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Introduction
Protein–ligand docking is a molecular modeling technique that predicts the binding 
and binding affinity between a target protein and a ligand [1, 2]. As proteins function 
by interacting with other molecules, small molecule ligands are often used to bind to 
the active sites (or binding sites) of target proteins to modulate their functions [3]. In 
drug discoveries, protein–ligand docking is an important early step to finding poten-
tial drug candidates through structured-based drug design (SBDD). Given a target 
protein, potential binding ligands are searched in a ligand database to identify lead 
compounds, which may be further refined using other criteria. This computational 
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approach can potentially help pharmaceutical companies find promising lead com-
pounds much faster at a very low cost [4].

The protein–ligand docking (PLD) procedure can be described as a combination of 
searching algorithm and scoring function. The searching algorithm searches the space 
of the binding conformations between the ligand and the protein during the dock-
ing procedure, and the scoring function evaluates the goodness of a given binding 
conformation. Many methods have been developed in the past with various searching 
algorithms and scoring methods to address the docking problem. In general, there 
are three types of docking: rigid docking, flexible-rigid docking, and flexible dock-
ing [5]. Firstly, rigid docking assumes the receptor and ligand are rigid bodies, which 
implies their conformations would not change during the docking process. DOCK [6] 
and MS-DOCK [7] are rigid docking methods developed by shape matching. They 
search for the ligand pose and binding site according to the criterion that the molecu-
lar surfaces of the ligand and the binding site on the protein should match each other. 
ZDOCK [8] proposed a new scoring function that combines pairwise shape comple-
mentarity with desolvation and electrostatics to optimize the rigid docking process. 
Second, flexible-rigid docking considers the ligand’s flexibility while the protein’s con-
formation is fixed. Autodock [9] is a program that applies simulated annealing for the 
bound conformations of the ligand and a rapid grid-based method for the scoring. 
Other tools such as Autodock Vina [10] used iterated local search global optimizer to 
speed up the docking procedure and improve the binding mode predictions. Third, 
flexible docking assumes both receptor and ligand can change conformations dur-
ing the docking process. GOLD [11] is based on the genetic algorithm and Goldscore 
function. Autodock Vina [10] also has the option that allows the flexibility of proteins.

Over the past decade, machine learning methods have been successfully applied 
to PLD and achieved state-of-the-art performances. Specifically, RF-Score [12] used 
the random forest to ensemble different structure-, knowledge-, and empirical-based 
features, and made a substantial improvement on scoring functions. Koppisetty et al. 
[13] built support vector machine-based scoring functions by utilizing protein–ligand 
interaction or ligand-based descriptors. Moreover, task-specific models were trained 
with better performances using an ensemble machine learning method and a gradient 
boosting decision tree-based docking method [14]. Multi-task learning using a deep 
neural network (MT-Net) also showed superior performance than conventional scor-
ing functions [14]. Wang et al. developed feature functional theory—binding predic-
tor (FFT-BP) [15] where a large number of features were first extracted using physical 
models and then binding affinity models were trained using machine learning meth-
ods including deep learning. In DeepVS [16], a deep learning method was developed 
to learn atom embeddings without feature engineering, and achieved state-of-the-art 
performance on a benchmark decoy dataset. Finally, solving the 50-year-old protein 
structure prediction problem by AlphaFold (Senior et al. [17, 18] in 2020 clearly dem-
onstrated the potential of deep learning methods in computational structural biology. 
Unlike conventional machine learning techniques that require feature engineering, 
a great advantage of deep learning-based methods is that they allow raw data to be 
directly fed into appropriate networks to train powerful predictive models.
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This manuscript proposes a new approach to address the protein–ligand docking 
problem by applying deep reinforcement learning (RL). RL is a type of machine learn-
ing method which deals with sequential decision-making. It is straightforward to com-
bine the RL method with deep learning, and the resulting method is known as deep RL 
(DRL). The key elements in RL are the agent, environment, and reward where the agent 
takes actions in the environment to make changes to the environment, which provides 
feedback in the form of a reward based on the action. The actor-critic (AC) [19] is an 
RL algorithm that combines the policy-based and value-based RL methods. In the AC 
algorithm, the actor and critic models are trained simultaneously, making it possible to 
learn a binding site prediction model and a scoring function in one shot. The advantage 
actor-critic (A2C) [20] is an updated version of AC with advantage functions, and the 
asynchronous advantage actor-critic (A3C) [21] is an advanced version of A2C designed 
for parallel training. Since the actor model and critic model can satisfy the searching 
algorithm and scoring function requirements, it is feasible to use A3C as the framework 
with a deep neural network to address the protein–ligand docking problem.

