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Abstract: When we develop wearable assistive devices, comfort and support are two main issues that
need to be considered. In conventional design approaches, the degree of freedom of the wearer’s joint
movements tends to be oversimplified. Accordingly, the wearer’s motion becomes restrained and
bone/ligament injuries might occur in case of an unexpected fall. To mitigate these issues, this paper
proposes a novel joint link mechanism inspired by a human spine structure as well as functionalities.
The key feature of the proposed spine-like joint link mechanism is that hemispherical blocks are
concatenated via flexible synthetic fiber lines so that their concatenation stiffness can be adjusted
according to a tensile force. This feature has a great potentiality for designing a wearable assistive
device that can support aged people’s sit-to-stand action or augment spinal motion by regulating
the concatenation stiffness. In addition, the concatenated hemispherical blocks enable the wearer to
move his/her joint with full freedom, which in turn increases the wearer’s mobility and prevents
joint misalignment. The experimental results with a testbed and a pilot wearer substantiated that
the spine-like joint link mechanism can serve as a key component in the design of wearable assistive
devices for better mobility.

Keywords: spine-like joint link mechanism; wearable assistive device; exoskeleton component;
thoracic/lumbar spine assistive device

1. Introduction

Wearable assistive robots have been used for various applications, e.g., quiet balance
support for elderly people [1–3], gait function rehabilitation for stroke survivors [4–6], heavy
object lifting for manual workers [7–9], mobility augmentation for soldiers in challenging
battle fields [10–12], and so on. Since the wearable assistive robots have shown great
potential in a broad range of applications, many studies are now underway to extend their
usage as human assistive devices.

At the early stage of wearable assistive robots, design approaches tended to simplify
human joint-link mechanisms. For example, a knee joint was typically simplified as a
hinge-type joint with a single degree of freedom (DoF), which in turn restricted thigh
and shin movement only into the sagittal plane [13–16]. Moreover, most of the wearable
assistive robots have been made by rigid materials, although they targeted the support of
various body parts such as lower-limb [13–20], lower-back [21,22], upper-limb [23,24], and
hand [25,26]. The rigidity of the wearable assistive robots might facilitate “enough support”
in the sense of force/torque generation, whereas the length of a link could not be changed.
Consequently, in addition to the aforesaid sagittal plane restriction, the wearer’s joint-link
movement was constrained by a loss of flexibility in length.
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The wearer’s constrained joint-link movements are well-exemplified by existing early-
designed exoskeletons. Lower-limb exoskeletons such as EXPOS [13], BLEEX [14], HAL [15],
eLEGS [16] commonly employed a uniaxial revolute joint model for a wearer’s knee joint,
which was simplified to a 1-DoF model. Studies in [18–21] presented exoskeletons to
support a wearer’s lower-back as well as lower-limb. The presented exoskeletons could
retain the wearer’s lower-back in an upright position by supporting the lumbar spine with
a rigid structure and the wearer’s knee joint was simplified as a hinge-type joint. Under
all the constrained design approaches above, kinematic discrepancy between the wearer’s
joint and the exoskeleton’s joint movements becomes inevitable.

The kinematic discrepancy between a human wearer and an exoskeleton robot indeed
causes somewhat problematic issues. Even though the ranges of motion of hip/knee/ankle
joints are rather limited, they are able to move in the medial–lateral direction as well as the
anterior–posterior direction. Namely, the hip/knee/ankle joints are not perfect spherical
joints, but their movements are still closer to those of the spherical joints [27,28]. Therefore,
the kinematic discrepancy can cause unnatural walking and discomfort in the wearer during
daily activities. Moreover, the reduced DoF due to the simplified kinematics exposes the
wearer to serious joint or ligament injuries when the wearer tries bending/leaning toward
the medial–lateral direction [28].

Wearable robots made by soft materials have been thought to be a feasible solution
to alleviate both kinematic discrepancy and joint misalignment problems. Accordingly,
various soft-type wearable robots have been developed, e.g., exo-suit [10], exo-glove [29],
soft power suit [30], inflatable soft wearable robot [31,32], and so on. Compared to the
rigid-type wearable robots, the soft-type ones constrain natural joint movement less, which
in turn reduces discomfort caused by joint misalignment. The limitation of the soft-type
wearable robots is, however, that they generate less assistive force/torque than the rigid-
type. For instance, the soft-type wearable robots encourage a 10 to 100 percent increment in
original force/torque generated by the wearer’s muscle; by contrast, the rigid-type devices
produce a 100 to 900 percent increment [33]. Due to this limitation, the soft-type devices
have been narrowly applied, e.g., to wrist support, forearm assistance, ankle support, etc.

