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Simple Summary: Ovarian cancer survival rates are poor, with most deaths occurring from cancer
recurrence following initial remission. Accordingly, there is a significant need for treatments that pre-
vent relapse. Here, using a therapeutic vaccine against a mouse model of ovarian cancer, we evaluate
a personalized vaccine that could be delivered to patients during their remission period. We show
that mice that receive a combination of cowpea mosaic virus nanoparticles (CPMV) and irradiated
tumor cells overwhelmingly reject tumor challenges in a T cell-dependent manner. Accordingly, we
extend the demonstrated potential of CPMV as a vaccine adjuvant. We provide initial evidence that
vaccines delivered during periods of clinical remission, using previously resected tumor tissue and
an immune adjuvant, may comprise a feasible strategy of ovarian cancer treatment.

Abstract: Ovarian cancer is the deadliest gynecological malignancy. Though most patients enter
remission following initial interventions, relapse is common and often fatal. Accordingly, there is a
substantial need for ovarian cancer therapies that prevent relapse. Following remission generated
by surgical debulking and chemotherapy, but prior to relapse, resected and inactivated tumor tissue
could be used as a personalized vaccine antigen source. The patient’s own tumor contains relevant
antigens and, when combined with the appropriate adjuvant, could generate systemic antitumor
immunity to prevent relapse. Here, we model this process in mice to investigate the optimal tumor
preparation and vaccine adjuvant. Cowpea mosaic virus (CPMV) has shown remarkable efficacy as an
immunostimulatory cancer therapy in ovarian cancer mouse models, so we use CPMV as an adjuvant
in a prophylactic vaccine against a murine ovarian cancer model. Compared to its codelivery with
tumor antigens prepared in three other ways, we show that CPMV co-delivered with irradiated ovarian
cancer cells constitutes an effective prophylactic vaccine against a syngeneic model of ovarian cancer in
C57BL/6J mice. Following two vaccinations, 72% of vaccinated mice reject tumor challenges, and all
those mice survived subsequent rechallenges, demonstrating immunologic memory formation. This
study supports remission-stage vaccines using irradiated patient tumor tissue as a promising option for
treating ovarian cancer, and validates CPMV as an antitumor vaccine adjuvant for that purpose.

Keywords: ovarian cancer; immunotherapy; vaccine; CPMV; T cell-dependent; adjuvant; nanoparticle;
cowpea mosaic virus
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1. Introduction

A serous ovarian carcinoma diagnosis carries a dismal prognosis. Due to the cancer’s
nonspecific clinical symptoms, the majority of patients are diagnosed with stage III or stage
IV disease, among which the five-year survival rates are 42% and 26%, respectively [1].
The current standard of care includes surgical debulking, during which large quantities of
tumor are removed from the peritoneal cavity. Surgery is generally followed by carboplatin
and paclitaxel chemotherapy and, while most patients enter remission, many later relapse
with chemo-resistant tumors [2]. Following relapse, most patients succumb to their disease.
Accordingly, there is a significant need for therapies that could be applied during remission
to prevent relapse when the tumor burden is very low.

Cancer immunotherapies have revolutionized clinical oncology, particularly in the
treatment of certain cancers, such as melanoma. However, traditional immunotherapies,
such as immune checkpoint blockades, have proven largely unsuccessful in treating ovarian
cancer [3–6]. This is likely due to the fact that the ovarian tumor microenvironment is
strongly immunosuppressive [7]. While immune checkpoint blockade therapies rely upon
revitalizing an existing T cell response, the intense immunosuppression provided by the
abundance of M2-type tumor-associated macrophages (TAMs), regulatory T cells (Tregs),
and myeloid-derived suppressor cells (MDSCs) in the ovarian cancer microenvironment
generally prevents a robust and effective T cell response [8–13].

Immune checkpoint blockade therapies have not successfully treated ovarian cancer,
and the field is actively investigating other ovarian cancer immunotherapies, including
vaccines [14]. An autologous dendritic cell vaccine against mucin 1 (MUC-1), a tumor-
associated antigen (TAA), had promising results in phase II clinical trials [15]. Another
promising approach relevant to this study used hypochlorous acid-oxidized ovarian whole
tumor lysates to treat dendritic cells, ultimately inducing an anti-tumor CD8+ T cell re-
sponse and extending survival outcomes [16]. Peptide vaccines, such as those directed
against another TAA, NY-ESO-1, have shown promise [17–19]. Peptide vaccines, or antibod-
ies targeting another TAA relevant to ovarian cancer, sperm surface protein 17 (Sp17), have
been studied in mice and humans [20–22]. Further, PANVAC is a therapeutic poxviral vac-
cine containing the genes for the tumor-associated antigens MUC-1 and carcinoembryonic
antigen (CEA), as well as immunostimulatory genes CD80, intracellular adhesion molecule-
1 (ICAM1), and leukocyte function-associated antigen-3 (LFA3) [23]. It was recently shown
that the prophylactic injection of freeze–thawed lysates of a murine ovarian cancer stem-
like cell expressing high levels of ROR-1 increased mouse survival [24]. Another study
indicated that the prophylactic injection of a TAA, Sp17, and CpG oligodeoxynucleotide, a
toll-like receptor (TLR) 9 agonist, dramatically extended survival in mice [25]. Although
moderately efficacious, all of these vaccines are therapeutic and designed to treat active
disease. This study focused on vaccines designed to be delivered during remission, when
disease is clinically undetectable, an approach that we call “remission-stage vaccines”, and
we model with prophylactic vaccines.

