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Abstract. Bacterial Foraging Optimization (BFO) has been predomi-
nately applied to some real-world problems, but this method has poor
convergence speed over complex optimization problems. In this paper, an
improved Bacterial Foraging Optimization with Differential and Poisson
Distribution strategies (PDBFO) is proposed to promote the insufficiency
of BFO. In PDBFO, the step size of bacteria is segmented and adjusted
in accordance with fitness value to accelerate convergence and enhance
the search capability. Moreover, the differential operator and the Pois-
son Distribution strategy are incorporated to enrich individual diver-
sity, which prevents algorithm from being trapped in the local optimum.
Experimental simulations on eleven benchmark functions demonstrate
that the proposed PDBFO has better convergence behavior in compari-
son to other six algorithms. Additionally, to verify the effectiveness of the
method in solving the real-world complex problems, the PDBFO is also
applied to the Nurse Scheduling Problem (NSP). Results indicate that
the proposed PDBFO is more effective in obtaining the optimal solutions
by comparing with other algorithms.

Keywords: Bacterial Foraging Optimization · Differential strategy ·
Poisson Distribution · Nurse Scheduling

1 Introduction

In a seminal paper published in 2002, Passino showed how bacterial individuals
and groups find nutrients and how to model it as a distributed optimization
process, which he named the Bacterial Foraging Optimization (BFO) [1]. The
algorithm is designed to simulate foraging behavior of animals in nature, which
has excellent capability to search optimal value of functions with steep function
images [2]. Moreover, in the standard BFO, bacteria can avoid falling into the
local optimum to some extent and also cooperating [3]. However, this approach
often leads to the problem of slow convergence speed [1]. In recent decades, many
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researchers have optimized BFO to enhance the performance. In the improve-
ment of BFO scholars focus on two aspects: BFO’s operational strategy and
algorithm combination.

In terms of algorithm strategy improvement, Mishra et al. combined the
fuzzy rule system of Takagi-Sugeno (TS) in the BFO and then put forward a
Fuzzy Bacterial Foraging (FBF) algorithm [4]. Besides, compared with classical
algorithms, adaptive chemotactic operators have better performance. Ben Niu
proposed an improved BFO with adaptive chemotaixs step and a non-linearly
decreasing exponential modulation model [5]. The BFO of automatic chemoat-
tractant step size is brought up by Majhi [6].

In regards to algorithm combination, Tang suggested a multi-level threshold
method using the modified Bacterial Foraging Optimization (MBFO) [7] so as to
enhance the practicability of the optimal threshold technology. Researchers found
that bacteria could learn from the best position in the population by integrating
Particle Swarm Optimization (PSO) into each chemotactic step, which enhanced
the global search capability of the algorithm [8]. D.H. Kim et al. combined the
crossover and mutation operators of the Genetic Algorithm (GA) with the BFO
[9]. Luh considered biological evolution and came up with Bacterial Evolutionary
Algorithm (BEA) [10]. Combining the Bacterial Foraging and Particle Swarm
Optimization, Biswas proposed the hybrid optimization algorithm and applied
it to solve the optimization of multi-modal functions [11].

Despite the great efforts of the researchers, the problems of premature con-
vergence and slow convergence speed remain tricky. In order to promote the
development of BFO algorithm, this paper proposes an improved BFO with Dif-
ferential and Poisson Distribution strategies (PDBFO) to shed some light on
the problems. To begin with, differential operators are incorporated into stan-
dard BFO to increase the convergence accuracy. Meanwhile, the segmentation
step size change strategy is adopted. Finally, the Poisson Distribution strategy
is used to disperse the bacteria.

Optimization algorithms are widely used to solve practical problems with
high complexity. Alireza Goli applied the Accelerated Cuckoo Algorithm to the
vehicle routing problem [12]. Precup, R.E. suggests the use of Grey Wolf Opti-
mizer algorithms to optimize the parameters of Takagi-Sugeno proportional-
integral-fuzzy controllers [13]. To further demonstrate the effectiveness of
PDBFO in solving the real-world problem, a real Nurse Scheduling Problem
(NSP) which improves the working efficiency and quality of nurses is employed
[14].

This paper is organized as follows. Section 2 introduces the standard BFO
algorithm. Then, the proposed algorithm is illustrated in details in Sect. 3.
Section 4 presents the model of NSP. Section 5 shows the performance compar-
isons. Finally, conclusions and further work are presented in Sect. 6.



