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Expression of PIK3CA mutant E545K in the mammary
gland induces heterogeneous tumors but is less potent than
mutant H1047R
DS Meyer1,4,5, S Koren1,4, C Leroy1,2, H Brinkhaus1, U Müller1, I Klebba1,6, M Müller2, RD Cardiff3 and M Bentires-Alj1

The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is
frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or
amplified in B30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most
common and result in a constitutively active enzyme with oncogenic capacity. PIK3CAH1047R was previously demonstrated to induce
tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CAE545K is sufficient to induce
mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of
PIK3CAE545K in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than
PIK3CAH1047R-expressing mice. Our results suggest that the helical domain mutant PIK3CAE545K is a less potent inducer of mammary
tumors due to less efficient activation of downstream Akt signaling.
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INTRODUCTION
The phosphoinositide 3-kinase (PI3K) pathway is a key regulator of
cell growth, proliferation, metabolism and survival and is often
found to be hyperactivated in human cancer.1,2 The most
common aberrations of the PI3K pathway include mutation
and/or amplification of PIK3CA,3–7 the gene encoding the
alpha catalytic subunit of the kinase (p110a), loss of expression
of the PTEN phosphatase that reverses PI3K action, acti-
vation downstream of oncogenic receptor tyrosine kinases and
mutation/amplification of Akt.1 Hyperactivation of the PI3K
pathway increases tumorigenicity by reducing cell death and
increasing cell proliferation, migration, invasion, metabolism and
angiogenesis.1,2 It also enhances resistance to chemotherapy.8

The majority of mutations in PIK3CA occur at two ‘hotspots’
within the kinase (H1047R) and helical domains (E542K and E545K)
of p110a.6,9 These mutations lead to a constitutively active
enzyme, transform cells in vitro, and enhance tumorigenicity in
xenograft models.10–13 Notably, different mechanisms underlie the
gain-of-function activities of helical- and kinase domain mutants.
While PIK3CAE545K is independent of binding to the adaptor
molecule p85 but requires interaction with Ras-GTP, the
PIK3CAH1047R mutant is highly dependent on p85 for its
oncogenic capacity but independent of Ras-GTP.14

PIK3CA gain-of-function mutations are found in B30% of human
breast cancers3,6,15–17 and most likely occur at an early stage of
breast carcinoma development, as suggested by the similar

mutation frequencies in PIK3CA found in pure ductal carcinoma
in situ, ductal carcinoma in situ adjacent to invasive ductal
carcinoma, and invasive ductal carcinoma.18 Evaluation of the
clinical outcome of genomic alterations in PIK3CA has produced
contradictory results.15,19,20 However, these studies showed that
alterations in different exons of PIK3CA have varying impacts on
tumor development and progression and, therefore, differ in
prognostic value. For example, both mutations are associated with
lower grade and hormone receptor-positive tumors, but
PIK3CAH1047R mutants are strongly associated with lymph-node
negativity and PIK3CAE545K mutants with older age at diagnosis,
indicating the different oncogenic potentials of the H1047R and
E545K mutations.19 This is further supported by the different
frequencies of E545K (B6%) and H1047R (B15%) mutations in
breast cancer.17,21 In vivo transplantation assays have demonstrated
PIK3CAH1047R to be more potent in inducing tumors10 but another
study found no trend,12 and the exact impact of these mutations
on breast cancer has remained controversial.

We and others have reported that expression of PIK3CAH1047R in
the mammary gland induces heterogeneous tumors.22–25 To
determine which PIK3CA mutant shows higher oncogenic
activity in vivo, we generated a novel conditional mouse model
expressing PIK3CAE545K. We have demonstrated that PIK3CAE545K

induces heterogeneous mammary tumors that express basal and
luminal markers but is a less potent oncogene in vivo than
PIK3CAH1047R.
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RESULTS AND DISCUSSION
Expression of PIK3CAE545K but not wild-type PIK3CA induces
mammary tumors
We and others have shown that PIK3CAH1047R induces mouse
mammary carcinomas.22–25 To test whether overexpression of
wild-type human PIK3CA (PIK3CAwt) or PIK3CAE545K also induces
mammary tumors, we generated novel transgenic mice that
conditionally express PIK3CAwt or PIK3CAE545K (Figure 1a). To
achieve equivalent transgene expression, we integrated PIK3CAwt