To mitigate the above-mentioned issues of rigid/soft-type wearable robots, this paper
proposes a novel joint link mechanism inspired by the dexterous characteristics of a human
spine. Specifically, the distinguished feature of the proposed mechanism is that multiple
hemispherical blocks are concatenated through synthetic fiber lines and rubber strips
to functionally mimic the vertebrae, tendons, and ligaments of the spine; accordingly,
it is referred to in this paper as a spine-like joint link mechanism (SJLM). The primary
purpose of this study is to design and test the feasibility and efficacy of a novel joint-link
mechanism mimicking the human spine. This study was initiated for the ultimate purpose
of developing wearable assistive devices, for which the proposed SJLM is to serve as a key
component. Throughout this paper, therefore, we mainly focus on explaining the design
and fabrication of the SJLM, and feasible applications are discussed as well.

This paper is organized as follows. In Section 2, the design of the SJLM is presented.
Specifically, component design, fabrication, and dexterous functionalities are explained.
Section 3 discusses the input–output relationship of the SJLM, which corresponds to a
tensile force under a hydraulic actuation versus an assistive force generated at an end-
link part. Section 4 presents the experimental procedures and results to substantiate the
input–output relationship and the maximum supporting capabilities. Two feasible SJLM
applications are introduced as well. Section 5 is the conclusion of this paper.

2. Design of Spine-like Joint Link Mechanism
2.1. Structure Overview

Figure 1 illustrates a SJLM design inspired by a human spine and functional corre-
spondences and presents the fabricated SJLM. Figure 1a shows bones, muscles and tendons,
ligaments, and cartilages (which are also referred to as vertebral body), erector spinae,
anterior/posterior longitudinal ligaments, and intervertebral discs in terms of anatomic



Sensors 2022, 22, 2314 3 of 14

jargon, respectively. Inspired by this anatomical structure and these functionalities, as
presented in Figure 1b, the SJLM was designed with hemispherical blocks, a hydraulic
actuator, synthetic fiber lines, a silicon-based strip, and natural rubber discs which func-
tionally correspond to bones, muscles and tendons, ligaments, and cartilages, respectively.
Figure 1c shows the fabricated SJLM: isometric view, front view, and side view.

Figure 1. The SJLM design inspired by a human spine and functional correspondences: (a) human
spine anatomy (excerpted and redrawn from https://3d4medical.com (accessed on 23 October 2021)),
(b) SJLM components, (c) the fabricated SJLM: isometric view, front view, and side view.

The detailed specification of the SJLM along with its hydraulic cylinder is described in
Table 1. We note that the specification presented in Table 1 is an exemplification of the SJLM
design and that it can be modified flexibly according to the wearer’s body measurement as
well as design materials.

Table 1. The specification of the SJLM and its hydraulic cylinder.

Specification Value Unit Remarks

SJLM Size (w × d × h) 36× 36× 190 mm without cylinder
Weight 0.250 kg without cylinder

Hydraulic
Cylinder

Stroke 60 mm -
Piston radius 25 mm -
Rod radius 4 mm -

Weight 0.450 kg -
Maximum force 3347 N at 70 bar

2.2. Components Design and Fabrication

Recall that the components of the SJLM and their functional correspondences were
presented in Figure 1b; namely, hemispherical block (bone), hydraulic actuator and syn-
thetic fiber lines (muscles and tendons), silicon-based strips (ligaments), and natural rubber
discs (cartilages). In order to mimic a human spine’s movement characteristics as well as its
anatomy, the SJLM was assembled by concatenating the hemispherical blocks (3D-printed
with ABS filament) via the four synthetic fiber lines (Dyneema Liros D-Pro SK78/2 mm/red/
4021 N breaking strength, Liros, GmbH, Berg, Germany).