Cowpea mosaic virus (CPMV) is a 30 nm icosahedral nanoparticle, which contains a
bipartite ssRNA genome within a protein capsid and does not have an envelope [26]. Stud-
ies by our labs and others have shown that CPMV nanoparticles are immunostimulatory
and are recognized by TLRs 7/8 [27,28]. Compared to tobacco mosaic virus, the in-situ
delivery of CPMV in a mouse model of melanoma significantly increased survival [29]. The
in-situ delivery of CPMV in a murine model of lung melanoma conferred a strong survival
benefit that depended upon neutrophils, adaptive immune cells, IL-12, and IFNγ [28].
CPMV has also proven efficacious when delivered as an in-situ vaccine in mouse models of
intracranial glioma and breast cancer [30,31]. Furthermore, either standard or slow-release
versions of CPMV delivered intraperitoneally significantly delayed the growth of estab-
lished murine ovarian tumors in the highly aggressive ID8/VEGFA/defb29 model [28,32].
In this same model, the presence of pre-existing anti-CPMV antibodies in mice pre-exposed
to CPMV significantly increased survival [33]. CPMV increased the levels of IL-6, TNFα,
IFNγ, and GM-CSF produced by non-adherent cells from the peritoneal cavities of treated
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mice ex vivo, while decreasing levels of TGFβ and IL-10. It also increased the levels of
tumor-infiltrating neutrophils and activated dendritic cells [34]. Furthermore, CPMV de-
livered in combination with radiation therapy induced dramatic tumor regression in the
same murine ovarian cancer model [35].

Based on CPMV’s efficacy as a therapy in early-stage established murine ovarian
cancer, and its immunostimulatory properties, we use CPMV as an adjuvant to model
treatment during patients’ periods of remission. We propose to use the tumor as a remission-
stage vaccine antigen source. By using the tumor as the antigen source, the vaccine is fully
personalized. Our approach is particularly attractive in the ovarian cancer context because
the vast majority of serous ovarian cancer patients undergo surgical debulking, which
generates hundreds of grams or multiple kilograms of patient tumor, which is currently
discarded. We suggest that this tumor could be retained, disaggregated, inactivated to
ensure cells cannot divide, and frozen for future use as the antigen source in a remission-
stage vaccine. The inactivated tumor tissue will contain many of the tumor-associated
antigens or neoantigens that would be carried by tumors during disease relapse. When
combined with adjuvant, the treated tumor tissue could be administered to patients with the
goal of preventing fatal relapse. In the murine context, we modeled this as a prophylactic
vaccine. With that in mind, we performed these studies that address two central issues:
(1) how best to inactivate the tumor so it cannot grow in the patient but retains optimal
immunogenicity, and (2) how to pair that inactivated tumor tissue with the ideal vaccine
adjuvant.

In this investigation, murine tumor cells were prepared in four different ways (irradia-
tion, freeze–thawed lysates, heat-shocked lysates, and HOCl-oxidized lysates) to enhance
the immunogenicity of the vaccine’s antigen. [16,36–43]. We used CPMV as an adjuvant
and compared it to monophosphoryl lipid A (MPLA), a bacterial cell wall component and
potent TLR 4 agonist that is an FDA-approved vaccine adjuvant [44,45]. We also compared
CPMV to DMXAA, a murine STING agonist and antivascular agent [46]. Following the
administration of two vaccines, the mice were challenged with live murine ovarian cancer
cells, with survival used as a measure of vaccine efficacy.

Reported here are the results of investigating multiple tumor cell treatments and
adjuvants to identify the optimal tumor vaccine. We observed that mice treated with the
combination of CPMV and irradiated cells generated a robust T cell-dependent response,
which induced superior survival against live tumor cell challenge and subsequent rechal-
lenge, indicating the formation of immune memory. Here, we show that the codelivery of
CPMV nanoparticles and lethally irradiated ovarian cancer cells could form the basis of an
effective remission-stage ovarian cancer vaccine.

