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Abstract: The applicability of the Clapeyron Equation to the volume phase transition of cylindrical
poly(N-isopropylacrylamide)-based gels under external force is reviewed. Firstly, the equilibrium
conditions for the gels under tension are shown, and then we demonstrate that the Clapeyron
Equation can be applied to the volume phase transition of polymer gels to give the transition entropy
or the transition enthalpy. The transition enthalpy at the volume phase transition obtained from
the Clapeyron Equation is compared with that from the calorimetry. A coefficient of performance,
or work efficiency, for a gel actuator driven by the volume phase transition is also defined. How the
work efficiency depends on applied force is shown based on a simple mechanical model. It is also
shown that the force dependence of transition temperature is closely related to the efficiency curve.
Experimental results are compared with the theoretical prediction.

Keywords: stimuli responsive gel; volume phase transition; Clapeyron equation; coefficient of
performance; work efficiency; gel actuator; transition entropy; transition enthalpy

1. Introduction

More than forty years have passed since the discovery of volume phase transition in actual polymer
gels [1], and now the volume phase transition appears to be familiar for stimuli-responsive gels [1–16].
The phase transition occurs in a macroscopic scale, and is thus the matter of thermodynamics [1–12],
so this is often analyzed and discussed with the analogy of the phase transition of van der Waals
fluids [3,11,12], and thus “volume phase transition” was basically used to mean a discontinuous change
in volume (V) upon an infinitesimal change in a control variable [1–12]. For thermo-sensitive gels,
temperature (T) is used as the control variable. In principle, the volume phase transition belongs to the
category of first-order phase transition. There exist some cases that the plot of V against T becomes
continuous. Even in this situation, if the slope of curves (∂V/∂T) diverges at a certain temperature,
then the system is called to show the second-order phase transition [8,9]. When the slope of the curves
is not divergent, the curves show only a continuous change with a finite slope over an entire region.
The use of “transition” appeared to be avoided for these curves. In the early stage of research on the
volume phase transition, the attention was paid to the physical aspect of the phase transition [1–12],
but then the research spread over various fields of polymer science [13–15] and engineering, especially
in biomedical applications [16–22]. During this extending process, the meaning of the word “transition”
has changed such that the word is now used in a broader sense and thus confusedly [14,15,21,22]. In this
paper, we use the word “transition” in the original meaning, in principle, although curious behavior
such as the first-order phase transition has been observed for the volume phase transition [8,9].

When the phase transition occurs in the first-order manner, two gel phases coexist at the transition
point. Actually, it is well known that poly(N-isopropylacrylamide) (PNIPA)-based polymer gels
undergo the volume phase transition, and that the coexistence state clearly emerges for cylindrical gel
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specimens [3,5–22]. Interestingly, this coexistence is observed for long cylindrical gels but is not for gels
in the other geometries [5,8–10]. The long cylinder might be one of the ideal geometries for the volume
phase transition of polymer gels. Why the coexistence is limited to the specific geometry probably
comes from the fact that the volume phase transition is a phenomenon of solids, not fluids [11]. For the
phase transition of solids, the interface becomes rather thick and thus the effect of the interface cannot
be ignored. This may cause the curious behavior as the first-order phase transition; for example,
the Gibbs phase rule [23] is broken at the volume phase transition of gels [8,9]. Thus, the fact that the
volume phase transition is the phenomenon of solid also becomes important.

