuts are usually planted and grown in the summer
in Xiangyang, thus, the high temperature and the good water retention of the soil work
together, prompting the proliferation of A. flavus in clay loam.

According to the test results of the toxin-producing culture of the isolates, the dominant
toxin-producing types of isolates from sandy loam and clay loam samples were similar,
but the types in clay loam samples were more abundant than those that in sandy loam
(Figure 3), indicating that there were also some differences in the types of Aspergillus sp.
in the two soil types. In terms of aflatoxin production capacity, the distribution of the
atoxigenic Aspergillus strains and the toxin-producing strains in the two types of soil was
significantly different. Among the strains from clay loam samples, high toxin-producing
strains with toxin production over 100 µg/L accounted for 39.7%, which was much higher
than that in sandy loam samples. Therefore, the clay loam was liable to produce more
aflatoxins under the high temperature conditions during the growth period of summer
peanuts, implying that the peanuts were more likely to be contaminated by aflatoxins. As to
the differences in the distribution of the Aspergillus strains with different toxin production
in clay loam and sandy loam, the reason may be that the clay loam in peanut planting areas
of Xiangyang was more suitable for the growth of high toxin-producing strains, or the
presence of a large number of non-aflatoxin detected strains in sandy loam may have formed
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a competitive relationship with high toxin-producing strains and inhibited the growth of
high toxin-producing strains. Zhang Chushu [10] and Wu Linxia [19] both proposed the
competitive inhibition of non-aflatoxin detected strains against the reproduction of high
toxin-producing strains.

The average toxin production of A. flavus strains isolated in clay loam was about three
times higher than that of sandy loam (Table 2). The reasons, on the one hand, may be
the high percentage of toxin-producing strains in the composition of microflora in clay
loam under the unique natural conditions of Xiangyang. On the other hand, probably
because of the good water retention of clay loam, A. flavus has a stronger ability to produce
toxins under high temperature and water activity. The present study showed that the soil
in peanuts planting areas in Xiangyang was mainly loam, and the data from the study
conducted by Wu Linxia [19] indicated that the loam soil accounted for a relatively high
proportion of soil samples with excess aflatoxin, reaching 61.94%. In Figure 5, there are
two abnormally high points in the toxin production of A. flavus strains isolated from sandy
loam samples, both of which produced more than 1000 µg/L aflatoxin. These two strains
came from the soil samples from Yicheng, and aflatoxin production capacity of these two
strains differed from other strains isolated from this sampling site. It might because the
purchased peanut seeds carry high toxin-producing strains and which spread to soil during
planting. Another hypothesis is that high toxin-producing strains are originally existed
in the natural microbial environment of this sampling site, but only accounting for a very
small number due to a significant advantage in the proportion of non-aflatoxin detected
strains, which inhibited the growth of high toxin-producing strains.

3.2. The Properties of Soil May Affect the Number of Colonies and the Formation of Strain
Group Structure

It has been reported that carbon, nitrogen, pH and other environmental factors could
impact A. flavus density and aflatoxin production [22,23]. In this study, some main proper-
ties of soil were detected as well, and the results showed that organic matter and pH may
have influenced the density of Aspergillus sp. and the strain group structure.

By assessing the organic matter content, the Aspergillus strains population may be
associated with the content of organic matter in soil. The content of organic matter in
clay loam was higher than that in sandy loam samples, which may have led to the higher
number of colonies in clay loam samples. Large content of organic matter can provide
more nutrition to the proliferation of Aspergillus strains. A similar conclusion was given
in a study conducted by Zablotowicz et al. [24], which pointed out that populations of
microorganisms were the largest in soils with the largest organic matter content and
abundant nitrate, phosphate and potassium. The correlation between organic matter
content and A. flavus propagules was also proven in other reports [25]. Gal Winter et al. [26]
have provided a hypothesis that soils with high content of organic matter would have
greater water retention capacity than those with a small content, thus providing a more
suitable condition for fungal cultivation.