Studies in [27,34–36] proposed mechanical design-based approaches to constrain
the wearer’s movement within a safe range. By contrast, the silicon-based strips were
employed as flexible constraints for our SJLM to guarantee redundant configurations as
well as the wearer’s full DoF movement. The natural rubber discs were inserted between
the hemisphere blocks to serve as damper/suspension against impulsive external forces.

https://3d4medical.com
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2.3. Dexterous Functionalities with Adjustable Stiffness

Figure 2 shows the stiffness adjustment mechanism of the SJLM according to hydraulic
actuation. We note that the SJLM part is presented by a cross-sectional view with only
two synthetic fiber lines (top and bottom) to explicitly illustrate the configuration of the
SJLM when the lines are pulled/released. Recall that all hemispherical blocks and the end-
link part are indeed concatenated via four synthetic fiber lines. As depicted in Figure 2a,
when the lines are completely loosened by a hydraulic actuation, the concatenations of
all hemispherical blocks are detached. Accordingly, both hemispherical blocks and the
end-link part can move freely and the stiffness of the SJLM only depends on the rubber
strips, which corresponds to the minimum stiffness. Figure 2b presents the lines as fully
tightened; accordingly, the hemispherical blocks and the end-link part are aligned. In this
case, the concatenation strength between the hemispherical blocks becomes almost close to
the breaking strength of the synthetic fibers; consequently, The SJLM has the maximum
stiffness under this configuration. If the fiber line tightness is set to in-between, then the
stiffness of the SJLM is determined by a combination of the elasticity of the rubber strip and
the tension of the fiber lines. In sum, the configuration as well as the stiffness of the SJLM
is adjustable under our design mechanism by varying the tensile force of the synthetic
fiber lines. We note that the friction between the holes of the hemisphere blocks and the
synthetic fiber lines of course affects the stiffness of the SJLM; however, we mainly focus on
explaining a relationship between the hydraulic actuation and the stiffness of the SJLM.
The effect of this friction is modeled as a nonlinear friction term later on.

Figure 2. The stiffness adjustment mechanism of the SJLM according to hydraulic actuation: (a) when
the tension of synthetic fiber lines is fully loosened and (b) when the tension of synthetic fiber lines is
fully tightened.

The above-mentioned adjustable stiffness furnishes the SJLM with dexterous function-
alities. Figure 3 shows the weight lifting and supporting capability of the SJLM. As shown
in Figure 3a through Figure 3d, the SJLM can lift up various weights ranging from 2.5 kg to
10 kg, then sustain its configuration while supporting the weight. Figure 4 demonstrates
that the SJLM can play the role of an elastic link. Figure 4a through Figure 4d shows that
flexion and extension up to ±90 degrees, axial torsion, flexible manipulability in 3D, and
restoration after applying an external force, respectively. All these demonstrated function-
alities substantiate that the SJLM can be utilized to design wearable assistive systems. For
instance, suppose that the two links of the SJLM are attached to the thigh and the shin of a
wearer so that its hemispherical blocks are aligned with a knee joint. By gradually tighten-
ing/loosening the line tension, the SJLM can support the wearer to perform a sit-to-stand
(and the reverse, a stand-to-sit) action safely. Moreover, serious knee injuries, e.g., twist
or sprain, can be prevented since the SJLM preserves the full DoF of the wearer’s knee
movement. For more demonstration, please refer to Video S1.
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Figure 3. The weight lifting and supporting capability of the SJLM (the transparent areas represent
initial positions and the opaque areas are final positions): (a) 2.5 kg weight, (b) 5.0 kg weight,
(c) 7.5 kg weight, (d) 10.0 kg weight.

Figure 4. The demonstration of dexterous functionalities of the SJLM: (a) flexion and extension up to
±90 degrees, (b) axial torsion, (c) flexible manipulability in 3D, and (d) restoration after applying an
external force.

3. Modeling the Input–Output Relationship of a Spline-like Joint Link Mechanism

The relationship between a tensile force on four synthetic fiber lines under hydraulic
actuation and an assistive force generated by an end-link can be modeled as input–output
relationship. To derive the input–output relationship model, we employed a simplified
free body diagram in which a hemispherical block and the end-link works as a line-
attached lever system with a fulcrum, as illustrated in Figure 5. The effect of friction
between the hemisphere blocks and the synthetic fiber lines is addressed in the last part of
this derivation.



