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Abstract

Background: Four new variants of Chlamydia trachomatis (nvCTs), detected in several countries, cause false-
negative or equivocal results using the Aptima Combo 2 assay (AC2; Hologic). We evaluated the clinical sensitivity
and specificity, as well as the analytical inclusivity and exclusivity of the updated AC2 for the detection of CT and
Neisseria gonorrhoeae (NG) on the automated Panther system (Hologic).

Methods: We examined 1004 clinical AC2 samples and 225 analytical samples spiked with phenotypically and/or
genetically diverse NG and CT strains, and other potentially cross-reacting microbial species. The clinical AC2
samples included CT wild type (WT)-positive (n = 488), all four described AC2 diagnostic-escape nvCTs (n = 170), NG-
positive (n = 214), and CT/NG-negative (n = 202) specimens.

Results: All nvCT-positive samples (100%) and 486 (99.6%) of the CT WT-positive samples were positive in the
updated AC2. All NG-positive, CT/NG-negative, Trichomonas vaginalis (TV)-positive, bacterial vaginosis-positive, and
Candida-positive AC2 specimens gave correct results. The clinical sensitivity and specificity of the updated AC2 for
CT detection was 99.7 and 100%, respectively, and for NG detection was 100% for both. Examining spiked samples,
the analytical inclusivity and exclusivity were 100%, i.e., in clinically relevant concentrations of spiked microbe.

Conclusions: The updated AC2, including two CT targets and one NG target, showed a high sensitivity, specificity,
inclusivity and exclusivity for the detection of CT WT, nvCTs, and NG. The updated AC2 on the fully automated
Panther system offers a simple, rapid, high-throughput, sensitive, and specific diagnosis of CT and NG, which can
easily be combined with detection of Mycoplasma genitalium and TV.
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Background
Curable sexually transmitted infections (STIs) remain
major global public health concerns [1]. Chlamydia tra-
chomatis (CT) infection is the most common bacterial
STI with 127 million estimated cases among adults each
year globally [1]. In the European Union/European Eco-
nomic Area (EU/EEA) and in many other international
settings, the incidence of CT infections has increased
during the past decade [1, 2]. The widespread use of
highly sensitive and specific nucleic acid amplification
tests (NAATs), particularly in high-income countries,
has substantially contributed to the increased detection
and incidence. Undetected and untreated CT infections
can result in serious complications and sequelae, includ-
ing infertility. CT infections are frequently asymptomatic
and accordingly not detected if appropriate laboratory
diagnostics is not performed [3].
Validated and quality-assured CT NAATs are recom-

mended for highly sensitive and specific diagnosis of CT
infections. Compared to other CT diagnostic methods,
NAATs have highly superior sensitivities with main-
tained high specificities, use non-invasive specimens, are
rapid, and provide opportunities for automation [3]. Ini-
tially, CT was considered to be genomically highly con-
served. However, in 2006 the Swedish new variant of CT
(nvCT) was described [4]. This Swedish nvCT has a de-
letion in the cryptic plasmid resulting in false negative
results using the Roche and Abbott NAATs available at
that time [5, 6]. Subsequently, whole genome sequencing
of CT provided evidence of relatively substantial recom-
bination and a mutational frequency level similar to the
one in many other bacterial species [7, 8]. This showed
that CT evolves more than previously predicted and
diagnostic-escape CT mutants can emerge.
The sensitivity and specificity of the US FDA-

approved Aptima Combo 2 assay (AC2; Hologic Inc.,
San Diego, CA, USA), based on target capture (TC) and
transcription-mediated amplification (TMA) chemistries,
for detection of CT (target: 23S rRNA) and Neisseria
gonorrhoeae (NG; target: 16S rRNA) have proven excel-
lent in many studies [9–17]. However, in early 2019, the
Finnish nvCT (FI-nvCT) was identified [18, 19]. This
variant has a single nucleotide polymorphism (SNP) in
the CT 23S rRNA gene, i.e. C1515T (Escherichia coli
numbering), resulting in escaped detection by the acridi-
nium ester CT detection probe used in AC2 [18–24].
The FI-nvCT was initially estimated to represent 6–10%
of the CT positive samples in Finland [18, 19]. The FI-
nvCT has subsequently been reported in Sweden [20],
Norway [21], and Denmark [24]. Three additional AC2
diagnostic-escape nvCTs have been reported in single
specimens in Norway [21], the United Kingdom [25],
and Japan (the present study), and one of these three
nvCTs was found widely spread in Denmark [24]. These
three AC2 diagnostic-escape nvCTs, as the FI-nvCT,
have a SNP in the AC2 CT probe detection sequence of
23S rRNA, i.e. 23S rRNA C1514T, G1523A [21, 24, 25],
or C1522T (the present study). The Aptima C. tracho-
matis NAAT (ACT; Hologic Inc.), which targets CT 16S
rRNA, detects all of these diagnostic-escape nvCTs. Re-
flex testing of AC2 samples with relative light unit
(RLU) values of 15–99 (mostly “high negative” or
equivocal results) using ACT was implemented in May–
June 2019 in many European countries [22, 26]. How-
ever, this ACT reflex testing substantially increases the
work load and associated costs in these laboratories, and
a more sustainable solution is imperative. Accordingly,
an updated version of AC2, which was designed to de-
tect also all these and other diagnostic-escape nvCTs,
has now been developed by Hologic Inc. (San Diego,
USA). This updated AC2 assay includes one additional
CT detection probe targeting a second region of the CT
23S rRNA [27].
The aim of the present study was to evaluate the clin-