There are similarities between the volume phase transition of polymer gels and the liquid-gas
phase transition of the van der Waals fluids, but there also exist marked differences. For example,
the former is the phase transition of solids and the latter is that of fluids, as stated previously. In addition,
the surrounding solvent is indispensable to the volume phase transition [2–10,24], which means that
the phase structure is different between these systems. For the van der Waals fluids, V can be written as
a function of T and pressure (p), namely V = V(T, p) [23]. We can choose two variables, T and p. If we
settle T in advance, then V becomes a function of p at a fixed T. The transition state is the two phase-one
component system, and thus for the variance in the Gibbs phase rule (F), we have F = 1 at the transition
point, indicating that the pressure at the phase transition is automatically settled (by the Maxwell
construction) [6,23]. For electrically neutral gels, on the other hand, V can be written as a function of T
and the osmotic pressure (π), because the gels always coexist with the outside solvent: V = V (T, π).
The equilibration condition π = 0 consumes a degree of freedom in F. Because the coexistence state at
the phase transition is the two component-three phase system and thus F = 1 at the transition point,
which is eventually identical to that for the van der Waals fluids but is quite apparent. No degree of
freedom is also left for the transition temperature for the volume phase transition [8,9]. In the Tanaka
theory [3,25], which is made up to describe the volume phase transition of ionic gels based on the
Flory–Huggins expression for the osmotic pressure [26–28], the number density of counter ions (φion)
is introduced as an additional degree of freedom: In the V-T curves of the gels φion acts as T in the P-V
curves of the van der Waals fluids. However, this control variable becomes meaningful only when
various gels differing in φion are prepared and examined. Potentially, there exist several candidates of
the additional control variables other than φion, and one of them is the mechanical force (f ; positive for
tension). It is reported for the PNIPA-based gels in solvent that f actually works as a control variable
under π = 0 [8–10,12,29,30]. This comes from the fact that gels are solid and thus the mechanical force
is applicable. It is important to recall that the volume phase transition occurs three-dimensionally or
isotropically in principle while the deformation by external force occurs anisotropically. This difference
affects the phase transition behavior of gels under tension.

In this mini-review, applicability of the Clapeyron Equation to the volume phase transition of
PNIPA-based gels under external force (f as a vectorial quantity and f = |f |) is reviewed, although this
may be limited to the cylindrical geometry at present. Firstly, the equilibrium conditions for the gels
under tension are shown and why the f dependence curve of transition temperature builds up the phase
boundary is also shown. Then, we demonstrate that the Clapeyron equation, which is the prototype of
the Clausius–Clapeyron equation [23], is applicable to the volume phase transition of polymer gels and
gives the transition entropy (∆S) or the transition enthalpy (∆H). Although ∆H at the volume phase
transition has been obtained by calorimetry [7,12,31–34], the Clapeyron Equation offers a new method
to estimate ∆H at the phase transition. Finally, a coefficient of performance (i.e., work efficiency) for
gel actuator driven by the volume phase transition (c) is defined and how c changes with f is discussed
based on the rubber elasticity theory [35,36]. The PNIPA-based polymer gels were intended to apply
to a soft actuator. Although this application is now recognized to be non-realistic mainly due to slow
response speed [37,38], we think that c is a very important parameter because c determines how the
transition temperature moves with f. In the final section, comparison with experimental data is made.
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2. Equilibrium Conditions for Coexistence of Two Gel Phases in Solvent

Suppose that polymer gel is electrically neutral and are made up by chemical crosslinks. When
the gel coexists with the outside solvent under tension, the free energy (G) of the gel is defined
by G = U − TS − f ·l, where U, S and l are the internal energy, the entropy, and the position vector,
respectively. If G is measured from a reference state where the polymer and the solvent are isolated,
then G can be written as G = np(µp − µp

0) + ns(µs − µs
0), where np and ns are respectively the numbers

of polymer strand and the solvent molecules in the gel, and µp and µs are respectively the chemical
potentials of polymer strand and solvent, µp

0 and µs
0 being those of polymer strand in the pure

network and of the pure solvent, respectively. It should be noticed here that np is kept constant.
Figure 1 schematically shows the coexistence state for a cylindrical gel in solvent under tension, where
the two gel-gel interfaces are assumed be so thin that the free energy of the interfaces is negligible.
For the cylindrical gels, the coexistence emerges in ABA morphology probably due to an end effect of
the geometry. Both A domains at the ends are believed to be identical, and thus the coexistence state in
the gel stays at a tri-phasic equilibrium because the pure solvent phase additionally exists outside the
gel. We designate these two gel phases as Phase I and Phase II, as shown in the figure. Because no
interfacial energy exists by the assumption, G in the coexistence state can be written as [24]