or PIK3CAE545K into the ROSA26 locus using recombinase-
mediated cassette exchange.26 Correct integration of the target
cassettes was confirmed in the resulting PIK3CAwt and PIK3CAE545K

lines (Figure 1b, left). PIK3CAwt and PIK3CAE545K animals were then
crossed to WAPiCre mice in which expression of recombinase Cre
is controlled by the whey acidic protein (WAP) promoter, which is
mainly active in secretory mammary epithelial cells, and expres-
sion of the transgenes confirmed (Figure 1b, right).27–30 This
enabled us to directly compare the kinetics of tumor onset in
PIK3CAwt and PIK3CAE545K mice, and the previously reported
WAPiCre PIK3CAH1047R mice.22

The resulting bi-transgenic WAPiCre PIK3CAwt and WAPiCre
PIK3CAE545K female mice were impregnated to achieve maximal
Cre-mediated recombination and the pups removed 1 day after
delivery. All WAPiCre PIK3CAE545K mice developed mammary tumors
on average 80 (±10) days after delivery, whereas parous WAPiCre
PIK3CAwt mice did not form tumors within 520 days (Figure 1c). This
indicates that overexpression of wild-type PIK3CA itself is insufficient

to induce mammary tumors. Of note, the latency to tumor onset
in WAPiCre PIK3CAE545K animals was significantly longer than that
observed previously for WAPiCre PIK3CAH1047R mice (36 (±4.9)
days).22 We also crossed PIK3CAE545K and PIK3CAH1047R lines to
CAGs-CreERT2 mice that express a tamoxifen-inducible Cre/
estrogen receptor (ER) fusion protein under the control of a
modified b-actin promoter; this results in the expression of Cre-ER in
virtually all cells. Unexpectedly, bi-transgenic CAGs-Cre PIK3CAE545K

and PIK3CAH1047R mice died by the age of 4 months even when no
tamoxifen was administered. Although we were unable to identify
the exact cause of death, we concluded that leakiness of the CAGs-
CreERT2 system caused premature and deleterious PIK3CAE545K or
PIK3CAH1047R expression in various tissues of these mice (DSM and
MB-A, unpublished observations).