ical sensitivity and specificity, as well as the analytical in-
clusivity and exclusivity of the updated AC2 (provided as
research-use-only [RUO] material) for detection of wild-
type (WT) CT, nvCTs, and NG on the automated Pan-
ther system (Hologic).

Methods
The evaluation panel consisted of 1004 clinical, routinely
collected samples (from 2015 to 2020) previously diag-
nosed using AC2 and/or ACT, in accordance with the
instructions from the manufacturer (Hologic), and 225
samples spiked with geographically and temporally (from
1971 to 2016) diverse isolates of NG, CT, FI-nvCT, and
T. vaginalis (TV), as well as non-NG Neisseria, Morax-
ella, non-TV Trichomonas, or non-CT Chlamydia.

Clinical NAAT samples
The AC2 clinical samples consisted of CT WT-positive
specimens (n = 488; 84 of these were also positive for
NG); diagnostic-escape nvCTs (FI-nvCT [n = 114],
nvCT-G1523A [n = 46; one positive also for NG], nvCT-
C1522T [n = 6], and nvCT-C1514T [n = 4]; all verified
by 23S rRNA gene sequencing or the FI-nvCT TMA
assay [23]); NG-positive specimens (n = 214; 84 of these
were also positive for CT); CT- and NG-negative speci-
mens (n = 202); and specimens positive for TV (n = 5),
bacterial vaginosis (n = 5), and Candida species (n = 5).
The nvCT-samples comprised mainly first-void urine or
vaginal/cervical samples from Finland, Sweden, Norway,
Denmark, the United Kingdom, and Japan. Prior to test-
ing with the updated AC2 assay, all clinical AC2 samples
were collected and stored (− 20–70 °C) in routine diag-
nostics (standard care), and no patient identification in-
formation was available in the present study. All clinical
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AC2 samples were collected in Aptima Urine Specimen
Transport Tubes or Aptima Vaginal Swab Specimen
Collection Kit (Hologic). Results from the initial routine
testing using the original version of AC2 were used for
comparison against the updated AC2 results.

Analytical inclusivity and exclusivity panel
The panel was assembled to include phenotypically and/
or genetically diverse strains. For CT inclusivity, all nine
main genotypes, including L1-L3 causing Lymphogranu-
loma venereum (LGV), and variants such as the Swedish
nvCT [4–6], were represented. Furthermore, 20 samples
including in vitro transcript (5 fg) of the FI-nvCT 23S
rRNA (Panel G; Hologic) were examined. The four non-
CT Chlamydia species C. muridarium, C. suis, C. psittaci,
and C. pneumoniae were initially tested in high concentra-
tion (~ 1.1 × 107 genome equivalents (GEQs)/test) to chal-
lenge the exclusivity. For NG inclusivity, the
geographically, temporally and genomically diverse 2016
WHO reference strains (n = 14) [28], which include proly-
liminopeptidase (PIP), porA pseudogene, and cppB mu-
tants that have previously escaped diagnostics using other
NAATs, were examined. Due to the high level of genetic
homogeneity between NG and non-NG Neisseria species
and problems with cross-reactivity in several NG NAATs
[13], a high number of different strains (n = 151) repre-
senting 14 diverse non-NG Neisseria and three Moraxella
species were tested in high concentration (~ 2 × 107 gen-
ome equivalents (GEQs)/test) to substantially challenge
the exclusivity. Finally, T. vaginalis samples (n = 10), in-
cluding the two ATCC strains 30,001 and 50,140, and 10
samples including four different non-T. vaginalis Tricho-
monas species were tested in a high concentration (~
1.25 × 107 GEQs/test). All the preparation and testing of
spiked samples were performed as previously described
[29]. If any cross-reactivity was identified, the cross-
reacting sample was diluted to more clinically relevant
concentrations, i.e. the sample was diluted to contain simi-
lar number of GEQs as CT and NG are present in within
strongly CT and NG positive samples [30–32].