G
(
T, f, nI

p, nII
p

)
=

(
µI

p − µ
0
p

)
nI

p +
(
µII

p − µ
0
p

)
nII

p +
(
µI

s − µ
0
s

)
nI

s +
(
µII

s − µ
0
s

)
nII

s (1)

where the superscripts I and II stand for Phases I and II, respectively. On heating, Phase I corresponds
to the collapsed phase and Phase II to the swollen phase, but the situation is inverted on cooling.
Because the variation of G (δG) given by

δG =
(
µI

p − µ
II
p

)
δnI

p +
(
µI

s − µ
0
s

)
δnI

s +
(
µII

s − µ
0
s

)
δnII

s (2)

must be zero at equilibrium, we have
µI

s = µII
s = µ0

s (3a)

µI
p = µII

p (3b)

where δ(np
I + np

II) = 0 is used [24]. Equation (3a) expresses the condition for the chemical potential for
solvent, and is satisfied as long as the equilibrium swelling is attained. Equation (3b) determines the
coexistence condition for the networks in the gel phases.
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2.1. Clapeyron Equation

By applying Equation (3b) to the point (T, f ) and the other point in the vicinity (T + dT, f + df ),
we have [24]

∂
(
µI

p − µ
II
p

)
∂T

dT +
∂
(
µI

p − µ
II
p

)
∂f

· df = 0 (4a)

The physical meaning of Equation (4a) is not so clear as it is because f and l are basically defined
for the bulk gel, but this can also be written as [24]

∂∆G
∂T

dT +
∂∆G
∂f
· df = 0 (4b)

if we recall that G is given by ∆G = GI
− GII, and GI = np(µp

I
− µp

0) and GII = np(µp
II
− µp

0) at swelling
equilibrium (see Equation (1)). Thus, we have

∆SdT + ∆l · df = 0 (4c)

where ∆S = SI
− SII and ∆l = lI

− lII because (∂Gi/∂T) = −Si and (∂Gi/∂f ) = −li (i = I, II) [24].
Equations (4a)–(4c) can be applied to ionic gels. Rearranging Equation (4c) leads to(

dT
d f

)
coex

= −
∆l
∆S

= −
T∆l
∆H

(5)

where df = |df | and ∆l = |∆l| [24]. The quantity ∆H in Equation (5) stands for the change in enthalpy by
the phase transition given by ∆H = T∆S. The subscript “coex” represents that the derivative should be
taken for the coexistence curve (i.e., phase boundary). Figure 2 schematically shows a phase diagram
of a gel showing the volume phase transition. It is important to notice that the phase boundary
corresponds to the f -dependence curve of the transition temperature. Once we obtain the phase
diagram and know ∆l at a given f, then we have ∆H from Equation (5). To compare the above transition
enthalpy with that obtained by other methods, ∆H at f = 0 (∆H0) given below is used.

∆H0 = −T0 lim
f→0

∆l( f )
(

dT
d f

)−1

coex
(6)
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Figure 2. Schematic representation of phase diagram on the force (f )-temperature (T) plane. PNIPA
based polymer gels show this type of phase diagram. The curve in the figure is the phase boundary
and also corresponds to the force dependence of the transition temperature.
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Here, T0 is the transition temperature at f = 0. The critical point for the volume phase transition
under tension corresponds to the point at ∆l = 0 on the boundary. When the discontinuity in length
remains even at the zero-force state (now we assume this situation), the critical point emerges under
compression (i.e., negative f state) in principle because ∆l is an increasing function of f in the small f
region, as will be shown later.