Designing an effective RL framework for protein–ligand docking that addresses both 
the sampling algorithm and scoring function is more challenging than applying deep 
learning methods separately to the two problems. To the best of our knowledge, there 
has been very few RL-based deep learning model [22] on protein–ligand binding pose 
prediction. Current literature (Ye el al. [23] on ion positioning prediction focuses on pre-
dicting which residue that ion should bind to. We will only consider rigid docking in this 
project by placing the ligand at a random place far away from the protein at the begin-
ning. The RL framework contains two models: 1) an actor model, which is a ProDCoNN 
(Fig. 4 structured deep neural network, will be trained to choose an action that brings 
the ligand to newly predicted binding positions; 2 a critic model with similar architec-
ture to the actor model, which can produce an evaluation score, will be trained to evalu-
ate the fitness of the predicted binding positions. In this study, the feasibility of applying 
RL on the protein–ligand docking problem will be explored. We focus on developing 
models for single atoms and small multi-atom ligands in this study and the models are 
ligand specific. The ligand-specific models can be used in solvent mapping studies [24] 
to assist structure-based drug design.

The rest part of this paper is organized as follows. Section 2 describes the details about 
the experimental data, including the source of the data and the preprocessing procedure. 
We also introduce the A3C algorithms for the protein–ligand docking problem and 
describe the training and testing procedures. In Sect. 3, we evaluate the performance of 
the proposed method on real protein–ligand binding data. In particular, we will focus 
on the effect of hyper-parameter settings, model architectures, and sample sizes to the 
model performance during the training and test processes. We conclude the paper with 
a discussion and summarization in Sect. 4.

Materials and methods
Figure 1 shows an illustrative learning loop of RL in the context of the protein–ligand 
docking problem. Through the interaction between our model (the agent) and the 
protein–ligand complex environment, the model generates a movement on the ligand 
(the action), which leads to a different complex conformation (the state). Then, the 
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environment outputs the new state as well as an immediate reward based on the action. 
In the next time step, this new state and reward are fed back to the agent to generate the 
next action on the state.

In this study, we generated several three-dimensional (3D) cubic gridded boxes to cap-
ture the local protein structure. Each box contains the whole true ligand position and 
the protein environment surrounding it. During the training process, the ligand of inter-
est is placed at a randomly selected location in the box, and then it will move based on 
the guide from the model. Therefore, it is analogous to the maze problem in reinforce-
ment learning: we need a model which is reasonable enough to guide the object in the 
environment to the goal and adjust the ligand pose to bind with the protein properly.

Data format and preprocessing

We select protein–ligand complexes with some specific ligands (Cu2+, SO4
2−) from the 

Protein Data Bank (PDB) [25, 26] with the protein sequence’s identity lower than 30%. 
Removing homologous sequences is commonly done in computational structure biol-
ogy studies. Protein with similar sequences usually have similar backbone structures. 
Although we did not take the whole protein structures as input, certain biases may still 
be introduced if we include homologous sequences. The datasets analyzed during the 
current study are available in the RSCB the Protein Data Bank, https://​www.​rcsb.​org/. 
All these structures are determined by X-ray crystallography with a resolution better 
than 2.0 Å and do not have any DNA/RNA/UNK molecules.

The cubic gridded boxes are generated from the protein–ligand complex data. Given 
the protein structure and the ligand on the true ligand position (the position of ligand as 
in the crystal structure from the PDB), we at first randomly rotate the whole structure, 
and then generate a point as the center of the 18 Å × 18 Å × 18 Å cubic box. This box is 
gridded with 1 Å unit size voxel; most voxels contain no more than one heavy atom. The 
whole ligand and part of the protein structure should be contained in the box. Finally, 
we randomly rotate the ligand and move it to a random place in the box as the starting 
ligand site. According to this data generation process, each protein–ligand complex can 
generate multiple cubic gridded boxes. The right plot of Fig. 2 shows a box taken from 
the protein 2vb2 [25, 27]. The true ligand position is the green point; that is, the Copper 
ion (Cu2+) ligand is there. The black points are atoms in the protein environment. The 
red point is the starting ligand site, which is randomly selected.