NAAT testing
Like the original AC2 formulation, the updated AC2
assay is based on TC and TMA chemistries. Testing with
the updated AC2 (provided as RUO material) was per-
formed on the Panther system (Hologic), in strict ac-
cordance with the instructions from the manufacturer.
All testing was performed blinded in regards to the re-
sults from other testing.

Results
The results of all testing of AC2 clinical samples and
spiked samples with the updated AC2 are summarised
in Table 1.
Clinical NAAT samples
All 170 nvCT-positive samples (FI-nvCT [n = 114],
nvCT-G1523A [n = 46], nvCT-C1522T [n = 6], and
nvCT-C1514T [n = 4]) and 486 (99.6%) of the 488 CT
WT-positive samples were positive in the updated AC2.
The two CT WT-positive samples that were negative in
the updated AC2 showed RLU values of 14 and 8 in the
updated AC2, while they were positive in the original
AC2 (RLU values: 837 and 1215). All NG-positive (n =
214), CT/NG-negative (n = 202), T. vaginalis-positive
(n = 5), bacterial vaginosis-positive (n = 5), and Candida-
positive (n = 5) AC2 specimens gave correct results with
the updated AC2 (Table 1). The overall clinical sensitiv-
ity and specificity of the updated AC2 for CT detection
was 99.7% (CI 95%: 98.9–100%) and 100% (CI 95%:
98.9–100%), respectively. The overall clinical sensitivity
and specificity for NG detection was 100% (CI 95%:
98.3–100%) and 100% (CI 95%: 99.5–100%), respectively.

Analytical inclusivity and exclusivity panel
The inclusivity and exclusivity panel included samples
spiked with the following: nine CT strains of different
genotypes (n = 9) and the Swedish nvCT (n = 1); in vitro
transcript of the FI-nvCT 23S rRNA (n = 20); four non-
CT Chlamydia species (n = 10); all 2016 WHO NG ref-
erence strains (n = 14); 151 strains of non-NG Neisseria
species (n = 14) and Moraxella species (n = 3); T. vagina-
lis samples, including the two ATCC strains 30,001 and
50,140 (n = 10); and five reference strains of four non-T.
vaginalis Trichomonas species (n = 10). In clinically rele-
vant concentrations, all samples gave correct results
using the updated AC2 (Table 1).
Notably, in high concentrations (~ 2 × 107 GEQs/test),

two N. elongata strains were repeatedly yielding equivo-
cal NG results with the updated AC2 (RLU values: 86–
114 and 71–118, respectively). In clinically more relevant
concentrations (~ 2 × 105 GEQs/test), both strains were
negative. Furthermore, in high concentrations (~ 1.1 ×
107 GEQs/test) C. suis (ATCC VR-1474) and C. muri-
darum (ATCC VR-123) tested CT positive with the up-
dated AC2 (RLU values: 951 and 1159, respectively).
However, in clinically more relevant concentrations (~
1.1 × 105 GEQs/test) both were negative (Table 1) and
none of these animal pathogens have to our knowledge
been found in human.

Discussion
The present study is the first clinical and analytical validation
of the updated AC2 NAAT (Hologic), which includes one
NG target and two CT targets [27] and most recently was
granted US FDA approval (https://www.accessdata.fda.gov/
scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K200866). Since
the initial report of the FI-nvCT in late-May 2019 in Finland
[18, 19] and subsequent reports of FI-nvCT and additional

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K200866
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Table 1 Clinical and analytical detection of the updated Aptima Combo 2 assay (AC2; detecting CT and NG), which provides
detection coverage of all diagnostic-escape new variants of CT [18–25, the present study]
Clinical specimen Number