314 J. Jiang et al.

2 Bacterial Foraging Optimization

2.1 Chemotaxis

Chemotaxis is the most important process of BFO, in which bacteria gradu-
ally approach the optimal value through rotation and swimming. This process
simulates the behaviour of swimming and tumbling through flagella of E. coll.
Suppose θi (j, k, l) represents the ith bacterium at jth chemotactic, kth repro-
ductive, and lth elimination-dispersal process. The movement of ith bacterium
is expressed as follows:

θi (j + 1, k, l) = θi (j, k, l) + C (i) ϕ (i) (1)

where C (i) > 0 represents the step size of each step forward, and ϕ (j) represents
a random forward direction vector selected after tumbling.

2.2 Reproduction

For reproduction, bacteria are ranked according to their health degree Jhealth.
The smaller Jhealth is, the healthier the bacterium is. The larger half population
will be replaced by the better half. In this way, the population of bacteria remains
the same. The algorithm runs Nre times reproduction operations. The health
degree of bacteria Jhealth is calculated as follows:

Jhealth(i) =
Nc∑

j=1

J(i, j, k, l) (2)

where J represents fitness value computed by objective function, i represents
each individual, j represents the number of chemotactic, k represents the number
of reproduction and l represents the number of migration.

2.3 Elimination-Dispersal

In the evolutionary process, elimination and dispersal events may occur, which
bacteria in one area are killed or a group of them are dispersed to a new envi-
ronment. Dispersal may disrupt chemotaxis, whereas may also assist chemotaxis
since it may direct the bacteria approaching better places with fruitful nutri-
tion. This operation simulates the migration of bacteria to new environments
by water currents or other organisms and the bacteria will be dispersed to ran-
dom locations within the search area. The algorithm runs the dispel operation
Ned times. The specific operation is to give a fixed value of Ped which is chosen
within [0,1]. When the random number of bacterial individual is less than Ped,
the bacteria will die. Otherwise, a new individual will be generated randomly so
as to achieve the purpose of migration.
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3 Improved Bacterial Foraging Optimization Algorithm

In order to improve the search capability and convergence speed of the BFO, step
size segmentation strategies are introduced by adjusting the step size according
to the fitness values. Additionally, the differential operators and greedy selection
strategies are employed at the end of swimming operations. During the migration
process, Poisson Distribution strategy is used to choose the individuals to be
dispelled. The Pseudocode of PDBFO has been provided in Algorithm 1.

3.1 Segmentation Step Size Changes on Chemotaxis Operation

In [15], experiment results have indicated that with the change of the current
fitness value, changing of Chemotaxis step size can lead to better convergence
performance in comparison to the case when the step size is fixed. In this paper,
Chemotaxis step size is exploited by adopting a segmentation strategy. The
fitness values of the bacteria are sorted in ascending order. Individuals with the
smaller fitness values indicate good localization and could be assigned with small
step size, whereas individuals with larger fitness values indicate poor bacterial
localization and are assigned with a large step size.

Thus, the Chemotaxis step size can be adjusted as follows:

Ci =

⎧
⎨

⎩

Cmax + (Nc − j)Cmax−Cmin

Nc
, i ≤ 0.2S

Cmin − (Nc − j)(Cmax − Cmin), i ≥ 0.8S
0.1, i ∈ (0.2S, 0.8S)

(3)

where S represents the population number, Nc is the total number of swimming,
j is the current swimming times, and C represents the step size.

3.2 Bacterial Foraging Algorithm Combined with Differential
Strategy

From BFO, we can find that the chemotactic operator searches the field through
random movement to ensure the local search capability of bacteria. However, the
bacteria do not make full use of the information of other bacteria in the environ-
ment. Consequently, the convergence speed of the algorithm is slow, resulting
in premature convergence of the algorithm and difficulty in obtaining the global
optimal [16]. Therefore, differential operator and greedy selection mechanism are
embedded in the proposed algorithm.

After the swimming operation, the bacteria enter the stage of differential
operation. The differential vector is established first, and then the vector is syn-
thesized with the individual to generate the new individual. Then the fitness
values of each new individual and the corresponding original individual are com-
pared, and the greedy strategy is used to retain the better performing individuals
[17]. In addition, an adaptive scaling operator F is introduced in the process of
generating intermediate individuals. The adaptive scaling factor changes accord-
ing to the following equation:
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F = 2F0 · e
1−Nc

Nc+1−j (4)

where, F0 is the initial mutation operator, F0 = 0.4. Nc and j represent the total
number of chemotaxis and the current number of chemotaxis.

The generation equation of intermediate individuals is

Gi = Pi + F · (R1 − R2) (5)

where, G is the intermediate individual, and P is the corresponding original
individual. R1 and R2 are two random individuals which are different from P .