Sensors 2022, 22, 2314 6 of 14

From Figure 5a, Ften and Fgen denote the tensile force induced by tightening the
synthetic fiber lines under hydraulic actuation and the generated force by the end-link,
respectively. Since the end-link is of a cylindrical shape, we can assume that the direction
of Fgen is passing through the center of the end-link and acting toward a radial direction.
r is a vector from the center of the hemispherical block to the center of a line. A vector h
points from the fulcrum point to the point where Fgen is generated. We note that, from now
on, a boldface symbol represents a vector and a non-boldface symbol represents its length,
i.e., ‖r‖ = r.

Figure 5. Employed lever system model to analyze the input–output relationship between Ften and
Fgen: (a) the side view (x-y plane) of the last hemispherical block and the link and (b) the top view
(x-z plane) of the last hemispherical block.

From Figure 5b, let d1, d2, d3 and d4 denote vectors from the fulcrum point to the
center of each line, respectively. Suppose that the four lines are tightened by Ften, then the
total torque τ produced at the fulcrum point is

τ = d1 × Ften + d2 × Ften + d3 × Ften + d4 × Ften (1)

where,

d1 =
√

2r2 − 2r2 cos(π − φ),

d2 =

√
2r2 − 2r2 cos(

π

2
+ φ),

d3 =
√
(2r)2 − (d1)2,

d4 =
√
(2r)2 − (d2)2.

(2)

This can be easily identified from geometric relationships depicted in From Figure 5b.
The torque τ can also be expressed in terms of h and Ften as

τ = h× Fgen (3)

From Equations (1) and (3), the relationship between Ften and Fgen is

(d1 + d2 + d3 + d4)× Ften = h× Fgen. (4)

Due to the symmetric placement of the SJLM fiber lines, d1 + d2 + d3 + d4 yields a
vector whose length is always equal to 4r and whose direction is aligned with Fgen as φ in
the x-z plane. Therefore, from Equation (4), we can obtain the input–output relationship
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between the amount of the tensile force, Ften (input), and the amount of the generated force,
Fgen (output), as

Fgen =
4r
h

Ften (5)

which implies that Fgen linearly increases. Moreover, for all φ and θ, the same amount of
force is generated. Lastly, we consider a friction between the four lines and hemispherical
blocks as a nonlinear friction term, denoted by ϕ(Ften, θ, φ), which might be expected to
show a hysteresis (since the motion of the four lines passing though hemisphere block is
conceptually similar to a tunneling behavior). Hence, from Equation (5), we obtain the
input–output relationship

Fgen =
4r
h

Ften − ϕ(Ften, θ, φ) (6)

Note that this theoretically obtained linear relationship between Ften and Fgen is
substantiated in the following section.

4. Experiments and Results

The following three experiments were performed to substantiate the derived input–
output relationship between Ften and Fgen (Section 4.1), identify the maximum supporting
capabilities under the maximum tensile force setup which can serve as a technical spec-
ification (Section 4.2), and test the feasibility to be utilized as a key component for the
design of wearable assistive devices (Section 4.3). Discussions about the results follow
each experiment.

4.1. Substantiating the Input–Output Relationship of the SJLM

Figure 6 shows the experimental setup to substantiate the derived input–output
relationship (namely, a tensile force Ften versus a generated force Fgen relationship) which
was presented in Equation (6). A desired value of Ften could be set by using a pressure
sensor (LM-PPT-H, Lumax Aerospace Co., Daejeon, Korea). Meanwhile, Fgen was measured
by a push–pull gauge (FGP-50, 0.1 N resolution, maximum measured force 500 N, Nidec-
Shimpo Co., Kyoto, Japan).

Recall that θ and φ are a leaning angle and a torsional angle of the link part of
the SJLM illustrated in Figure 6, respectively. The experiment was performed by the
following procedures:

1. Install a testbed while setting the SJLM at a specific angle, e.g., θ = 80◦.
2. Increase Ften gradually by a hydraulic actuation during 60 s from 0 N to 500 N.
3. Decrease Ften gradually by a hydraulic actuation during 60 s from 500 N to 0 N.
4. Measure Fgen while Ften is being increased and decreased.
5. Repeat the above procedures for θ = 50◦, θ = 20◦, in sequence.

Under our design, r and h were set to 11 mm and 90 mm, respectively. Figure 6b
through Figure 6d presents the testbed installment for θ = 80◦, θ = 50◦, and θ = 20◦. φ
determines the radial direction of the Fgen (see Figure 6). From Equation (2), we know that
d1 + d2 + d3 + d4 has the maximum value when φ = 45◦, where the fulcrum point has the
maximum distance from the four holes and no hole works as the fulcrum point. To fully
investigate the effect of friction between the fiber lines and the holes and model it as a
nonlinear term, φ was set as 45◦ for all conditions.