2. Results
2.1. CPMV Is an Effective Adjuvant When Combined with Irradiated Syngeneic Ovarian
Cancer Cells

MPLA is an FDA-approved vaccine adjuvant that stimulates TLR 4 on antigen-
presenting cells (APCs) [44,45]. Furthermore, because MPLA is widely used and easily
obtained, it serves as a useful point of reference against which CPMV, the novel adju-
vant, can be compared [47,48]. We compared the efficacies of these adjuvants in the
ID8/VEGFA/defb29 ovarian cancer cell line, which is aggressive and closely mirrors hu-
man serous ovarian carcinoma; it is poorly immunogenic, metastasizes throughout the
peritoneal cavity, and causes syngeneic C57BL/6J mice to rapidly develop acute ascites,
making it an ideal model of serous ovarian cancer in humans [49].

To compare the efficacy of CPMV and MPLA as adjuvants against the ID8/VEGFA/defb29
cell line, they were co-administered with a variety of different antigen preparations. Each
immune adjuvant was co-delivered intraperitoneally (IP) with irradiated tumor cells, freeze–
thawed tumor lysates, heat-shocked tumor cell lysates, or HOCl-oxidized tumor cell lysates.
All antigen preparations were selected because they dependably kill the tumor cells and have
previously been found to increase tumor cell immunogenicity [16,36–43]. Mice were given
two identical vaccines one week apart, followed by a live tumor cell challenge one week after
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the second vaccine. We followed the survival of mice given different antigen and adjuvant
combinations after their live tumor cell challenge (Figure 1).
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Figure 1. The combination of cowpea mosaic virus nanoparticles (CPMV) and irradiated cells significantly extends survival
in a mouse model of ovarian cancer. ID8/VEGFA/defb29 cells were inactivated for intraperitoneal (IP) vaccine injection
in one of four different ways: irradiation, freeze–thaw, heat shock, or HOCl oxidation (see methods for cell preparation).
Following two vaccinations seven days apart, mice were challenged with live tumor cells and survival tracked. (a) Irradiated
p = 0.007 compared to freeze–thaw, n = 4 in all groups; (b) cells co-delivered IP with 100 µg MPLA. Irradiated p = 0.35
compared to freeze–thaw and p = 0.59 compared to vehicle, n = 4 in all groups except freeze–thaw + MPLA where n = 3;
(c) inactivated cells were co-delivered IP with 100 µg CPMV, n = 4 in all groups, freeze–thaw p = 0.03, irradiated p = 0.03
compared to vehicle; (d) mice received irradiated ID8/VEGFA/defb29 cells co-delivered IP with PBS, 100 µg CPMV, 100 µg
MPLA, or 250 µg DMXAA. n = 4 in all groups except irradiated + DMXAA where n = 8. Irradiated + CPMV p = 0.03 or
less when compared to any other group; (e) n = 4 in all groups. Irradiated + CPMV p = 0.007 or less compared to any
other group. (a–e) When twice the average length of the survival of vehicle-treated mice had passed, surviving mice were
rechallenged with 5 × 106 cells, as denoted by the arrows. p values compare survival curves with a log-rank (Mantel–Cox)
test. All p values are compared to vehicle-treated controls unless otherwise noted ** 0.001 < p < 0.01; * 0.01 < p < 0.05.

Without adjuvant, there was a modest survival advantage provided by the irradiated
tumor cells, but none of the other cell preparations yielded a statistically significant survival
benefit (Figure 1a). This suggested that, of the preparations tested, radiation was the best
option, and combination with adjuvant would strengthen its efficacy. MPLA is a weakly
effective adjuvant against the ID8/VEGFA/defb29 murine ovarian cancer cell line when
combined with irradiated cells (Figure 1b). Indeed, none of the tumor antigen preparations
in combination with MPLA conferred a significant survival advantage beyond the survival
of mice given the same antigen preparations without adjuvant. MPLA was not an effective
adjuvant in combination with irradiated tumor cells or freeze–thawed lysates, as it did not
provide a survival benefit when compared to vehicle-treated mice (Figure 1b) (p = 0.59 and
p = 0.57, respectively). Mice treated with HOCl-oxidized cells and MPLA lived roughly as
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long as mice treated with HOCl-oxidized cells alone, showing that MPLA is not an effective
adjuvant when combined with HOCl-oxidized cells (Figure 1a,b) (p = 0.82). Groups treated
with heat-shocked lysates in combination with MPLA showed no significant difference
between their survival and that of the vehicle-treated mice (p = 0.81) (Figure 1b). Because the
vaccines that included MPLA as an adjuvant were ineffective, we performed experiments
changing the MPLA dose, the amount of antigen included in the vaccine, and the route of
injection, but all formulations remained ineffective (Figure S1). We also investigated the
combination of irradiated cells and DMXAA, a murine STING agonist, but it, too, did not
extend mouse survival (p = 0.28) (Figure 1d).

Like MPLA, CPMV lacked consistent efficacy when combined with heat-shocked tu-
mor lysates or HOCl-oxidized tumor lysates (Figure 1c) (p = 0.80 and p = 0.53, respectively).
The combination of CPMV and freeze–thawed lysates initially appeared effective, since 75%
of the mice survived to rechallenge (Figure 1c) (p = 0.02). However, despite the significant
survival benefit, the mice succumbed to their rechallenge within the expected forty-day
timeline, suggesting that they did not mount a protective memory response (Figure 1c).