In this paper, different types of atoms will be put in different channels, so the dimen-
sion of the input data is 18× 18× 18× N  where N  is the number of channels. In 

Fig. 1  The learning loop of RL

https://www.rcsb.org/
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general, the total number of channels is N = 21+M where there are 21 types of atoms 
in the protein environment, and the additional M types are from the ligand of inter-
est. Gaussian smoothing will be applied to the atom to preserve atom radius informa-
tion. We use a Gaussian smoother to spread the effect over 26 ( 3× 3× 3− 1) voxels 
around the voxel containing the target atom. Assuming the coordinate of the target atom 
is x0, y0, z0  , the Gaussian smoothing value at 

(

x′, y′, z′
)

 is:

where r is the Van der Waals radius of the atom in each voxel. We normalize these 27 
voxels to get the final Gaussian smoothing values for all voxels influenced by the atom. 
Finally, we add up the smoothing values for all atoms in the same channel and obtain the 
18× 18× 18× N  input data.

Methodologies

Our reinforcement-learning-based protein–ligand docking method is constructed by 
using the Asynchronous Advantage Actor-Critic (A3C) algorithm [21]. We propose this 
new method to unify the ligand pose adjustment and score estimation under one frame-
work. A3C is an actor-critic-based algorithm. The actor and critic models are designed 
as two ProDCoNNs (see Fig. 4) and are trained in the learning process. The actor model 
takes the current state as input and outputs an action, which can maximize the long-
term reward on each state. The critic model also uses the current state as input, and 
produces a score based on the current actor model to measure the goodness of the cho-
sen action. Ideally, the critic model is trained to predict the real long-term reward on 
each state. The key point for the A3C algorithm is a multi-threaded asynchronous model 
learner. Multiple sub-learners can train models independently and then send the gradi-
ents with respect to parameters back to the major environment to update them.

Thousands of chemical substances can form complexes with proteins and serve bio-
logical purposes. A ligand can be formed by either one or multiple atoms. This manu-
script will show the natural protein–ligand complex experimental settings and results 
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Fig. 2  Left: The 3D structure of protein 2vb2. Right: The gridded box generated from protein 2vb2. The black 
points are atoms in the protein environment. The green point is the true ligand position where the ligand 
type is Copper ion. The red point is the starting ligand site
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with ligand Copper ion ( Cu2+ ) and ligand Sulfate (SO4
2−), respectively. We here simplify 

the problem by ignoring the atom collisions and bonds between atoms. The data setups 
and model structures will be discussed in the following sections.

Algorithms

In this project, we combine the RL idea and the supervised learning idea. Based on A3C, 
in the beginning, we add one loop to feed a new cubic box so that the algorithm can train 
the model with a new environment in each episode. This method can help the actor and 
critic models learn general information about the protein environment and the docking 
process. A simple schematic for the flow of information is presented in Fig. 3. Through 
the interaction between the ligand and environment, the actor outputs action, and the 
critic model generates a score to evaluate the performance. Table 1 lists notation used 
in the framework. Algorithm 1 shows the detailed training process based on A3C. Some 
crucial elements in this algorithm are:

•	 Box: Cubic box contains protein atoms environment and a ligand on the starting 
ligand site.

•	 Action At : There are six actions for the ligand – moving forward and backward on 
each of X, Y, and Z axes. There are also six rotation directions, clockwise and coun-
terclockwise, on each of X, Y, and Z axes. The ligand can choose a moving direction 
and a rotation direction in each step.

•	 Immediate reward Rt : The reward for step t with an action leading the ligand to the 
step t + 1 is defined as:

where RMSD is  root-mean-square deviation, an average type of distance between 
atoms, s0 is the coordinate of the true ligand position. If Rt < 0 , Rt ← Rt × 2 adds a 
penalty to force the ligand to walk in a better direction to the true position.

•	 TMAX : The maximum number of steps that the ligand can move in the cubic box.

e−
RMSD(s0,st+1)

18 − e−
RMSD(s0,st )

18 ,

Fig. 3  The flow of information in A3C
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•	 tmax : The maximum number of steps that the algorithm needs to collect data to 
update the gradients with respect to parameters each time.