tested
Positive AC2 Positive updated AC2

CT NG CT NG

CT wild type (C1515)-positive clinical AC2 specimensa,b 488 488 84 486 84

FI-nvCT (C1515T)-positive clinical AC2 specimensb 114 0 0 114 0

nvCT-G1523A-positive clinical AC2 specimensa,b 46 0 1 46 1

nvCT-C1522T-positive clinical AC2 specimensb 6 0 0 6 0

nvCT-C1514T-positive clinical AC2 specimensb 4 0 0 4 0

N. gonorrhoeae-positive, CT-negative AC2 specimens 129 0 129 0 129

T. vaginalis-positive AC2 specimens 5 0 0 0 0

Bacterial vaginosis-positive AC2 specimens 5 0 0 0 0

Candida spp.-positive AC2 specimens 5 0 0 0 0

C. trachomatis and N. gonorrhoeae-negative clinical AC2 specimens 202 0 0 0 0

Microbial species in spiked specimens

C. trachomatis Ba, D, E, F, G, H, J, K, L2b 9 9 0 9 0

C. trachomatis SE-nvCT [4–6] 1 1 0 1 0

FI-nvCT 23S rRNA in vitro transcript 20 0 0 20 0

C. suis (ATCC VR-1474)c 2 0 0 0 0

C. muridarum (ATCC VR-123)c 2 0 0 0 0

C. pneumoniae (ATCC VR-2282, MBC011) 4 0 0 0 0

C. psittaci (MBC013) 2 0 0 0 0

Neisseria gonorrhoeae 2016 WHO reference strains [28] 14 0 14 0 14

N. animalis 1 0 0 0 0

N. bergeri 1 0 0 0 0

N. cinerea 9 0 0 0 0

N. elongatac 3 0 0 0 0

N. flava 1 0 0 0 0

N. flavescens 32 0 0 0 0

N. lactamica 12 0 0 0 0

N. macacae 17 0 0 0 0

N. mucosa 17 0 0 0 0

N. oralis 1 0 0 0 0

N. perflava 22 0 0 0 0

N. sicca 9 0 0 0 0

N. subflava 6 0 0 0 0

N. meningitidisd 17 0 0 0 0

Moraxella catarrhalis 1 0 0 0 0

M. nonliquefaciens 1 0 0 0 0

M. osloensis 1 0 0 0 0

Trichomonas vaginalis (ATCC 30001, ATCC 50140) 10 0 0 0 0

T. aotus (ATCC 50649) 2 0 0 0 0

T. gallinae (ATCC 30002, 30,230) 4 0 0 0 0

T. stableri (ATCC PRA-412) 2 0 0 0 0

T. tenax (ATCC 30207) 2 0 0 0 0

AC2, Aptima Combo 2; CT, Chlamydia trachomatis; NG, Neisseria gonorrhoeae; FI-nvCT, Finnish new variant of CT; SE-nvCT, Swedish new variant of CT; ATCC, American
Type Culture Collection; WHO, World Health Organization; RLU, relative light unit
a84 samples and one sample, respectively, were also confirmed positive for NG
bConfirmed by sequencing of the 23S rRNA gene or the FI-nvCT TMA assay [23]
cPositive in very high concentration, but negative in clinically more relevant concentrations
dRepresenting major meningococcal clones spreading worldwide, including serogroups A, B, C, E, W, X, Y and Z
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diagnostic-escape nvCTs in Sweden [20], Norway [21],
Denmark [24], and the United Kingdom [25], reflex testing
with ACT of possible AC2 diagnostic-escape nvCT has been
performed in all European diagnostic laboratories [22, 26].
However, Hologic has now developed an updated version of
the AC2 assay [27], which was designed to detect also all of
the new diagnostic-escape nvCTs [18–25, the present study]
and includes one additional CT detection probe targeting a
second region of the CT 23S rRNA. In the present study, we
show that the updated AC2 assay has a maintained high clin-
ical sensitivity and specificity, as well as an ideal analytical in-
clusivity and exclusivity, when examining samples spiked in
clinically relevant concentrations of microbe, in the detection
of WT CT and NG. Furthermore, the updated AC2 assay
also effectively detected all of the described AC2 diagnostic-
escape nvCTs [18–25, the present study], i.e. clinical AC2
specimens containing the FI-nvCT (n = 114), nvCT-G1523A
(n = 46), nvCT-C1522T (n = 6), and nvCT-C1514T (n = 4)
were all positive. Thus, the clinical sensitivity and specificity
of the updated AC2 for CT detection was 99.7 and 100%, re-
spectively. Despite that samples were preselected as positive
with the original version of AC2, only two CT WT-positive
samples were missed with the updated AC2 assay (not suffi-
cient samples remaining for confirmation with ACT). It can-
not be excluded that a preselection of samples using the
updated AC2 assay would provide similar results when
retested in the original AC2 assay. Both the clinical sensitivity
and specificity of the updated AC2 assay for NG detection
was 100%.
The recent emergence of AC2 diagnostic-escape nvCTs

[18–25, the present study], spread of the Swedish nvCT escap-
ing detection using the NAATs available from Roche and Ab-
bott at that time [4–6, 33], and constantly evolving CT [7, 8],
illustrate the necessity of dual target diagnostic CT NAATs
and surveillance of the stability of NAAT targets in national
and international settings. Furthermore, laboratories should be
included in appropriate external quality assessments to detect
diagnostic-escape nvCTs and it is imperative to adequately
survey and analyse incidence, any unexplained shifts in positiv-
ity rates, and/or annual collections of samples diagnosed as
negative/equivocal using NAATs with different target(s).

Conclusions
Widespread implementation of validated, accurate and
quality-assured CT dual target NAATs for diagnosis of
CT is crucial internationally. The updated AC2 assay,
now including two CT targets and one NG target [27],
showed a high clinical sensitivity and specificity, as well
as an ideal inclusivity and exclusivity in the detection of
WT CT, all described nvCTs [4–6,18–25, the present
study], and NG. Nevertheless, international and national
surveillance programmes capturing NAAT diagnostic-
escape variants for CT as well as other infectious agents
are imperative.
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