To compare the tumor-initiating potential of the two different
PIK3CA mutants, we then transplanted pieces of mammary gland
tissue from CAGs-CreERT2 PIK3CAE545K or PIK3CAH1047R donor mice
previously treated with tamoxifen into cleared fat pads of Balb/c
mice. The mammary glands reconstituted by either CAGs-CreERT2
PIK3CAE545K or PIK3CAH1047R-derived epithelium were hyperplastic
(data not shown) and eventually formed tumors after 229 (±17,
PIK3CAH1047R) and 336 days (±20, PIK3CAE545K), respectively
(Figure 1d). As observed in the WAPiCre mouse cohorts,
PIK3CAE545K was significantly less potent than PIK3CAH1047R in
the induction of mammary carcinomas, which is a possible
explanation for the lower frequency of E542K/E545K mutations in
human breast cancer.17,21
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Figure 1. Overexpression of PIK3CA mutant PIK3CAE545K but not PIK3CAwt induces mammary tumors. (a) Schematic of the constructs used for
generating transgenic mice conditionally expressing human wild-type and mutant 5’-terminally HA-tagged PIK3CA. Vectors were constructed in
which the PIK3CA cDNA is flanked by a floxed STOP cassette upstream and an IRES2-EGFP reporter element downstream. The transgene is driven
by a modified chicken b-actin (CAGs) promoter. The vector was introduced into a modified Rosa26 locus of Balb/c mouse embryonic stem cells
by recombinase-mediated cassette exchange. (b) Southern blot of genomic DNA from PIK3CAE545K and PIK3CAwt transgenic mice (left) and
immunoblots of lysates from mammary glands isolated 12h after onset of involution from WAPiCre control, WAPiCre PIK3CAwt and WAPiCre
PIK3CAE545K mice (each n¼ 3) probed for HA. Erk2 levels were used as a control for equal loading (right). (c) Kaplan–Meier plot showing tumor
onset in parous WAPiCre PIK3CAwt (n¼ 8) and WAPiCre E545K (n¼ 16) mice. The mice were impregnated and the pups weaned 1 day after
delivery. WAPiCre PIK3CAwt mice did not develop palpable tumors within 520 days whereas mice expressing PIK3CAE545K developed tumors on
average 80 (±10) days after delivery. (d) Seven-week-old CAGs-CreERT2 PIK3CAE545K and PIK3CAH1047R donor mice were treated with tamoxifen
on 3 consecutive days for transgene induction and fragments of glands were transplanted into cleared fat pads of three-week-old Balb/c
recipient mice. Kaplan–Meier curves show tumor onset in recipient Balb/c mice transplanted with CAGs-CreERT2 PIK3CAE545K- (n¼ 10) or CAGS-
CreERT2 PIK3CAH1047R-derived mammary glands (n¼ 10). Balb/c mice developed palpable tumors on average 336 (±20) days (PIK3CAE545K) or 229
(±17) days (PIK3CAH1047R) after transplantation; P¼ 0.0033.
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WAPiCre PIK3CAE545K-evoked mammary tumors are heterogeneous
Examination of 30 WAPiCre PIK3CAE545K-derived tumors identified
6 distinct histotypes. By far the most prevalent tumor pheno-
type was adenosquamous carcinoma (60%) (Figures 2a and b),
which was also the most common histotype formed by
WAPiCre PIK3CAH1047R mice (54.6%).22 Adenocarcinomas (23.3%)
and carcinomas (6.7%) were also observed albeit at lower
frequencies (Figures 2a and b). An adenocarcinoma with
squamous metaplasia (3.3%), an adenomyoepithelioma (3.3%)
and spindle cell tumor (3.3%) were observed in one tumor only
(Figures 2a and b). The low frequency of adenomyoepithelioma in
WAPiCre PIK3CAE545K mice is in stark contrast to the WAPiCre
PIK3CAH1047R animals, in which adenomyoepitheliomas accounted
for B23% of the tumors.22 A further discrepancy between mice
expressing PIK3CAE545K or PIK3CAH1047R was the complete absence
of diffuse and invasive adenocarcinomatosis in WAPiCre
PIK3CAE545K-derived glands, a histological feature that was

displayed by all tumor-surrounding tissue in WAPiCre
PIK3CAH1047R mice.22

The PIK3CAE545K-induced tumors were stained for luminal
cytokeratin 18 (K18), basal/myoepithelial cytokeratin 14 (K14),
and myoepithelial a-smooth muscle actin (a-SMA) markers. The
most frequent histotypes, adenosquamous carcinoma and ade-
nocarcinoma, were positive for both luminal K18 and basal K14
(Figure 2c). In tumors of the adenosquamous carcinoma type, the
relative tumor areas positive for K18 and K14 were B35% and
B39%, respectively (Figure 2d) and largely negative for a-SMA
(o1%) (Figure 2d). WAPiCre PIK3CAE545K-evoked adenosquamous
carcinomas also stained positive for ER (B8% of the tumor cells)
and displayed a high proportion of Ki-67-positive cells (B35%)
(Figures 2c and d). The relative tumor areas and cells positive for
K14, K18, a-SMA, ER and Ki-67 were very similar to those observed
in PIK3CAH1047R-driven adenosquamous carcinomas.22 However,
the number of apoptotic cells staining positively for cleaved
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Figure 2. WAPiCre PIK3CAE545K-evoked tumors are heterogeneous and express basal and luminal cytokeratins. (a) Diagram showing relative
abundance of adenosquamous carcinoma (60%, red), adenocarcinoma (23.3%, green), carcinoma (6.7%, purple), adenocarcinoma with
squamous metaplasia (3.3%, dark blue), adenomyoepithelioma (3.3%, light blue) and spindle cell tumor (3.3%, orange) among tumors (n ¼ 30)
from parous WAPiCre PIK3CAE545K mice. (b) H&E-stained tumor sections of the indicated histotypes from parous WAPiCre PIK3CAE545K mice. The
top-left image shows a representative adenosquamous carcinoma with glands and squamous features. The top-right image shows an
adenocarcinoma; the arrows indicate the gland lumen. The glands are lined by malignant epithelium. The center-left image shows an
adenocarcinoma with squamous metaplasia; the asterisk shows an area with glands and the arrow indicates areas of metaplasia. The center-
right image shows a spindle cell tumor with possible osseous metaplasia, intense pink stroma and large cells in the interstices. The bottom
image shows an adenomyoepithelioma. Scale bar¼ 100 mm. (c) Immunostaining for K14, K18, a-SMA, ER, Ki67 and cleaved caspase-3. Scale
bars¼ 50 mm. (d) Quantification of immunostaining for K18, K14, a-SMA, ER, Ki67 and cleaved caspase-3 isolated from parous WAPiCre
PIK3CAE545K-evoked adenosquamous carcinomas (n¼ 8). The data are presented as percentages of positive tumor area and tumor cells.
Histological features of WAPiCre PIK3CAE545K-evoked adenosquamous carcinomas are compared with those of WAPiCre PIK3CAH1047R-evoked
adenosquamous carcinomas previously reported.22
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caspase-3 was higher in PIK3CA PIK3CAE545K-evoked adeno-
squamous carcinomas (B7%) (Figures 2c and d) than those
derived from WAPiCre H1047R mice (B1%),22 indicating that
PIK3CAH1047R is a more potent suppressor of apoptosis than
PIK3CAE545K in mammary tumors.