When the deformation by the external force f is small enough compared with that by the phase
transition, Equation (5) can be formally transformed into the conventional Clapeyron equation [12].
Letting p be an “average” pressure, p can be defined p = −Tr(σ)/3 with the stress tensor σ [39]. Here,
TrA stands for the sum of diagonal elements of the matrix A. For the uniaxial deformation, p is simply
given by p = −σ/3 with the elongational stress acting on the gel (σ). If we introduce the gel volume
(V) and the volume change by the phase transition (∆V), then f ∆l can be formally replaced by −p∆V
because ∆V � 3A∆l and p = −σ/3 = −f /3A with the force-acting area just before transition (A). In this
case, we have the following conventional form [12]:(

dp
dT

)
coes

=
∆S
∆V

=
∆H

T∆V
(7)

It should be noticed that the above transformation of variables is just formal. Actually, what is
kept constant during phase transition is not f, but p.

2.2. Efficiency of Work at the Volume Phase Transition

Figure 3 schematically shows the work at the phase transition from Phase I to Phase II of the gel
under a constant force f . Here, we define c by [24]

c ≡ −
∆W
∆H

= −
f ∆l
∆H

(8)

where −∆W is the work by gel and in our case ∆W = f ∆l. By combining Equations (5) and (8),
we have [24]

c =
f
T

(
dT
d f

)
coes

=

(
d ln T
d ln f

)
coes

(9)
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∆l through the collapsing process. Phase I and Phase II correspond to collapsed and swollen phases,
respectively, as is the case of Figure 1.
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If c depends only on f (i.e., c = c(f )), Equation (9) gives [40]

T( f ) = T0 exp

∫ f

0

c( f ′)
f ′

d f ′
 (10a)

This determines the phase boundary in the phase diagram to which the Clapeyron Equation is
applicable. When (T − T0)/T0 << 1, which must be satisfied in most cases, T is expressed by [40]

T( f ) � T0

1 +
∫ f

0

c( f ′)
f ′

d f ′
 (10b)

3. A Mechanical Model for the Volume Phase Transition

Here, we consider a mechanical model for the volume phase transition of cylindrical polymer
gel [40]. Firstly, we designate the length and the cross-sectional area without tension in the collapsed
state as lc0 and Ac0, respectively. Similarly, let ls0 and As0 be the length and the cross-sectional area
without tension in the swollen state, respectively. Because the volume phase transition without tension
occurs isotropically, we set

α =
ls0

lc0
, α2 =

As0

Ac0
(11)

where α is the linear swelling ratio at the phase transition and thus α > 1. These are depicted in Figure 4.
Note that the volume in the collapsed state without tension (Vc0) is given by Vc0 = lc0Ac0 and that in
the swollen state without tension (Vs0) is given by Vs0 = ls0As0, and thus Vs0/Vc0 = α3. When tension
(f in force) is applied to the gel, the gel is stretched. We describe this deformation (uniaxial elongation)
by using the stretch ratio as follows.

λc =
lc
lc0

, λs =
ls
ls0

(12)
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Here, lc and ls are the lengths in the collapsed and swollen states, respectively, and λc and λs
are the stretch ratios in the collapsed and swollen states, respectively. For simplicity, we assume here
the incompressibility for the uniaxial elongation in the both states, which gives lc0Ac0 = lcAc and
ls0As0 = lsAs with the cross-sectional area in the collapsed state (Ac) and that in the swollen state (As).
It is noticed that the incompressibility ignores the effects of tension-induced re-swelling of polymer
gels [41,42]. The true stresses in the collapsed and swollen states (σc and σs, respectively) are given by

σc =
f

Ac0
, σs =

f
As0

(13)

If we assume that σc and σs can be expressed by the classical theory of rubber elasticity [35,36],
then we have

σc = Gc
(
λ2

c − λ
−1
c

)
, σs = Gs

(
λ2

s − λ
−1
s

)
(14)

where Gc and Gs are the moduli in the collapsed and swollen states, respectively. For chemical gels
Gc and Gs are known to be related as Gc/Gs = α because the number of active chains is kept constant
before and after phase transition [28,35,36], but we set here the ratio Gc/Gs to be just a numerical
constant r (i.e., r = Gc/Gs) because we know that the physical crosslinks are introduced by the collapsing
transition [42,43]. Finally, from Equation (14), we have

r
(
λc −

1
λ2

c

)
= α2

(
λs −

1
λ2

s

)
(15)

and for the change in length by the phase transition ∆l defined by ∆l ≡ lc − ls is written as

∆l = ls0

(
λc

α
− λs

)
(16)

These give the exact solution of c as a function of λs and also the expression for T, but here we
examine how c and T vary with f with a simpler method.