When combined with irradiated cells, CPMV significantly extended mouse survival
and outperformed both MPLA and DMXAA as an adjuvant (Figure 1c,d) (p = 0.03 compared
to MPLA and p = 0.003 compared to DMXAA). Overall, then, compared to MPLA and
DMXAA, CPMV provided a far superior survival benefit to mice in the ID8/VEGFA/defb29
model, particularly in combination with irradiated cells.

In the ID8/VEGFA/defb29 ovarian cancer model the best vaccine combined CPMV
with irradiated tumor cells. Compared to the other vaccines tested, the co-administration
of CPMV and irradiated cells extended survival the longest, was the only vaccine that
enabled total tumor rejection in any mice, and provided mice with the ability to withstand
rechallenge, justifying further characterization.

To confirm that both antigen and adjuvant, or in this case irradiated cells and CPMV,
were necessary for vaccine efficacy, the survival of mice vaccinated with both irradiated
cells and CPMV was compared to mice vaccinated with irradiated cells alone or CPMV
alone. Both CPMV and irradiated cells were required to confer survival benefit against the
ID8/VEGFA/defb29 cell line (Figure 1e). At 140 days post-challenge, which is over three
times as long as it generally takes for the vehicle-treated mice to reach the endpoint, all mice
vaccinated with both irradiated cells and CPMV remained alive and tumor-free (p = 0.006).
In contrast, by day 65, all mice treated with CPMV alone had reached the endpoint criteria.
While we did observe that CPMV treatment alone provided a statistically significant
survival benefit, the benefit was not comparable to that provided by the complete vaccine
(Figure 1e) (p = 0.02). Similarly, all mice treated with irradiated cells alone succumbed
to their cancer. Compared to CPMV alone and to irradiated cells alone, the combination
vaccine significantly increased survival (p = 0.007 for each), indicating that both irradiated
cells and CPMV are necessary for full vaccine efficacy.

We selected survival for 100 days after a challenge with ID8/VEGFA/defb29 tumor
cells as the indication of rejection of the challenge. While vehicle-treated control mice
reached endpoint criteria around 40 days post-challenge, over 40% of vaccine-treated mice
in this study survived for 100 days. CPMV provided extremely dependable protection
against rechallenge when combined with either irradiated cells or freeze–thawed cells,
with 75–100% of mice given those vaccines surviving for 100 days or more with no signs of
ascites development (Figure 1c–e). However, other treatments also sporadically enabled
the survival of challenged mice for 100 days at frequencies between 25 and 33% in some
experiments, namely, irradiated cells only (Figure 1a), freeze–thaw or irradiated + MPLA
(Figure 1b,d), HOCl + CPMV (Figure 1c), and irradiated cells only (Figure 1a,d,e). In
Figure 2a, we show the total percent survival of all mice at 100 days. These composite
data clearly established the combination of CPMV and irradiated cells, or CPMV and
freeze–thawed cells, as the best vaccine to mediate resistance to the primary challenge, and
these treatments were roughly equal in protecting mice from primary tumor challenge.
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Figure 2. The prophylactic codelivery of irradiated cells and CPMV provides robust, long-term protection from
ID8/VEGFA/defb29 tumor challenge and rechallenge. (a) Combination data from all survival experiments. Mice re-
ceived treated ID8/VEGFA/defb29 cells, co-delivered IP with or without adjuvant. The panel shows the percent of mice
(out of the total number that received that treatment in all experiments) that survived to day 100 to be rechallenged. (b) The
panel shows the percent of mice that survived 60 days after being rechallenged. All groups with any mice surviving to
rechallenge are included, as are all groups that included irradiated cells and all vehicle-treated mice. (a,b) Vehicle-treated
n = 24, irradiated cells n = 20, irradiated cells + CPMV n = 20, irradiated cells + MPLA n = 8, irradiated cells + DMXAA
n = 8, freeze–thaw + CPMV n = 4, freeze–thaw + MPLA n = 3, HOCl + CPMV n = 4.

While protection from the primary tumor challenge is an important assessment of
vaccine efficacy, the establishment of protective immune memory is also very important.
Accordingly, mice that survived the primary challenge for 100 days with no sign of as-
cites development were rechallenged to assess their ability to reject tumors months after
vaccination, providing an indication of immune memory. The rechallenge data for each
experiment and subsequent survival are shown in Figure 1a–d. We selected survival for
at least 60 days following rechallenge as an indication of established, protective immune
memory. Only mice treated with the combination of CPMV and irradiated cells survived
60 days following rechallenge (Figures 1 and 2b). This study of longer-term protection
clearly established the combination of CPMV and irradiated cells as superior to any other
vaccine, including the combination of freeze–thawed cells and CPMV. Additionally, two
mice vaccinated with CPMV and irradiated cells that survived 100 days after rechallenge
(200 days after primary challenge) were rechallenged a second time at that 200 day mark,
after which they survived to 300 days, when they were rechallenged for the third time. Both
animals survived until 450 days after the primary challenge and had no ascites when the
experiment was concluded (data not shown). Overall, these data show the unique ability
of the vaccine combining CPMV and irradiated cells to establish long-term, protective
memory against a mouse model of ovarian cancer.