The pH measurement of the collected soil samples showed that the soil in Xiangyang
peanut planting area was predominantly weakly acidic, which was mainly a naturally
occurring geographical condition. However, the pH values of three samples from Yicheng
were not the same, with pH of 4.95, 4.25 and 6.91, respectively. This situation may have
been caused by the application of chemical fertilizers and other agricultural inputs during
the operation. Additionally, the average number of Aspergillus sp. colonies in weakly acidic
soil samples was much higher than that in weakly alkaline soil samples, so it could be
inferred that Aspergillus sp. preferred to grow in an acidic environment. This result is
consistent with that of a study conducted by Dadzie, M.A. et al., which provided a view
that a low concentration of A. flavus in Akomadan may have been due to the observed
relatively high alkaline soil pH [27]. From the perspective of soil pH, the average pH value
of clay loam samples (5.33) was lower than that of sandy loam samples (6.13), which may
have been responsible for the higher distribution of Aspergillus strains in clay loam. It has
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been reported that the most suitable pH value for aflatoxin synthesis is between 3.4–5.5 [28],
and most of the soil in the peanut planting areas of Xiangyang is within this pH range, thus,
more attention should be paid to the appropriate use of agricultural inputs in the process
of peanut planting.

At present, there are few reports on the effects of soil types or texture on the distribution
and toxin production capacity of Aspergillus strains. Some literature [12,29,30] proposes that
sandy loam or light sandy soil is more conducive to the growth and reproduction of A. flavus.
Wang [12], A.M. Torres et al. [30] and Windham G.L. et al. [31] believe that sandy loam is
prone to high temperature and drought stress due to poor water retention, which increases
the risk of peanuts or other crops being infected by A. flavus during the pod stage, while
in clay soil with high water-holding capacity it is just the opposite. However, the survey
conducted in Xiangyang showed that the density of A. flavus and the aflatoxin production
capacity of strains in sandy loam were lower than that of those in clay loam, probably
because the planting areas with sandy loam soil in Xiangyang are all along the Han River or
the Tangbai River, where irrigation conditions are good, effectively alleviating the problem
of poor water retention and drought stress. Moreover, good irrigation conditions also
prevent the accumulated temperature of the soil from being too high so that A. flavus does
not multiply in large numbers and peanuts are not susceptible to drought stress. On the
contrary, the places where clay loam samples were collected were mostly hilly areas or hilly
areas in northern Hubei, with sufficient sunshine and high accumulated temperature of the
land, coupled with the good water retention of the clay loam, which created advantages for
the propagation and toxin production of A. flavus.

4. Conclusions

Based on this survey in the peanut planting areas in Xiangyang, since the number of
Aspergillus sp. colonies and the toxin production capacity of Aspergillus strains in clay loam
were both higher than those in sandy loam, the peanuts growing in clay loam areas were at
higher risk of contamination by A. flavus and aflatoxin, and more attention should be paid
to the prevention and control of A. flavus in these areas during peanut growth. In order to
reduce the risk of aflatoxin contamination of peanuts in Xiangyang, it is recommended that
peanut varieties that are resistant to A. flavus be selected in high-risk planting areas in the
future. Moreover, the application of a biocontrol fertilizer, strengthening field irrigation
management and improvement of postharvest storage conditions should be considered
when controlling peanuts’ contamination by A. flavus and aflatoxin.

5. Materials and Methods
5.1. Materials
5.1.1. Reagents

The standards of aflatoxins, including AFB1, AFB2, AFG1 and AFG2, were purchased
from Tanmo Quality Inspection Technology Co., Ltd. (Jiangsu, China). The methanol used
in the high-performance liquid chromatography system was purchased from Thermalfisher
Scientific (China) Co., Ltd. (Shanghai, China). The immunoaffinity column was purchased
from Wuhan Huamei Biotech Co., Ltd. (Wuhan, China).

5.1.2. Instruments

A Shimadzu LC-20AT high-performance liquid chromatography system (Kyoto, Japan)
consisted of 4 solvent delivery units, one SIL-20A autosampler, one CTO-20A column oven,
one RF-20A detector and one SPD-20A detector. The LC was in tandem with post-column
photochemical derivatization, which was produced by Wuhan Trustworthy Technology
CO., Ltd. (Wuhan, China).

5.1.3. Samples

Soil samples were collected from 4 major peanut-producing areas in Xiangyang: Xi-
angzhou, Zaoyang, Yicheng and Gucheng. According to the actual distribution of peanut
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planting around the four main planting areas, we selected a total of 13 towns as sampling
points, including two typical soil types which were clay loam from hilly land and sandy
loam from the riparian zone. In the selected peanut planting area, soil samples were
collected by using the five-point sampling method. Five subsamples were mixed into one
sample and at least 3 samples were collected at each sampling point. The samples were
collected by first brushing away the fallen leaves and deadwood on the top of land and
taking the soil around the root interval about 10 cm deep. All the samples were marked
according to the soil types after removing the large stones in the soil, and each sample was
approximately 2 kg. At last, there were 35 soil samples collected in total, and the sampling
distribution is shown in Figure 9. All the soil samples were collected during a peanut
harvest period which is usually from the end of September to early October, in order to
avoid differences of soil composition caused by the seasons.
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5.2. Methods
5.2.1. Isolation and Identification of A. flavus