In summary, both PIK3CAE545K and PIK3CAH1047R produced K14/
K18-positive tumors of various histotypes, with the adenosqua-
mous carcinoma type being the most common in both transgenic
models. However, differences between the mouse models
included low abundance of adenomyoepitheliomas and the
absence of adenocarcinomatosis in WAPiCre PIK3CAE545K mice.

The variations in tumor histotypes and the discrepancy in tumor
latency in WAPiCre PIK3CAE545K and PIK3CAH1047R mice suggest
that different mechanisms underlie tumor initiation by these
mutants. To gain a mechanistic insight that might explain these
differences, we investigated whether pregnancy accelerates tumor
onset in WAPiCre PIK3CAE545K as it does in WAPiCre PIK3CAH1047R

mice.22 Pregnancy accelerated tumor onset in WAPiCre
PIK3CAE545K mice, reducing latency from 228±15 days in
nulliparous to 165±10 days in parous mice (Figure 3a). Interest-
ingly, pregnancy appeared to accentuate the difference in tumor

latency between WAPiCre PIK3CAE545K and PIK3CAH1047R mice,
shown by 32 days difference in nulliparous vs 48 days difference
in parous mice (Figure 3a).22 We showed previously that a
pregnancy-induced delay in mammary gland involution accounts,
at least in part, for accelerated tumor kinetics in parous vs
nulliparous PIK3CAH1047R mice.22 Thus, we hypothesized here that
the longer tumor latency of parous WAPiCre PIK3CAE545K

compared with parous WAPiCre PIK3CAH1047R animals is the
result of a less-pronounced involution delay. Comparison of
WAPiCre PIK3CAE545K and WAPiCre PIK3CAH1047R glands 15 days
after weaning revealed a dramatic delay in involution compared
with control animals (Figure 3b). The relative gland area occupied
by epithelial cells was the same in WAPiCre PIK3CAE545K and
PIK3CAH1047R mice and significantly larger than in WAPiCre control
glands (Figure 3c). Similarly, there was no difference in the
number of apoptotic or proliferating cells in glands expressing
either of the PIK3CA mutations (Figure 3d). Interestingly, glands
from WAPiCre PIK3CAwt mice, which did not form tumors,
displayed normal involution and numbers of apoptotic and
proliferating cells similar to the controls (Figure 3), indicating that
the delay in involution is caused by mutant PIK3CA rather than by
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Figure 3. Pregnancy accelerates PIK3CA-evoked tumorigenesis and PIK3CA mutants delay mammary gland involution. (a) Kaplan–Meier curves
showing tumor onset in parous WAPiCre PIK3CAE545K (n¼ 16) and nulliparous WAPiCre PIK3CAE545K (n¼ 6) animals. Parous WAPiCre PIK3CAE545K