2.2. The Survival Benefit Provided by the Combination of CPMV and Irradiated Cells Is
T Cell-Dependent

To begin to understand the immunological mechanisms of the vaccine combining
irradiated cells and CPMV, the survival of vaccinated wild-type mice was compared to
the survival of vaccinated nude mice that lack T cells. Comparing the vaccine’s efficacy
in nude mice to its efficacy in wild-type mice elucidates the importance of T cells to the
anti-tumor immune response (Figure 3).
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The survival benefit conferred by the vaccine combining irradiated cells is T cell-
dependent. Vehicle-treated nude mice succumbed to their tumors very quickly, likely
because they lacked even the immune pressure of the anti-tumor T cells in unvaccinated
mice (Figure 3). However, the difference in survival between nude unvaccinated mice
and wild-type unvaccinated mice was not significant (p = 0.10). All vaccinated wild-type
mice remained tumor-free at day 140, which was over three times the average survival
of vehicle-treated mice, and they experienced a significant survival advantage compared
to unvaccinated wild-type mice (p = 0.007). The survival curves of the wild-type unvac-
cinated mice and the vaccinated nude mice closely mirrored one another, and there was
no significant difference in the survival between these two groups (p = 0.29). While all of
the vaccinated wild-type mice rejected their tumors, none of the vaccinated nude mice
rejected their tumors, providing clear evidence that the vaccine’s immunological mecha-
nism requires T cells. Perhaps the innate immune activation provided by CPMV allows a
protective T cell response to be primed, ultimately causing tumor rejection.

3. Discussion

Despite enormous advances in clinical cancer immunotherapies over the last two
decades, none have shown clinical efficacy in treating ovarian carcinomas. Though a combi-
nation of surgical, chemotherapeutic, and radiological interventions often induces clinical
remission, serous ovarian cancer generally returns. Accordingly, there is a significant need
for patient-centered immunotherapies that could be delivered during patients’ remission
to prevent disease relapse [50]. Immunotherapies, including but not limited to vaccines,
have the best opportunity to completely eliminate disease during remission, when low
tumor burden leads to relatively weak tumor-mediated immunosuppression. As such, we
believe that a vaccine that actually cures disease, rather than one that extends survival, is
best delivered during clinical remission before disease relapse. In order for that vaccine to
induce a strong immune reaction, it must include an adjuvant. Furthermore, to specifically
direct the vaccine against tumor cells, the vaccine must include an antigen source. If im-
munogenic tumor antigens overlap between the primary tumor removed during surgical
debulking and the tumor present at relapse, then the primary tumor serves as a useful
antigen source. Because a relatively large amount of tumor tissue is discarded from each
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patient’s surgery, the tumor tissue removed during surgery serves as a patient-specific and
readily available antigen source for a personalized cancer vaccine.

In this investigation, we show that the combination of CPMV and irradiated murine
ovarian cancer cells constitutes an effective, T cell-dependent prophylactic vaccination
against an aggressive syngeneic mouse model of ovarian cancer. CPMV, an immunos-
timulatory plant viral nanoparticle that has previously shown promise as a therapeutic
agent, was compared to MPLA, a TLR 4 agonist, and DMXAA, a murine STING agonist.
CPMV was a consistently more effective adjuvant than either MPLA or DMXAA (Figure 1).
To determine the best antigen source for the vaccine, four different tumor preparations
were compared—ionizing irradiation, freeze–thawed lysates, heat-shocked lysates, and
hypochlorous acid-oxidized lysates—and we observed that irradiated tumor cells were the
most effective vaccine antigen. Together, the combination of CPMV and irradiated tumor
cells enabled the majority of treated mice to reject the primary tumor challenge, as well as
subsequent tumor challenges over a prolonged period.

Unsurprisingly, both CPMV (the adjuvant) and irradiated cells (the antigen) were
necessary for vaccine efficacy, supporting the expected vaccine function (Figure 1e). Most
mice vaccinated with irradiated tumor cells and CPMV survived both the original tumor
challenge and at least one rechallenge, with 70–75% of vaccinated mice surviving the initial
challenge and all mice surviving rechallenge (Figures 1 and 2). The remarkable efficacy
of CPMV in extending survival in the highly aggressive ID8/VEGFA/defb29 model is
consistent with other studies, which showed that CPMV moderately extended the survival
of tumor-bearing mice when delivered therapeutically [32,35,51,52]. Accordingly, our
present data suggests a novel application for CPMV as an effective adjuvant in remission-
stage vaccines that block ovarian cancer relapse.