Soil samples were dried, grinded and mixed thoroughly prior to use. Ten grams of soil
was added to 90 mL of sterile water, mixed vigorously for 5 min in a constant-temperature
shaker to make a sample base solution with a dilution of 10−1. Then, the base solution
was serially diluted to 10−2. Twenty-five microliters of 10−2 dilution was spread on a
dichloran-18% glycerol (DG-18) plate, and each sample was set to 2 replicates. The plates
were incubated at 28 ◦C for 5 days. The yellow-green spore colonies grown on the DG-18
medium were counted and then picked and inoculated on A. flavus and A. parasiticus agar
(AFPA) plates at 28 ± 1 ◦C for 3–5 days until individual colonies grew [20]. Isolates of
A. flavus were preliminarily verified by bright orange coloration of the reverse colonies.
Then, the isolates were sent to a third-party testing institution (Beijing Prime Sequencing
Company (Wuhan, China)) for further molecular biological identification by sequencing
with ITS universal primers. Universal primers ITS1(TCCGTAGGT-GAACCTGCGG) and
ITS4(TCCTCCCGCTTATT-GATATGC) were used in PCR amplification.

Then, a small amount of mycelium was picked from A. flavus and A. parasiticus agar
(AFPA) plates on DG-18 plates and incubated at 28 ± 1 ◦C for 5 days until yellow-green
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spores were obtained. The spores were washed with a 0.1% Tween 80 aqueous solution
and stored in centrifuge tubes in a −40 ◦C freezer as a strain reserve.

5.2.2. Aflatoxin-Producing Culture

Preserved Aspergillus isolates were inoculated in DG-18 plates for 5 days at 28 ± 1 ◦C.
After incubation, the spores were washed with sterile water containing 0.1% Tween 80 to
prepare a suspension of Aspergillus sp. conidia. The prepared conidia solution was placed
under an electron microscope and counted with a hemocytometer plate. Then, a certain
amount of spore suspension was aspirated and added to a conical flask containing 30 mL of
liquid Sabouraud medium to a final concentration of 1.0 × 105 spores/mL, and the flasks
were incubated in a constant-temperature incubator shaker at 28 ± 1 ◦C for 7 days with
200 r/min rotating speed.

The toxin-producing culture solution was filtered with a sterilized gauze in a 15 mL
centrifuge tube. One milliliter of toxin-producing culture solution was added into 4 mL
of pure water and then passed through an immunoaffinity column, controlling the flow
rate at 2–3 mL/min. The immunoaffinity column was first eluted with 10 mL of water
2 times and then eluted with 1 mL of methanol [11]. The methanol eluate was collected
and detected by liquid chromatography (LC).

5.2.3. Detection of Aflatoxin

The method of detection used by Zhu et al. [9] was modified and used in detect-
ing aflatoxins. The amount of aflatoxin in toxin-producing cultures was detected by
high-performance liquid chromatography in tandem with post-column photochemical
derivatization. The column was ZORBAX Eclipse XDB-C18 (5 µm-Micron, 4.6 × 150 mm)
bought from Agilent Technologies (China) Co., Ltd., and the column temperature was
35 ◦C. The mobile phase was methanol and water (V:V = 45:55), and the flow rate was
set as 0.9 mL/min. The detector was a fluorescence detector (excitation wavelength was
360 nm, emission wavelength was 440 nm). The injection volume was 10 µL.

5.2.4. Calculation

The calculation method reported in Zhang Xing’s survey [32] was modified and used.

Number of colonies of Aspergillus f lavus per gram of soil =
number of colonies on the plate

0.025 × dilution factor
(1)

aflatoxin production of Aspergillus flavus in one gram of soil (theoretical value) = number of Aspergillus sp.

colonies per gram of soil × average amount of AFT produced by Aspergillus isolates
(2)

The average amount of AFT produced by Aspergillus sp. in Equation (2) is the amount
of toxin in the culture solution measured after culturing the Aspergillus strains according
to the method described in Section 5.2.2. In Equation (1), 0.025 is the volume of diluents
added into DG-18 plates when culturing.

The comparisons of average numbers established in the text or tables were all analyzed
by significance analysis, using Duncan’s new multiple range test to calculate the p-values.
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