Figure 7 presents the substantiated input–output (a tensile force Ften versus a generated
force Fgen) relationship of the SJLM. By recalling Equation (6) and substituting r = 11 and
h = 90, we have

Fgen =
4× 11

90
Ften − ϕ(Ften, θ, φ)

= 0.489Ften − ϕ(Ften, θ, φ).
(7)
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Figure 6. The experimental setup to substantiate the input(Ften)–output(Fgen) relationship: (a) the
testbed consists of the SJLM module and a push–pull gauge; (b–d) are experimental setups for
θ = 80◦, θ = 50◦, and θ = 20◦, respectively. φ was set to 45◦ for all conditions.

Figure 7. The substantiated input–output (a tensile force Ften versus a generated force Fgen) relation-
ship of the SJLM.

From Figure 7, the slopes of the Ften versus Fgen curve are approximately (at Ften = 300)

Fgen

Ften
' 130

300
= 0.433 when θ = 80◦

Fgen

Ften
' 120

300
' 0.400 when θ = 50◦

Fgen

Ften
' 110

300
' 0.367 when θ = 20◦
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which allows us to presumably estimate the effect of a frictional force ϕ(Ften, θ, φ) from
Equation (7) as follows:

ϕ(Ften, 80◦, 45◦) ' 0.056Ften when θ = 80◦

ϕ(Ften, 50◦, 45◦) ' 0.089Ften when θ = 50◦

ϕ(Ften, 20◦, 45◦) ' 0.122Ften when θ = 20◦

However, since the Ften versus Fgen curve shows an obvious nonlinear hysteresis,
ϕ(Ften, θ, φ) needs to be identified further. Compared to our results, similar hysteresis
plots were introduced in [37] as well. The nonlinear hysteresis would be approximated by
adopting a neural net-based approach.

Suppose that h = 157 mm, which is a half of the shank length as presented in [38]. We
then calculate the maximum assistive torque τmax from Equation (3) (θ = 80◦ is assumed)

τmax = hFgen = h
Fgen

Ften
Ften

= 0.157 [m]× 0.433× 3270.194 [N]

= 219.999 [Nm] ' 220 [Nm]

(8)

where 3270.194[N] corresponds to 80% of the maximum breaking tolerance of the synthetic
fiber, which guarantees the safe operation of the SJLM experimentally. The outcome is
competitive with those for the existing lower-limb exoskeletons, such as those presented
in [14,18,21], of which the maximum assistance force ranges from 50.0 Nm to 200.0 Nm.

4.2. The Maximum Supporting Capabilities of the SJLM under the Maximum Tensile Force

Figure 8 shows the experimental setup to measure the maximum supporting capa-
bilities of the SJLM under the maximum tensile force, which can serve as a technical
specification of the SJLM. An absolute Digimatic indicator (ID-S112XB, 0.001 mm resolu-
tion, Mitutoyo Co., Kawasaki, Japan) and a push–pull gauge (FGP-50, 0.1 N resolution,
maximum measured force 500 N, Nidec-Shimpo Co.) were used to measure the applied
force and corresponding displacement, respectively. The goal of this experiment was
to identify the maximum supporting capabilities of the SJLM in terms of the maximum
translation and rotational stiffness. The experiment was performed as follows:

1. Apply the maximum tensile force Ften to the SJLM.
2. Push the SJLM upward by the push–pull gauge and measure the force applied to

the SJLM.
3. Meanwhile, measure the displacement of the SJLM by the absolute Digimatic indicator

(translational displacement).
4. Repeat the above procedures ten times (the applied Ften is supposed to be above

196 N).
5. Convert the measured translational stiffness into the rotational stiffness, and calculate

the mean and standard deviation.
6. Calculate the translational/rotational stiffness based on the measured translational/

rotational displacement.