This sort of robust response is most often accomplished by CD8+ T cells, and our
vaccine was rendered minimally effective in nude mice lacking T cells (Figure 3). Fur-
thermore, since vaccinated mice survived tumor rechallenges delivered 80–100 days after
their original tumor challenge, they appear to have robust immunological memory against
the ID8/VEGFA/defb29 tumor cell line (Figure 2). While most tumor immunotherapies
involve CD8+ T cells, the data we present here are also consistent with a reliance upon
CD4+ T cells, either for their own cytokine production or for their ability to help mount a
protective B cell response; these possibilities cannot be ruled out [53]. Though more studies
are necessary to thoroughly explain the vaccine’s mechanisms, it is clear that the vaccine
functions via a T cell-dependent immunological mechanism. These data corroborate earlier
findings indicating that a vaccine consisting of CPMV conjugated to NY-ESO-1 induces an
antigen-specific CD8+ T cell response [54].

The activation of TLR signaling appears to be involved in CPMV’s efficacy as an
adjuvant. CPMV’s mechanism of immune cell activation is not yet fully understood, but
CPMV does signal through TLR 7/8 and requires Syk signaling, while MPLA signals
through TLR 4; perhaps differences in TLR activation account for the contrasting survival
benefits [27]. A number of studies support CPMV’s ability to act as an immune adjuvant
for in-situ vaccines [27,28,34,51,52]. Furthermore, CD11b+ monocytes from mouse ascites
activated ex vivo with a combination of TLR 4 and TLR 9 agonists moderately extended
survival when provided prophylactically, and led to tumor rejection and long-term memory
in the therapeutic setting, further underscoring the important role of TLR stimulation
in effective ovarian cancer immunotherapies [55]. Accordingly, though more studies are
needed to fully elucidate the mechanism of the vaccine we describe here, it seems likely that
CPMV activates innate immune cells, allowing the priming of an anti-tumor T cell response.

Vaccines with whole tumor cell antigens have long been an area of interest in ovarian
cancer immunotherapies [56–59]. Of the various antigen preparations that we tested,
the ionizing irradiation of tumor cells provided the best survival benefit (particularly in
combination with CPMV) (Figure 1a,c). Ionizing radiation has not been used extensively as
an antigen preparation technique in the past. However, perhaps most famously, irradiated
tumor cells expressing GM-CSF comprise GVAX, an early approach which helped galvanize
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the field of cancer immunotherapy [60]. Furthermore, irradiation has been found to
increase dendritic cell activation and mouse survival compared to freeze–thawed lysates
in a dendritic cell vaccine against mouse models of glioma and melanoma [36,37]. Most
probably, this is because gamma irradiation increases the expression of tumor antigens
or oxidation-associated molecular patterns (specific types of danger-associated molecular
patterns), which vigorously activate APCs [60,61]. Furthermore, irradiation increases the
expression of the T cell costimulatory molecule CD80 on a variety of tumor cells, which
increases tumor cell immunogenicity [62]. These past findings are consistent with our
observation that irradiated tumor cells alone (without adjuvant) increased mouse survival
(Figure 1a).

Freeze–thawing, heat-shocking, and HOCl-oxidizing tumor cells were generally less
effective antigen preparation techniques when combined with CPMV or MPLA. To our
knowledge, no studies have examined these techniques in the prophylactic context in
ovarian cancer, but the therapeutic literature has suggested that preparing tumor cells
in these ways can be advantageous. Freeze–thawed lysates delivered in combination
with CPMV initially conferred a survival benefit, but did not establish immunological
memory, as mice succumbed to rechallenge (Figure 1c). Freeze–thawed lysates are used
regularly and are often used to prepare tumor cell lysates in successful dendritic cell
vaccines [43,59,63]. For this reason, we compared various different freeze–thawed lysates
to irradiated cells. However, it is possible that freeze–thawed lysates can decrease the
ability of dendritic cells to respond to TLR stimulation, which may explain why their
combination with CPMV was not as effective as the combination of CPMV and irradiated
cells was [64]. Other groups have found that treating ovarian cancer cells with HOCl has
improved the ability of dendritic cells to prime anti-tumor T cell responses and extend
survival [16,41,42,65,66]. Our results did not corroborate the efficacy of HOCl oxidation as
an antigen preparation technique. Because the heat treatment of cells causes an increased
expression of immunogenic heat shock proteins, heat-shocked lysates have also been used
to induce anti-tumor immune responses. Others have found that heat-shocking tumor cells
can intensify the anti-tumor immune response, and they have made effective dendritic
cell vaccines against colon cancer with heat-shocked tumor cells [38,39]. Studies have
even examined the optimal methods of heat-shocking tumor cells for vaccine preparation,
which were used to inform our method of heat-shocking tumor cells [40]. The results from
our study do not corroborate previous studies that have found heat-shocked lysates to
be effective.