When f is small, we can expect that λs � 1 and λc � 1 (Equation (12)). This gives ∆l � ls0{(1/α) − 1};
thus, ∆l becomes a negative constant because α > 1. In this f region, ∆H � ∆H0 (> 0) is also expected.
Therefore, c > 0 and c ∝ f (Equation (8)). On the other hand, in the large f region where λs >>1 and also
λc >>1, f ∝ λs. It is also shown that λc � (α2/r)λs (Equation (15)) and ∆l � ls0{(α/r) − 1}λs (Equation (16)).
Thus, c behaves as c ∝ f 2 if ∆H remains constant also in this f region. These two asymptotic relations in
both small and large f regions could give the following expression for c in the whole region of f.

c = a f 2 + b f (17)

Here, a and b are numerical constants. For b we know that b > 0 because b � ls0{1 − (1/α)}λs/∆H0.
Equations (10b) and (17) also give

∆T
T0

=
a
2

f 2 + b f (18)

where ∆T = T − T0. This determines the f dependence of T, but it should be recalled again that
this curve corresponds to the phase boundary between swollen and collapsed phases on the phase
diagram. When the physical crosslinks are introduced by the collapsing transition, the modulus in
the collapsed state is enhanced. This means that r > α, giving that ∆l < 0 and a > 0 in the large f
region because ∆l � ls0{(α/r) − 1}λs and the sign of a becomes identical to that of {1 − (α/r)} if ∆H > 0.
However, the transition temperature vs f plots for real gels are convex in shape (as will be shown later
in Figure 6a in the next section, for example). This suggests that a < 0 (see Equation (18)) for the real
gels. Although we do not know exactly why a becomes negative, the inequality between r and α is
essentially determined by the properties at small f but a is affected basically by the properties at large
f. Thus, in the collapsed state a marked strain softening at large f may occur to give the negative a.
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The convex curve also suggests that ∆l > 0 in the large f region. The f dependence curves of c and ∆T
for a < 0 (Equations (17) and (18), respectively) are schematically shown in Figure 5. For the c curve,
c ≥ 0 for 0 ≤ f ≤ −b/a and c < 0 for f > −b/a, while ∆T increases with increasing f to show a maximum
at f = −b/a where c = 0, and then starts to decrease. The negative c occurs because a reduction in
cross-sectional area becomes dominant in this f region.
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4. Comparison with Experiments

To our knowledge, the first report on the experiment of how external force affects the volume
phase transition behavior of gels was made by Hirotsu and Onuki [29]. It was shown that the transition
temperature increases with increasing tension for PNIPA gel by experiment [29]. They also showed
that the shift of transition temperature by applied tension can be explained by a Flory-type free energy
if a concentration dependent interaction parameter between polymer and solvent (χ) is introduced.
Hereafter, we call the free energy expression the Hirotsu-Onuki (HO) model [29]. A more detailed
experiment under load was also made by Suzuki [10]. In Figure 6a his data on force-transition
temperature relation for lightly crosslinked PNIPA gels (1BIS gel according to his notation) are shown.
Although a hysteresis exists between the data on heating and cooling, the transition temperature
increases with increasing applied force (or weight, also f ), but in the large force region, saturation
behavior emerges. He also found that the shift factor by force can be well explained by the HO model
at small f but the saturation behavior at large f cannot be explained by the HO model [10]. Concerning
the shape of curve, the curve is not exactly parabolic but remains globally convex, as suggested by
Equation (18).
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Figure 6b shows the transition widths for the PNIPA gels as a function of applied force [10].
Here, d, l and V are the diameter, length, and volume of the cylindrical gel, respectively, and the
subscript 0 stands for the value just after preparation. The quantities, ∆(d/d0), ∆(l/l0) and ∆(V/V0)
are the transition widths of the normalized diameter d/d0, normalized length l/l0 and normalized
volume V/V0, respectively [10]. As can be seen from the figure, ∆(d/d0) increases with increasing f
and then levels off at about f = 40 mg. For the ∆(l/l0) curve, ∆(l/l0) moves on the same path as ∆(d/d0)
in the region of f < 40 mg. This is because the effect of f is negligible and thus the phase transition
occurs almost isotropically in the small f region. This means that in the small f region we can apply
Equation (7) to estimate the transition enthalpy. At about f = 40 mg, ∆(l/l0) turns to decrease and then
moves to zero, suggesting that the dimensional change at the phase transition becomes restricted in the
loaded direction as f increases. In addition, it is also reported for the other PNIPA-based gel systems
that the transition temperature tends to decrease, rather than levels off, with increasing f at very large
deformations, leading to negative c [30]. Concerning the change in volume, ∆(V/V0) monotonously
increases with increasing f, as is clear from the figure.