The selection process is expressed as follows:

Pi+1 =
{

Gi, if f(Gi) < f(Pi)
Pi, otherwise

(6)

where, Pi+1 is the location of the selected new individual, Gi is the location of
the intermediate individual, and Pi is the location of the original individual.

Pseudocode for PDBFO Algorithm
1 Initialize:

(a) Set parameters: Ned, Nre, Nc, Ns, S, Cmax, Cmin, F0, Dim
(b) Initialize bacterial population

2 Eliminating and dispersal loop: for l = 1, 2, · · · , Ned

3 Reproduction loop: for k = 1, 2, · · · , Nre

4 Chemotaxis Loop: for j = 1, 2, · · · , Nc

5 for i = 1, 2, · · · , S
6 Compute Fitness Value J(i, j, k, l), and set Jlast = J(i, j, k, l)
7 Tumble by Eq.(1), then compute and sort Fitness Value J(i, j, k, l)
8 while m < Ns

9 update Pi by Eq.(1) and Eq.(3)
10 end while
11 Compute F by Eq.(4) and Gi by Eq.(5)
12 Select Gi and Pi by Eq.(6)
13 end for
14 end for
15 Reproduction, compute the all bacteria’ Jhealth by Eq.(2) and sort bacteria
16 for j = 1, 2, · · · , S/2
17 Rerandomize the location of bacteria Pj

18 end for
19 end for
20 Generate poisson distribution Numbers by Eq.(7) and compute J(i, j, k, l)
21 for m = 1, 2, · · · , S
22 Eliminate each bacterium as described in subsection 3.3
23 end for
24 end for
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3.3 Poisson Distribution in Elimination-Dispersal Operations

Elimination-dispersal is an integral part of BFO. By means of elimination-
dispersal, the bacteria trapped in local optimum can reposition themselves to
avoid premature convergence. Elimination-dispersal makes the algorithm have a
better random searching capability, and increases the diversity of the population.
However, for high-dimensional optimization problems, elimination-dispersal will
greatly slow down the convergence speed due to the increasing of dimensional-
ity and complexity. Worse still, it is possible to drive away the best-performing
bacteria, resulting in redundant computation [18].

This paper proposes a bacterial selection mechanism based on Poisson Dis-
tribution (PD) strategy to solve this problem. When the algorithm enters the
dissipation process, the bacteria are firstly sorted according to the fitness value
from small to large. Generate S random numbers that conform to the PD, and
then compare the serial number of the bacteria with the corresponding random
number to determine whether the bacterium should be dispersed. Through this
mechanism, it is possible to ensure that most of the excellent bacteria will not
be dispersed, and the bad bacteria will have the opportunity to be retained for
further search. The probability function for the PD is

P (X = k) =
λk

k!
e−λ, k = 0, 1, 2 · · · (7)

where k is a random number, λ is the mean and variance of the PD. After
experiments, when λ takes 25, the algorithm performs better.

4 Application of Improved Algorithm in Nurse
Scheduling Problem

4.1 Problem Description

NSP refers to scheduling a specific group of nurses within a given scheduling
period. The scheduling of nurses should meet some constraints (such as hard
and soft constraints) and minimize the total salary of nurses [19].

The worksheet of nurse can be probably divided into three kinds: the
early shift (0a.m.–8a.m.), the day shift (8a.m.–4p.m.) and the night shift
(4p.m.–0p.m.). The wages are allocated by the level of nurses (Junior, Middle,
Senior). The objective function of the Nurse Scheduling Problem is provided as
follows [20]:

minf(x) =
nn∑

i=1

sk∑

j=1

ss∑

k=1

sd∑

d=1

xijkd · wjk + c ·
nn∑

i=1

sk∑

j=1

ss∑

k=1

sd∑

d=1

mjkd (8)

where, nn is the total number of nurses, sk is the grade, ss is the type of
shifts and sd is the period of scheduling. xijkd represents the i nurse belonging
to j level has k shift in the d day, wjk is the wage of nurse on the k shift at the
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j level and mjkd means the amount of unsatisfied shifts. And c is the penalty
coefficient, whose value is 1000.

Equations (9–11) are hard constraints of NSP and Eq. 12 is the soft con-
straint:

∑

k=1

Xijkd ≤ 1 (9)

if Xi,j,3,d = 1, then Xi,j,3,d+1 = 0 (10)

lp ≤
sd∑

d=1

ss∑

k=1

Xijkd ≤ up (11)

mijkd > 0 (12)

Equation (9) means that each nurse can have no more than one shift per day.
Equation (10) represents each nurse cannot be on consecutive shifts within two
days. Equation (11) presents that the working hour of nurses cannot exceed the
lower or upper limit in a scheduling period. Equation (12) shows that the number
of nurses on one shift is no less than the actual demand.