The results we describe here align with previous work regarding the role of T cells in
ovarian cancer. Human patients with ovarian cancer are capable of mounting modest anti-
tumor CD8+ T cell responses, though clinically these responses do not appear sufficient
to protect patients; while it is very difficult to understand the level of response that exists
early in disease development, the fact that clinical disease develops suggests that the
T cell response is not sufficiently protective [67–71]. Perhaps the strategy modeled here,
a combination of robust T cell priming and strategic delivery of the vaccine during times of
low tumor burden, would invigorate T cell responses enough to prevent relapse in humans.
Furthermore, there is reason to believe that genetically modifying the patient’s own resected
tumor tissue as a component of a personalized cancer vaccine would be useful in the clinical
setting. When patients’ own autologous whole tumor cells are engineered to co-express
GM-CSF and a shRNA against furin, subsequently irradiated, and delivered to ovarian
cancer patients during periods of remission, blood samples from treated patients have
increased levels of IFNγ, and treated patients experience a significant survival benefit [72].

Mice that received two prophylactic vaccines consisting of irradiated cells and CPMV
had a significant survival benefit. We suggest here that, due to the low (clinically unde-
tectable) tumor burden present during remission, prophylactic vaccine delivery provides a
model for remission-stage vaccines. However, we acknowledge that prophylactic vaccines
do not perfectly model remission-stage vaccines; during clinical remission, the immune
system is no longer naïve to cancer antigens, and tumor immune-editing can occur.
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Mice treated with the best vaccine combination in this study, irradiated cells and
CPMV, experienced a remarkable survival rate compared to other therapies reported in
the literature with this model. In many of our trials, 70–75% of vaccinated mice survived
the initial challenge and rechallenge, and our total combined cohort indicates that 100% of
rechallenged mice survived their rechallenge (Figures 1–3). In contrast, other studies exam-
ining CPMV in this model cite a more modest survival benefit, with roughly 25% surviving
challenge and rechallenge or, more frequently, no mice remaining tumor-free [33,34,51].

Immune checkpoint blockade therapies, which are widely used cancer immunothera-
pies, have at best a 15% overall response rate in ovarian cancer patients [3]. Some of the
most promising murine ovarian cancer therapies to date combined various immunothera-
pies, such as a STING agonist with anti-PD-1 immune checkpoint blockade or GVAX, or
FVAX, anti-41BB and anti-PD-1 or PD-L1 [73,74]. Compared to other murine vaccine stud-
ies, including dendritic cell vaccines, the vaccine developed in this study confers a much
greater survival advantage [16,24,75]. In a study wherein mice were treated with a triple
checkpoint blockade therapy, 20% of the mice remained tumor-free [76]. However, another
group that engineered CAR T cells with the NKG2D receptor observed excellent mouse
survival rates in ovarian cancer, and is moving toward clinical trials [77,78]. One of the
most promising prospective ovarian cancer vaccines targets Sp17 and utilizes CpG, a TLR
9 agonist, as an adjuvant [25]. While our vaccine provides comparable survival, the pre-
dominance of tumor escape in single antigen vaccines has become apparent. Accordingly,
the present investigation provides an important, effective direction for the development of
multiple antigen-targeted ovarian cancer immunotherapies.

4. Materials and Methods
4.1. Animals

Six-week-old female C57BL/6J and athymic nude (NU/J) mice were purchased from The
Jackson Laboratory (Bar Harbor, ME, USA). All mice were housed in the Norris Cotton Cancer
Center vivarium in accordance with Institutional Animal Care and Use Committee guidelines.

4.2. Tumor Models

The ID8/VEGFA/defb29 murine ovarian serous carcinoma cell line was generated as
previously described [49]. Cells were cultured at 37 ◦C in RPMI complete media (RPMI
1640 (HyClone, Marlborough, MA, USA) supplemented with 10% (v/v) fetal bovine serum
(Gibco, Waltham, MA, USA), 1 mmol/L sodium pyruvate (Life Technologies, Waltham,
MA, USA), 1% (v/v) penicillin/streptomycin mixture (Gibco, Waltham, MA, USA), and
2 mmol/L L-glutamine (Gibco, Waltham, MA, USA)). Cells were harvested and washed
with RPMI 1640. Eight-week-old mice were challenged with 5 × 106 tumor cells in 400 µL
sterile PBS intraperitoneally on day 0 after receiving vaccines on days −14 and −7. After
challenge, the mice were weighed regularly to monitor ascites formation. Mice were
euthanized with carbon dioxide when they reached the humane endpoint of 33 g of weight,
indicating significant ascites formation. Many surviving mice were rechallenged around
100 days after their initial tumor challenge. The mice were never given vaccines following
tumor challenge or rechallenge.