Figure 7a shows T dependence curves of V for a N-isopropylacrylamide and sodium acrylate
copolymer hydrogel in water [12]. Here, spherical metal weights (35 mg/each) were used for loading
and thus numerals in the “weight” column of the figure stand for the number of metal weights used.
In any cases, the discontinuous volume change, or volume phase transition, occurs, and the degree of
discontinuity remains almost constant. On the other hand, the transition temperature moves to the
higher temperature side as the number of weights (namely, f ) increases. In Figure 7b, the transition
temperature (Ttr in the figure) is plotted against the true stress at 30 ◦C (σ30), which was used as the
pressure measure instead of σ just before phase transition [12]. The three data points fall on a single line
and Ttr linearly increases with increasing σ30. The line in the figure corresponds to the phase boundary
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between collapsed (above the line) and swollen (below the line) phases, and the slope of the line gives
∆H for the volume phase transition (Equation (7) with p = −σ30/3). Table 1 summarizes Ttr, volume
change at the phase transition (∆V) and transition enthalpy (∆H) at three different values of f (in the
number of weights). Here, ∆V and ∆H are shown as the quantities per unit mass of polymer network.
As can be seen from the table, Ttr and ∆V remain constant regardless of f and ∆H is also kept almost
constant. In Table 2, the transition enthalpy per unit mass of polymer network by DSC (∆HDSC) and the
transition temperature determined with the onset point of the peak on the DSC thermogram (TDSC) are
listed together with the heating rate (v). Concerning TDSC, the values slightly increase with increasing
v and are higher than Ttr by 2~4 ◦C. On the other hand, ∆HDSC remains around 10 Jg−1 regardless of v,
which is much larger than ∆H. The difference in transition enthalpy comes from the effect of phase
separation, or dehydration of PNIPA chains, inside gels [31–34]. As is well known, PNIPA aqueous
solutions become opaque when the systems are heated up to high temperatures. This corresponds
to the phase separation originating from the fact that the PNIPA-water system has a lowest critical
solution temperature (LCST)-type phase diagram [44–47]. Although opaqueness or phase separation
also occurs in the PNIPA gels, the opaqueness completely disappears at equilibrium [8,9,48,49]. This
equilibration, however, usually takes very long time, so that the DSC measurements inevitably detect
the phase separation while the estimation by the Clapeyron Equation does not contain the effect of
phase separation: Only the method using the Clapeyron Equation can estimate the transition enthalpy
for the volume phase transition. It should be noticed that the opaqueness did not accompany the
change in shape in the above study [12], but an interesting pattern formation may occur when the
volume change is large and/or the shrinking speed is high [50].
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Table 1. Force in the number of metal weight (f ), transition temperature (Ttr), volume change of gel
specimen per unit mass of polymer network (∆V) and transition enthalpy per unit mass of polymer
network (∆H).