During the training process, given the ligand on the starting ligand site and the fixed 
protein atoms environment, we can generate a cubic box and feed it into the actor and 
critic models. Each time the ligand moves, we use the fixed protein atoms environ-
ment and the ligand on the current state to generate a new box, and then feed it into the 
models.

Unlike the traditional RL without any label information, Algorithm 1 is supervised. 
In the training stage, the immediate reward is defined based on the known true ligand 
position, which is unavailable in the test stage or in practical use. Algorithm 2 shows 
the details of the test process. Given the trained actor model and critic model, the 
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ligand in the box can move according to the actor model predictions. The critic model 
will be used to stop the searching process in the box. If the step number is larger than 
the minimum steps, and the range of last δ critic outputs is less than the threshold 
value, then the actor will stop searching. In addition, if the step number reaches the 
maximum or ligand moves out of the box, then the test for the current box stops.

Copper ligand experimental settings

The data for protein–ligand complexes with the Copper ligand (Cu-ligand dataset) are 
selected from PDB. The protein sequence identity is lower than 30%. The cubic gridded 
boxes are generated based on the description in Sect. 2.1, and the number of proteins 
and boxes in the training and test dataset are presented in Table 2. In the training pro-
cess, the learning rate for the actor model is 0.00005, and 0.0000001for the critic model. 
In each episode TMAX , the maximum number of steps that the ligand can move is 600. 
The parameters of two models will be updated every tmax = 10 steps with discount rate 

Table 1  Important notations in RL

Notations Meaning

s ∈ S State

a ∈ A Actions

r ∈ R Immediate reward

γ Discount factor

Gt

The long-term reward: 
Gt =

∞
∑

k=0

γ k
Rt+k+1

πθ (a|s) Actor model with parameters θ; it is a 
distribution of action given the state

V
π
ω (s) Critic model with parameters ω; it 

depends on the policy model and can 
output score



Page 9 of 18Wang et al. BMC Bioinformatics          (2022) 23:368 	

γ as 1. In each step, the ligand can move 0.1 Å. In the test process, TMAX is set as 600, 
which is the same as that in the training process. The ligand moves 0.1 Å for each step, 
and it must move at least TMIN = 300 steps unless it moves out of the box. Also, we 
let threshold be 0.3 and δ equal 50, which indicates that we utilize a 50-step window to 
check the convergence of the critic distance.

We refer to the parallel Convolutional Neural Network (CNN) structure from ProD-
CoNN [1, 2] for actor and critic models, shown in Fig. 4 for the Cu-ligand dataset. The 
6-layer model structure for the actor model is given below:

1.	 Input layer: Dimension is 18× 18× 18× 22 , with 21 types of atoms in the protein 
environment and Copper ligand in the 22nd channel.

2.	 A parallel 3D convolutional layer which consists of three independent 3D convolu-
tional layers: 4 filters with size 2× 2× 2 , 8 filters with size 3× 3× 3 , 8 filters with 
size 4 × 4 × 4 . Their border modes are the same, which can generate the feature 
maps with the same dimension as input.

3.	 Max pooling layer: 3× 3× 3.
4.	 Flatten layer.
5.	 Dense layer with unit number 256 and ReLU activation.
6.	 Output layer with unit number 6 and Softmax activation.

The Cu2+ ligand is just a single atom. Therefore, the ligand rotation will not be consid-
ered, and the output layer should just result in the direction probabilities. The architec-
ture of the critic model is the same as the actor model except for the output layer. In the 
critic model, the output layer has only one unit, and the activation is “tanh” to generate a 
value for estimating the true long-term reward.

Table 2  Proteins and boxes number of Cu-ligand dataset

Training dataset Test dataset

No. of proteins No. of boxes No. of proteins No. of boxes

Cu-ligand dataset 50 20,000 8 4000

Fig. 4  The architecture of actor model for the Cu-ligand dataset and SO4
2−-ligand dataset. The Cu-ligand 

dataset uses output block without rotation, and the SO4
2−-ligand dataset uses output block with rotation
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Sulfate ligand experimental settings

Same as the Cu-ligand dataset, the Sulfate ligand dataset (SO4
2−-ligand dataset) is also 

selected from PDB with protein sequence identity lower than 30%. The numbers of pro-
teins and boxes of the training dataset and test dataset are presented in Table 3. In this 
multi-atom ligand training process, the learning rate for the actor model is 0.000005, and 
for the critic model is 0.0000001. In each step, the ligand can move 0.1 Å and rotate 1°. In 
addition, all other hyper-parameters in both training and test processes, such as TMAX , 
tmax , γ and thread number, are the same as those in the Cu-ligand dataset experiment.