4.3. Vaccine Antigen Preparation

To prepare freeze–thawed lysates, the cells were washed with PBS and harvested.
Cells were transferred to 15 mL conical tubes and resuspended in RPMI complete media.
Tubes were submerged in a dry ice–ethanol slurry for 10 min. Cells were then allowed to
thaw to room temperature in a room-temperature water bath. The freeze–thaw cycle was
repeated five times. The freeze–thaw procedure was adapted from Chiang et al. (2011)
and Herr et al. (2000) [43,63]. Cell lysis was confirmed via trypan blue exclusion. Cells
were resuspended in sterile PBS at a concentration of 25 × 106 cells per mL. Lysates were
injected intraperitoneally on days −14 and −7, with 5 × 106 cells delivered to each mouse
simultaneously with adjuvant injection.
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To prepare irradiated cells, cells were washed with PBS and harvested. Cells were
transferred to conical tubes in RPMI complete media and irradiated with 70 Gray (10 Gy
per min for 7 min) ionizing gamma radiation from a cesium source. The preliminary
experiments confirmed complete cell death following this radiation procedure. Cells were
resuspended in sterile PBS at a concentration of 25 × 106 cells per mL. Cells were placed
on ice until just prior to vaccination. Irradiated cells were injected on days −14 and −7,
with 5 × 106 cells delivered to each mouse simultaneously with adjuvant injection.

To prepare heat-shocked lysates, cells were washed with PBS and harvested. Cells
were resuspended in RPMI complete media and heat-shocked in a water bath at 43 ◦C for
30 min. Cells were removed from the water bath and incubated at 37 ◦C for 1 h. Cells
were then subjected to five freeze–thaw cycles, as described above. The heat-shocked
lysate procedure was adapted from Ito et al. (2005) [40]. Cells were resuspended in sterile
PBS at a concentration of 25 × 106 cells per mL. Lysates were injected intraperitoneally
on days −14 and −7, with 5 × 106 cells delivered to each mouse simultaneously with
adjuvant injection.

To prepare hypochlorous acid-oxidized lysates, cells were washed with PBS and harvested.
Cells were resuspended in 0.06 M HOCl in HBSS and incubated at 37 ◦C for 30 min. Cells
were gently agitated to encourage oxidation, and then returned to the incubator for another
30 min. The HOCl-oxidation procedure was adapted from Chiang et al. (2006) [41]. Cells were
centrifuged at 5000 rpm for 5 min and washed twice with PBS. Cells were subjected to five
freeze–thaw cycles, as described above, before being resuspended in sterile PBS at a concen-
tration of 25 × 106 cells per mL. Lysates were injected intraperitoneally on days −14 and −7,
with 5 × 106 cells delivered to each mouse simultaneously with adjuvant injection.

Vaccines were entirely prophylactic; mice were never given vaccines after tumor
challenge or rechallenge. Two doses were provided due to the preponderance of the
literature suggesting that both primary and secondary immune responses are important
for prophylactic vaccine efficacy [79,80].

4.4. Vaccine Adjuvant Preparation

MPLA (Sigma Aldrich, (St. Louis, MO, USA) was dissolved in 2.5% (v/v) sterile
DMSO in ET-free PBS to a concentration of 0.50 µg MPLA/µL. Each mouse received 200 µL
MPLA solution (100 µg MPLA) on day 14 and day 7, simultaneously with antigen injection.
DMXAA was dissolved in 2.5% (v/v) sterile DMSO in ET-free PBS to a concentration of
1.25 µg MPLA/µL. Each mouse received 200 µL DMXAA solution (250 µg DMXAA) on
days −14 and −7, simultaneously with antigen injection [81].

CPMV nanoparticles were prepared as previously described and were verified to have
< 50 endotoxin units per mg protein [82]. CPMV was diluted in PBS to a concentration
of 100 µg per 200 µL PBS. Each mouse received 200 µL CPMV solution (100 µg CPMV)
injected intraperitoneally on days −14 and −7, simultaneously with antigen injection.

4.5. Statistical Analysis

All statistical analyses were performed with GraphPad Prism 8 (San Diego, CA, USA).
All p values reported compare survival curves using the log-rank (Mantel–Cox) test. All
experimental curves were compared to the relevant vehicle-treated controls unless other-
wise stated.

5. Conclusions

This study shows that remission-stage ovarian cancer vaccines using irradiated tumor
cells can effectively and significantly increase survival in a mouse model, suggesting the
possibility of a similar potential in human serous ovarian cancer patients. These results
suggest that, in other cancers in which patients frequently experience long periods of
remission before their cancers recur, the development of inactivated tumor cell vaccines
to be delivered during that period of remission could be useful. After testing a variety of
tumor cell treatments and established as well as experimental adjuvants, we found that
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only the combination of CPMV and irradiated cells enabled the vast majority of mice to
respond to both the original tumor challenge and the rechallenge. These studies support
our proposition of CPMV as a novel tumor vaccine adjuvant. Overall, the combination of
irradiated cells and CPMV together provides a protective and T cell-dependent ovarian
cancer vaccine against a mouse model of ovarian cancer, and opens doors for future studies
in cancer immunotherapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/4/627/s1, Figure S1: MPLA is an ineffective adjuvant against the ID8/VEGFA/defb29 murine
ovarian cancer model.
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