f Ttr/
◦C ∆V/10−6m3g−1 ∆H/Jg−1

0 33.35 −1.08 2.7
1 33.55 −1.06 2.6
2 33.75 −1.05 2.6

Table 2. Heating rate (v), transition temperature determined by DSC (TDSC) and transition enthalpy
per unit mass of polymer network determined by DSC (∆HDSC).

v/◦Cmin−1 TDSC/
◦C ∆HDSC/Jg−1

1 35.7 10
2 36.0 10
5 36.4 11

10 37.1 10

In Figure 8, normalized mechanical work at the transition temperature m·∆(l/l0) is plotted against
weight (or tension f ) for two series of PNIPA gels differing in crosslink density, where the crosslink
density of 2BIS is twice as high as that of 1BIS [10]. Here, m stands for the weight applied to the gel
specimens. It should be noticed that these curves result in the f dependence curve of c defined in the
previous section when ∆H stays constant. In both series, the normalized work curve shows a maximum.
For 1BIS the curve is directly comparable to the data in Figure 6a,b, and the comparison shows that the
f value at the peak for 1BIS curve, 30 mg, becomes identical to that at the inflection point for the ∆(l/l0)
curve in Figure 6b. Concerning the transition temperature vs. f curve in Figure 6a, the slope of the
curve decreases with increasing f and the value of slope finally becomes zero at about f = 60 mg. The f
value is twice as large as the f value at the peak of the work curve. This must be compared with the
relation between Equations (17) and (18), which is also shown in Figure 5. For the 2BIS curve, we have
no comparable data, as is the case of 1BIS, but the 2BIS curve also shows a maximum.
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We try to estimate here the c values for the volume phase transition of PNIPA gels under tension.
Firstly, another f dependence curve of transition temperature than that in Figure 6a is shown in
Figure 9 [40]. Here, each symbol stands for the transition temperature determined as an average of
on-heating and on-cooling measurements. The transition temperature shows a monotonous increase
in this region of f. The solid curve in the figure stands for the best fit parabola (assuming the
form in Equation (18)) for the data points, and the parameters decided were a = −6.144 × 102 and
b = 1.432 × 10−3 [40]. With these values we can draw the f dependence curve of c and thus obtained
curve is shown in Figure 10. The c curve shows a maximum in this region of f, and the value at
the maximum lies at most 3 × 10−4. We do not know whether this value is appropriate or not,
because we have no comparable data for c. The fact that the c curve has a maximum appears to be
consistent with the result shown in Figure 8. The emergence of maximum has also been reported for
the stress-dependent curve of normalized work for poly(vinyl alcohol)/poly(acrylic acid) copolymer
gels undergoing a pH-jump [51].Gels 2020, 6, x FOR PEER REVIEW 12 of 14 

 

 

Figure 9. dependence of transition temperature for the PNIPA gel [40]. 

 

Figure 10. of performance of the PNIPA gel as a function of force [40]. 

Until now, the definition and application of the Clapeyron equation for the volume phase 

transition of polymer gels under applied force were shown, where the discussion was basically 

limited to the gels in the cylindrical geometry. This is because the cylindrical geometry was ideal, 

and thus the coexistence of two gel phases was realized at the transition point. However, Hirotsu 

has shown that the temperature range where the coexistence is realized becomes larger than several 

degrees Celsius for ionic gels [8,9]. This is quite strange as the first-order phase transition, but is 

more serious because the transition temperature cannot be determined uniquely and thus the 

applicability of the Clapeyron equation is vanished. For the volume phase transition of cylindrical 

gels, swelling or collapsing initiates at the ends, probably due to an end effect originating from the 

fact that the end zone is different in circumstance from other parts. The interface between two gel 

phases is not so thin because the gels are solid, meaning that the elastic energy at the interface 

cannot be ignored. Therefore, the phase transition completes when the interface “melts” and this 

may require several degrees celsius for the ionic gels. Thus, the applicability of the Clapeyron 

equation is rather limited, but the Clapeyron equation works as a powerful tool as long as the 

temperature range for coexistence is not so large. 

Funding:  This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 9. Force dependence of transition temperature for the PNIPA gel [40].