From the experiment, the measured translational displacement was 0.567 ± 0.039 mm,
which corresponded to the rotational displacement (6.365 ± 0.436) × 10−3 rad according to
a torque arm of 89 mm when the applied force was 213.96 ± 12.19 N, in terms of torque
19.04 ± 1.09 Nm. This results indicated that, under the maximum tensile force setting, the
maximum translational and rotational stiffness of the SJLM were 378.1 ± 9.6 kN/m and
(2.995 ± 0.076) × 103 Nm/rad, respectively. These resulting values are competitive with
the joint stiffness of the Dexter arm [39,40] consisting of gearbox, motor, and steel wire,
which is commonly used for exoskeletons [13,22–26].
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Figure 8. The experimental setup to measure various SJLM properties under the maximum tensile
force: (a) an absolute Digimatic indicator to measure a displacement and (b) a push–pull gauge to
measure a force applied to the SJLM.

4.3. Feasible SJLM Applications: Wearable Lower-Limb and Spine Assistive Devices

Figure 9 shows the two feasible applications of the SJLM. First, a wearable lower-limb
assistive device is presented in Figure 9a. Two SJLMs are mounted on the lateral sides of the
pilot wearer’s legs; specifically, the hemisphere block parts are aligned with the wearer’s
knee joints. If the SJLM were set to a high stiffness adjustment, then the pilot wearer could
maintain the upright position for a longer time but would expend less musculo-skeletal
power. Figure 9b demonstrates that the SJLM can be bent with elasticity while the DoF
for the wearer’s movement is preserved. Next, Figure 9c presents a spine assistive device
designed as a harness type. From Figure 9d, we can see that the pilot wearer’s spine
(especially a thoracic/lumbar spine) can be supported by the SJLM. This type of wearable
assistive device will be helpful for workers who need to sustain an upright posture for a
long time, e.g., mart cashiers, security guards, and so on.

Recall that the design of the SJLM is mainly aimed at providing the capability for
adjusting its stiffness/flexibility to assist a wearer. We expect that this capability enables
the SJLM to be utilized as a key component to develop whole-body wearable assistive
devices with the following advantages:

1. Under high-stiffness (low-flexibility) adjustment, the SJLM can support the wearer with
the desired assistive force: This advantage is well-exemplified by the existing Chair
Exoskeleton (CEX) of Hyundai Motor Group [41] (see Figure 10a).

2. Under low-stiffness (high-flexibility) adjustment, the SJLM can provide the wearer with
comfort by alleviating kinematic discrepancy and joint misalignment: As presented in [42],
for instance, the HeroWear Apex suit—a biomechanically assistive garment to support
the lumbar spine—is light and comfortable to wear (see Figure 10b).
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Figure 9. The two SJLM applications: (a) a lower-limb assistive device under high-stiffness adjustment
and (b) bent with elasticity under low-stiffness adjustment; (c,d) a spine assistive device designed as
a harness type to support a thoracic/lumbar spine.

Figure 10. (a) Chair Exoskeleton (CEX) developed by Huyndai Motor Group [41]; (b) HeroWear
Apex suit developed by HeroWear LLC [42].

5. Conclusions

This paper proposed a spine-like joint link mechanism (SJLM) for designing wearable
assistive devices with comport and support, which guarantees better mobility. Inspired by a
human spine structure, the SJLM was made of the concatenation of multiple hemispherical
blocks via four synthetic fiber lines. The concatenation stiffness of the hemispherical blocks
could be adjusted by regulating the tensile force on the lines under a hydraulic actuation,
which in turn generated a supporting force at the end-link of the SJLM. The experimental
results substantiated the feasibility of the SJLM to be utilized as a key component for
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designing wearable assistive devices by identifying input–output characteristics as well
as the maximum supporting capabilities under the maximum tensile force setup. Two
SJLM applications were presented to demonstrate the substantiated feasibility: these were
wearable lower-limb and spine assistive devices.

We conclude this paper by providing additional information about the SJLM from
a research as well as a market perspective. First, the SJLM was designed to minimize
the risk of the wearer’s injuries, e.g., joint sprain or dislocation, when an unexpected fall
occurs. Nonetheless, the wearer should be aware of the potential failure of the SJLM which
might be induced by a hydraulic piston abrasion, a sudden power cut, and so on. Next,
as aforementioned, the specification of the SJLM can be flexibly modified according to the
wearer’s body measurement and design materials. Therefore, the cost affordability can also
be secured by the designer’s choice.

This study will culminate in the design of an innovative version of wearable assistive
devices, such as a lower-limb exoskeleton or an upper-limb augmentation device, in
future works.

Supplementary Materials: The following supporting information can be downloaded at: https:
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