5 Experment Results and Discussions

This section illustrates the PDBFO’s performance and comparisons among the
proposed PDBFO and the other BFOs, the GA [20], the HCO [21] and the
PSO [22]. In this experiment, for above algorithms, the running times is 30,
the swarm size is 50, 10000 is the maximum iterations and the dimension of
the search space is 30. Specifically, as for GA, the crossover probability is 0.8
and the mutation probability is 0.1. While for BFO methods, the number of

Table 1. Function characteristics

Function Name Dimensions Domain of definition

f1 Ackley 30 [−32.768, 32.768]

f2 Levy 30 [−10, 10]

f3 Powell 30 [−4, 5]

f4 Sphere 30 [−5.12, 5.12]

f5 Sum of powers 30 [−1, 1]

f6 Zakharov 30 [−5, 10]

f7 Dixon-price 30 [−500, 500]

f8 Griewank 30 [−600, 600]

f9 Rotated hyper 30 [−65.536, 65.536]

f10 Rastrigin 30 [−5.12, 5.12]

f11 Sum squares 30 [−10, 10]
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swimming, chemotaxis, reproduction and elimination-dispersal are respectively
Ns = 4, Nc = 1000, Nre = 5 and Ned = 2. In addition, in PDBFO, the λ in
Eq. (7) is 25 and the F0 in Eq. (4) is 0.4. While for PSO, the parameter setting is
c1 = c2 = 1.5, w = 0.8. More parameters settings of HCO is: the maximum flow
times is 3, the evaporation and rainfall probability is 0.2. We have selected eleven
well-known benchmark functions [23]. Table 1 summarizes the search scope of all
functions.

5.1 Experiment Results on Benchmark Functions

Table 2 provides the average results and the variances on benchmark functions
over 30 runs. For the sake of observation, the results are treated with logarithms.
Noted that the mean of minimum values and the variance of each group have
been bolded to highlight the best performing algorithm.

From Table 2 and convergence Fig. 1, it can be observed that the PDBFO
outperforms other algorithms. For one thing, PDBFO obtains high quality mean
of results in comparison to those of other algorithms in most cases. Although
PDBFO performs worse than GA in f2, it still has the edge over its counterparts.
When others BFOs, GA, PSO and HCO find a solution that is close to the
optimal value, they get stuck in poor local optimal and have trouble getting
rid of it, while PDBFO can improved its solutions steadily (such as in f3, f4
and f6). Because differential operators and Poisson distribution strategies keep
PDBFO from falling into poor local optima. Consequently, the proposed PDBFO