mice developed palpable tumors on average after 165 (±10) days whereas nulliparous mice developed tumors on average after 228 (±15)
days (PIK3CAE545K); P¼ 0.0023. (b) Representative images of whole mount (top panels), magnification of whole mount (center panels) and H&E
(lower panels) staining of involuting glands from WAPiCre control, WAPiCre PIK3CAwt, WAPiCre PIK3CAE545K and WAPiCre PIK3CAH1047R mice as
indicated. The glands were isolated 15 days after removal of the pups. Scale bar¼ 1 cm (whole mounts). Scale bar¼ 100 mm (H&E sections).
(c) Bar graph showing relative epithelium to total gland area of involution at day 15 in whole mounts prepared from WAPiCre control (n¼ 3),
WAPiCre PIK3CAwt (n¼ 4), WAPiCre PIK3CAE545K (n¼ 4) and WAPiCre PIK3CAH1047R (n¼ 2). Means±s.d. are shown; P¼ 0.001 (WAPiCre vs
WAPiCre PIK3CAE545K); P¼ 0.01 (WAPiCre vs WAPiCre PIK3CAH1047R); P¼ 0.46 (WAPiCre PIK3CAE545K vs WAPiCre PIK3CAH1047R).
(d) Immunostaining for Ki67 and cleaved caspase-3 of day 15 involuting glands from WAPiCre control, WAPiCre PIK3CAE545K and
WAPiCreH1047R mice (upper panels). Scale bar¼ 50mm. Quantification of Ki67- and cleaved caspase-3-positive cells (lower panels). Means±s.e.m.
are shown. *For Ki67-positive cells: P¼ 2.18� 10� 5 (WAPiCre vs WAPiCre PIK3CAE545K), P¼ 2.90� 10� 7 (WAPiCre vs WAPiCre PIK3CAH1047R).
For cleaved caspase-3-positive cells: P¼ 6.55� 10� 3 (WAPiCre vs WAPiCre PIK3CAE545K). NS¼not significant.
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overexpression of the transgene. In summary, PIK3CAE545K and
PIK3CAH1047R transgene expression caused a dramatic but
comparable delay in involution and, therefore, involution does
not explain the different tumor kinetics observed in parous vs
nulliparous mice expressing these mutations.

Comparison of lysates from WAPiCre PIK3CAE545K- and WAPiCre
PIK3CAH1047R-derived mammary glands and tumors showed
equal expression of p110a in tumors from both transgenic
models (Figure 4a). Despite the enhanced oncogenic potential
of the PIK3CAH1047R mutant, no differences in activation of the
PI3K/Akt or the Erk pathways were observed in the tumors
(Figure 4a). Similarly, a more detailed analysis of Akt1 and Akt2
isoform-specific phosphorylation revealed no difference between
PIK3CAE545K- and WAPiCre PIK3CAH1047R-induced signaling
(Figure 4b). Conceivably, by the time mammary tumors were
established, numerous secondary mutations had resulted in a
tumor heterogeneity that compromises the detection of
potentially subtle differences in oncogenic signaling induced by
either PIK3CA mutant. To circumvent this, we investigated
molecular signaling events in mutant PIK3CA-expressing epithelial
cells at an early pre-neoplastic stage. Protein lysates from
mammary glands isolated 12 h after the onset of involution
revealed increased activation of Akt and decreased phosphoryla-
tion of the signal transducer and activator of transcription (STAT) 3
in mutant relative to control glands. Notably, both hyperactivation
of Akt and hypoactivation of STAT3 were more pronounced in
PIK3CAH1047R than in PIK3CAE545K glands (for pAkt P¼ 2.5� 10� 4;
for pSTAT3 P¼ 0.047) (Figure 4c).

In summary, we found that overexpression of PIK3CAE545K in a
transgenic mouse model potently induces heterogeneous mammary
tumors whereas overexpression of wild-type PIK3CA does not.
Notably, although PIK3CAE545K evokes tumors with 100% penetrance
it is a weaker inducer of mammary tumors than PIK3CAH1047R in two
independent mouse models in which mutant PIK3CA is either driven
by the WAP or by the CAGs promoter. This may explain the lower
frequency of helical vs kinase domain mutations in human breast
cancer.13 We found differences in Akt and STAT3 activation in pre-
neoplastic mammary glands from PIK3CAE545K and PIK3CAH1047R

transgenic mice that may explain the longer tumor latency observed
in WAPiCre PIK3CAE545K compared with WAPiCre PIK3CAH1047R mice.