Gels 2020, 6, x FOR PEER REVIEW 12 of 14 

 

Figure 9. Force dependence of transition temperature for the PNIPA gel [40]. 

 

Figure 10. Coefficient of performance of the PNIPA gel as a function of force [40]. 

Until now, the definition and application of the Clapeyron equation for the volume phase 

transition of polymer gels under applied force were shown, where the discussion was basically 

limited to the gels in the cylindrical geometry. This is because the cylindrical geometry was ideal, 

and thus the coexistence of two gel phases was realized at the transition point. However, Hirotsu 

has shown that the temperature range where the coexistence is realized becomes larger than several 

degrees Celsius for ionic gels [8,9]. This is quite strange as the first-order phase transition, but is 

more serious because the transition temperature cannot be determined uniquely and thus the 

applicability of the Clapeyron equation is vanished. For the volume phase transition of cylindrical 

gels, swelling or collapsing initiates at the ends, probably due to an end effect originating from the 

fact that the end zone is different in circumstance from other parts. The interface between two gel 

phases is not so thin because the gels are solid, meaning that the elastic energy at the interface 

cannot be ignored. Therefore, the phase transition completes when the interface “melts” and this 

may require several degrees celsius for the ionic gels. Thus, the applicability of the Clapeyron 

equation is rather limited, but the Clapeyron equation works as a powerful tool as long as the 

temperature range for coexistence is not so large. 

Funding:  This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Tanaka, T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 1978, 40, 820–823. 

2. Dušek, K.; Patterson, D. Transition in swelling polymer networks induced by intramolecular 

condensation. J. Polym. Sci. Part. B 1968, 6, 1209–1216. 

3. Shibayama, M.; Tanaka, T. Phase transition and related phenomena. Adv. Polym. Sci. 1993, 109, 1–62. 

4. Onuki, A. Theory of phase transition in polymer gels. Adv. Polym. Sci. 1993, 109, 63–121. 

5. Khokhlov, A.R.; Starodubtzev, S.G.; Vasilevskaya, V. Conformational transitions in polymer gels: Theory 

and experiment. Adv. Polym. Sci. 1993, 109, 123–171. 

6. Ilavský, M. Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels. Adv. 

Polym. Sci. 1993, 109, 173–206. 

7. Saito, S.; Konno, M.; Inomata, H. Volume phase transition of N-alkylacrylamide gels. Adv. Polym. Sci. 1993, 

109, 207–232. 

8. Hirotsu, S. Coexistence of phases and the nature of first-order phase transition in 

poly-N-isopropylacrylamide gels. Adv. Polym. Sci. 1993, 110, 1–26. 

9. Hirotsu, S. Static and time-dependent properties of polymer gels around the volume phase transition. 

Phase Transit. 1994, 47, 183–240. 

Figure 10. Coefficient of performance of the PNIPA gel as a function of force [40].



Gels 2020, 6, 25 13 of 15

Until now, the definition and application of the Clapeyron Equation for the volume phase transition
of polymer gels under applied force were shown, where the discussion was basically limited to the
gels in the cylindrical geometry. This is because the cylindrical geometry was ideal, and thus the
coexistence of two gel phases was realized at the transition point. However, Hirotsu has shown that
the temperature range where the coexistence is realized becomes larger than several degrees Celsius
for ionic gels [8,9]. This is quite strange as the first-order phase transition, but is more serious because
the transition temperature cannot be determined uniquely and thus the applicability of the Clapeyron
Equation is vanished. For the volume phase transition of cylindrical gels, swelling or collapsing
initiates at the ends, probably due to an end effect originating from the fact that the end zone is different
in circumstance from other parts. The interface between two gel phases is not so thin because the
gels are solid, meaning that the elastic energy at the interface cannot be ignored. Therefore, the phase
transition completes when the interface “melts” and this may require several degrees celsius for the
ionic gels. Thus, the applicability of the Clapeyron Equation is rather limited, but the Clapeyron
Equation works as a powerful tool as long as the temperature range for coexistence is not so large.
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