Table 2. The numerical results on benchmark functions f1 through f11

Function Result PDBFO BFO BFONIW BFOLIW PSO GA HCO

f1 Variance 1.01E−04 1.82E−03 1.84E+00 4.18E−04 1.83E−01 1.52E−04 2.57E+00

Mean 1.00E−02 1.96E+01 1.70E+01 1.90E+01 1.13E+01 9.82E−02 1.60E+00

f2 Variance 2.08E−02 2.57E+00 9.70E−01 2.19E+00 6.59E+01 9.78E−07 2.13E−01

Mean 1.44E−01 4.82E+01 2.69E+01 3.96E+01 8.01E+01 4.94E−03 4.61E−01

f3 Variance 1.09E−05 2.12E+00 1.42E−02 1.44E−02 4.86E+04 1.05E−03 4.10E+01

Mean 3.30E−03 6.87E+00 1.72E+00 4.03E−01 4.12E+02 1.22E−01 6.41E+00

f4 Variance 3.16E−08 1.45E−03 7.90E−08 6.78E−13 1.83E+00 3.37E−05 7.76E−04

Mean 1.78E−04 3.56E−01 6.71E−03 4.13E−03 6.72E+00 1.85E−02 2.79E−02

f5 Variance 1.11E−16 6.56E−08 4.82E−02 1.27E−12 8.34E−11 5.60E−14 4.20E−16

Mean 2.41E−09 5.21E−04 2.20E−01 6.68E−06 4.78E−05 2.65E−07 4.71E−09

f6 Variance 4.41E−06 9.81E+00 1.85E+04 6.75E+02 7.55E+02 1.01E+05 2.50E+03

Mean 2.10E−03 2.07E+02 5.27E+02 3.25E+02 7.19E+01 4.42E+02 5.00E+01

f7 Variance 2.28E−01 7.99E−03 1.09E−05 2.42E−05 6.91E+08 1.02E+00 1.01E+06

Mean 4.78E−01 9.13E+00 8.41E−01 7.58E−01 3.95E+04 2.27E+00 1.00E+03

f8 Variance 8.77E−11 1.36E−05 4.22E−09 1.71E−10 4.06E−03 1.41E−10 2.29E−03

Mean 2.96E−05 2.77E−02 4.97E−04 3.70E−04 9.33E−01 4.18E−04 4.79E−02

f9 Variance 1.83E−05 3.08E−01 8.25E−04 2.80E−05 1.33E+04 1.94E−04 3.97E+00

Mean 1.35E−02 6.42E+00 1.25E−01 9.22E−02 8.27E+02 1.83E−01 1.99E+00

f10 Variance 2.19E−03 3.08E+00 1.53E+01 6.14E+00 2.28E+02 6.69E−02 3.92E+02

Mean 4.68E−02 1.86E+02 1.83E+02 1.31E+02 1.81E+02 2.31E+00 1.98E+01

f11 Variance 1.46E−05 5.33E−02 3.94E−04 3.53E−05 3.72E+04 2.96E−03 2.71E−01

Mean 3.83E−03 7.11E+00 1.38E−01 1.15E−01 6.88E+02 1.45E−01 5.21E−01
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has desirable global search capability and strong robustness. For another thing,
although the convergence speed of PDBFO is slower than GA (such as in f2
and f7) or PSO (such as in f9) in the early stage of some cases, PDBFO has a
satisfactory convergence speed in comparison to other BFOs.

Fig. 1. The convergence results on benchmark function

Furthermore, PDBFO also has excellent performance in terms of stability. As
can be seen from Table 2, in most cases, the variance given by PDBFO is much
smaller than the corresponding variance given by other algorithms, which reflects
that the PDBFO comes with very small volatility. Except that the variance
of PDBFO is greater than GA in f2, PDBFO shows sufficiently competitive
stability in the other ten benchmark function experiments.

Overall, the PDBFO maintains splendid global searching capability and sat-
isfactory convergence speed in most benchmark function experiments and hence
it is more competitive than other algorithms. In addition, the low variance of
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Fig. 2. The convergence results on the nurse scheduling problem

Table 3. The preferred schedule selected by PDBFO

Nurse number Sun. Mon. Tue. Wed. Thu. Fri. Sat.

1 A N R P N P R

2 P P A N R P R

3 A N N R P R R

4 N N R P R N P

5 N R A P P P R

6 A A A N R N R

7 R P R P A A N

8 R A N N R P R

9 A P P A A R A

10 P A P A N R R

11 P R P R P A N

12 P P R P N N R

13 A N N R A P N

14 N P P R A N R

15 N P P R A R N

16 R P N N R R P

17 N N R P P P A

18 A P P R A N R

19 A A A N P A A

20 N P N P P A A

A, P, N and R represent morning work, noon work, evening
work and rest respectively.
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experimental results computed by PDBFO indicates that it is capable of deliv-
ering stable results.

5.2 Experiments on Nurses Scheduling Problem

PDBFO is compared with other BFOs, PSO, GA and HCO on solving the Nurse
Scheduling Problem in this experiment. The schedule of 20 nurses for a week
will be presented after calculation. Equation (8) is the objective function. The
Function dimension is 30 dimension and the number of iterations is 5000.

As it is shown in Fig. 2, the proposed PDBFO has an edge over other algo-
rithms on the Nurse Scheduling Problem. PDBFO has a better searching capa-
bility and convergence speed. An efficient shifts roster is shown in Table 3 to meet
the needs of health care as well as improve the job satisfaction of nurses. The
combination of scientific and reasonable nurse scheduling model and PDBFO
can replace the low efficiency and low quality of manual scheduling scheme, con-
tributing to enhancing the availability and optimization of the scheduling shifts.
Due to the excellent search capability of PDBFO, an optimal scheduling scheme
is more likely to be realized.

6 Conclusion and Future Work

PDBFO algorithm is proposed to improve the performance of BFO. The con-
vergence speed is accelerated by introducing the change of segmentation step
size. The Differential and Poisson Distribution strategies are used to reduce the
problem of being trapped into local optimal. The benchmark function experi-
ment results prove that the PDBFO significantly can deliver solutions with good
quality and stability. Such an excellent performance demonstrates that PDBFO
can balance different nursing requirements efficiently, making it an outstanding
choice to solve the Nurse Scheduling Problem.

Due to the fact that PDBFO has shortcomings in the benchmark functions
experiments, PDBFO can be further improved. More efficient bacterial swim-
ming methods will be sought to improve the rate of convergence. Meanwhile,
the improvement direction of the replication process will also be taken into con-
sideration to improve the global optimization capability of the algorithm.
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