The novel transgenic mouse models reported here provide
excellent tools to further dissect the activities of different PIK3CA
mutants in tumor initiation in vivo and to investigate drug responses
to the ever-increasing number of PI3K pathway inhibitors.

MATERIALS AND METHODS
Transgenic mice
We constructed a vector with a transcriptional STOP sequence flanked by
loxP sites upstream of the 5’-terminally HA-tagged human PIK3CA cDNA
(Addgene, Cambridge, MA, USA) and an IRES2-EGFP reporter element
(pIRES2-EGFP vector; Clontech, Mountain View, CA, USA). The resulting
construct was introduced into the modified Rosa26 locus of Balb/c mouse
embryonic stem cells by recombinase-mediated cassette exchange as
described earlier.22 Chimeric mice were backcrossed to Balb/c mice and
transgenic mice identified by genotyping.22
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Figure 4. WAPiCre PIK3CAE545K involuting glands show reduced pAkt and increased pSTAT3 compared with WAPiCre PIK3CAH1047R at 12 h of
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involution from WAPiCre control, WAPiCre PIK3CAH1047R and WAPiCre PIK3CAE545K mice (each n¼ 3) probed for p110a, pAkt, Akt, pSTAT3, STAT3
and ERK2 as a loading control (upper panels). Bar graphs showing relative amounts of pAkt (normalized to total Akt), pSTAT3 (normalized to
total STAT3) and p110a (normalized to ERK2) in lysates of WAPiCre control, WAPiCre PIK3CAH1047R and WAPiCre PIK3CAE545K mammary glands
(lower panels). *WAPiCre vs WAPiCre PIK3CAH1047R: For pAkt P¼ 3.8� 10� 5; for pSTAT3 P¼ 0.002; for p110a P¼ 0.007. WAPiCre vs WAPiCre
PIK3CAE545K: For pAkt P¼ 1.8� 10� 4; for pSTAT3 P¼ 0.02; for p110a P¼ 8.8� 10� 5. WAPiCre PIK3CAH1047R vs WAPiCre PIK3CAE545K: for pAkt
P¼ 2.5� 10� 4; for pSTAT3 P¼ 0.047; for p110a P¼ 0.7. NS¼not significant.
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Immunoblotting
Protein lysates were extracted from inguinal mammary glands or tumors
using LB buffer (50 mM Tris–HCl pH8, 150 mM NaCl, 1% NP-40) supplemented
with 0.5 mM sodium orthovanadate. Anti-p110a, anti-pAKT (Ser473), anti-Akt,
anti-pERK1/2 (Thr202/Tyr204), anti-ERK1/2, anti-pS6 (Ser235/236), anti-S6, anti-
Akt1, anti-Akt2, anti-pSTAT3 (Tyr705) and anti-STAT3 antibodies were
purchased from Cell Signaling Technology, Danvers, MA, USA.

Immunohistochemistry
The following antibodies were used: K14 (Thermo Scientific, , Waltham, MA,
USA, RB-9020, 1:100), K18 (Fitzgerald, Acton, MA, USA, #GP11, 1 : 200), ER
(Santa Cruz, , Dallas, TX, USA, SC-542, 1:1000), a-SMA (Thermo Scientific, RB-
9010, 1:500), cleaved caspase-3 (Cell Signaling, #9661, 1:100) Ki-67 (Thermo
Scientific, RB-9106, 1:50).

Southern blotting
Genomic DNA from mouse tails was digested with 8 U of AvrII enzyme (New
England BioLabs (NEB), Ipswich, MA, USA) and separated on a 1% agarose
gel. A DIG-labeled DNA probe targeting the neomycin resistance cassette
was amplified using the PCR DIG Probe Synthesis Kit (Roche, Basel,
Switzerland) and the primers 5’-ATGGGATCGGCCATTGAACAAGAT-3’ and 5’-
CGGCCATTTTCCACCATGATAT-3’.
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