One special feature in the SO4
2−-ligand dataset experiment is the method to compute 

the distance between two ligands. The shape of an SO4
2− ligand is very close to a regular 

tetrahedron with a Sulfur (S) atom in the middle and four Oxygen (O) atoms on the ver-
tices, respectively. These four Oxygen atoms are symmetrical so that there are 24 (= 4!) 
possible ways to match two SO4

2− ligands in total. Therefore, for the SO4
2− ligand, we 

use permutation-distance as the metric to measure the distance between two ligands. 
We compute the root-mean-square deviations (RMSDs) of all the 24 possible matches, 
and then choose the smallest RMSD as the permutation-distance between two ligands. 
Another distance metric is the center-distance, which is the Euclidean distance between 
the S atom of the current ligand and the true ligand position. We will use both distances 
to evaluate the actor model performance for multi-atom ligand condition.

The actor model structure in the SO4
2−-ligand dataset experiment is different from the 

structure in the Cu-ligand dataset experiment. Figure 4 shows the actor model architec-
ture. The filter sizes in the parallel convolutional layer are changed from (2, 2, 2), (3, 3, 3), 
(4, 4, 4) to (4, 4, 4), (5, 5, 5), (6, 6, 6). Two reasons for this change: First, the SO4

2− ligand 
is composed of 5 atoms, which is much larger than the Cu ligand. Larger filters can better 
capture the features of the SO4

2− ligand. Second, there is a large space between the SO4
2− 

ligand and protein structure in many protein–ligand complexes so that larger filters can 
detect this property and improve the model performance. It is necessary to consider the 
rotation of the ligand in the SO4

2−-ligand dataset experiment. In addition to the six pos-
sible directions for the translation, we need to output extra six possible directions for the 
rotation: rotate clockwise and counterclockwise on each of X, Y, and Z axes. The sequen-
tial structure will be divided into two parallel branches at the end of the structure, and 
two 6-dimensional vectors will be output to predict the translation and rotation simultane-
ously. The critic model also has six layers, with the same first four layers as the actor model. 
In contrast, there is only one fully connected layer as the fifth layer with unit size 256 and 
activation ReLU. It is followed by the output layer with 1 unit and activation “tanh”.

Results
In this section, we will provide the training and test results of the Cu-ligand dataset and 
SO4

2−-ligand dataset.

Table 3  Proteins and boxes number of SO4
2−-ligand dataset

Training dataset Test dataset

No. of proteins No. of boxes No. of proteins No. of boxes

SO4
2−-ligand dataset 166 24,900 23 4600
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Predicting copper binding

We created 20,000 training samples for Cu2+ ligands by placing Cu2+ away from their 
binding sites. As described in the Method section, the actor model will learn the opti-
mal moving direction during the training process, which will lead the ligand towards the 
true binding site from a distant starting location. Figure 5 shows two examples of the 
search paths during the training process. The last locations of the ligand are much closer 
to the binding site (green dots) than the starting locations (red dots). We use the root-
mean-square-deviation (RMSD) between the final position of the ligand in the search 
path and the true position in the PDB file as the measure of model performance where 
the position of a ligand is defined by the coordinates of all its atoms. A zero RMSD indi-
cates a perfect prediction. Figure 6 shows the RMSDs for 20,000 training samples where 
the x-axis is the index of the samples in the training process (sample 1 was trained first, 
and sample 20,000 was trained the last). The RMSD decreases sharply in the first 1,000 
episodes and then slowly converges to about 2 Å, indicating that the actor model is able 
to gradually learn better move strategies with an increasing amount of training data. On 
average RMSD decreases from around 9 to 2 Å, which is a significant improvement. We 
compute the “improvement rate”, defined as follows:

where s0 is the true ligand position, sstart is the starting position of the ligand on the 
search path, send is the last position of the ligand on the search path, RMSD(•, •) is the 
RMSD between two ligand positions, and the position of a ligand is defined by the coor-
dinates of all its atoms. The improvement rate measures the percentage of reduction in 
terms of the RMSD between the starting position and the true position of the ligand. 
Table 4 summarizes the means and medians of RMSDs from episode 10,000 to episode 
20,000 and the improvement rate in the training and test dataset. In this study, the critic 
model is used to estimate the true long-term reward. Given the search path, the long-
term reward, Gt , of state st is:

If we use the critic model prediction Ot to replace Gt , the RMSD(s0, st) can be repre-
sented as:

This formula describes the distance between the current state and the true ligand 
position predicted by the critic model, called critic distance. Four examples of the critic 
distances and real distances between the current and true sites are shown in Fig.  7. 
Although there is a gap between the true and predicted distances, they have a very 
similar trend during the training process. This property is used to decide when to stop 
searching in the test process: if the critic distance is not improved over a certain period, 
then the searching should stop. Detailed procedure is given as follows.

RMSD(s0, sstart)− RMSD(s0, send)

RMSD(s0, sstart)

Gt = exp

{

−
RMSD(s0, send)

18

}

− exp

{

−
RMSD(s0, st)

18

}

.

−18× log

(

exp

{

−
RMSD(send, s0)

18

}

− Ot

)

.
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The test process follows Algorithm 2 using 4000 samples. Figure 8 shows the search 
paths for two samples. Although the searching path in the test process does not reach 
the true site exactly, the distance between the predicted ligand position and the true 
ligand position becomes much smaller. In most studies, the protein–ligand interaction 
problem is depicted as a classification in which we identify corresponding binding loca-
tions on an amino acid sequence. Compared with others, our measurement of accu-
racy focuses on the L2 distance between the true and predicted location. The last two 
columns in Table 4 represent the means and medians of the last position distance and 

Fig. 5  Two searching paths in 18× 18× 18 cubic boxes during the training process for the Cu-ligand 
dataset. Left: The searching path in episode 10,000. Right: The searching path in episode 20,000. The red 
point is the start ligand site, the green point is the true ligand site, and the blue path is the searching path. 
Environment atoms are not presented in plots

Fig. 6  The plots of the last position distances. Upper: The scatter plot of the last position distances. Lower: 
The smoothed curve of the Upper plot. The X-axis denotes the episode and the Y-axis denotes the distance 
value
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improvement rate for the test process, and both metrics indicate a significant improve-
ment in prediction accuracy compared with a randomly selected position. Our results 
are comparable with that proposed by DeepPocket [28], which locates potential pockets 
and utilizes the distance between the predicted and actual center of the pocket, or DCC, 
to evaluate model performance. Predictions with DCCs less than 4 Å are considered suc-
cessful. In contrast to an average DCC success rate of 85.2% shown in DeepPocket, our 
RL model can achieve a result of 81%. What’s more, two examples are shown in Fig. 8 to 
illustrate the critic model performance in the test process. Based on the plots, a gap still 
exists between the true and estimated distance curves. However, it is reliable to use the 
critic model to determine when the ligand should stop. Another advantage of using the 
critic model as a stopping criterion is its efficiency. In most cases, the episode can stop 
much earlier than the maximum of 600 steps.

Sulfate ligand experimental results

Table  5 summarizes the training and test results of the last position permutation-dis-
tance and the last position center-distance and improvement rates for both two dis-
tances in the sulfate-ligand dataset. The training process involves episode 10,000 to 
episode 24,900, and the test process uses all 4600 episodes. The center-distance results 
are all better than the permutation-distance results, but in general, the SO4

2−-ligand 
dataset experimental results are not as good as that for Cu-ligand. We can see the aver-
age improvement rate for center-distance in SO4

2−-ligand test data is 48.08%. On the 
contrary, the average improvement rate of Cu-ligand test case is 62.13%. One possible 
reason is the structural complexity of Sulfate ligand. Protein–ligand complexes with the 
SO4

2− ligand are more complex, and the models are more difficult to capture sufficient 
information. Another reason is that a large space is found around the Sulfate ligand true 
ligand position, whereas the actor model prefers to sites around atoms. However, we 
emphasize that the improvement rate in the SO4

2− ligand dataset still indicates the suc-
cess of the proposed framework. The effect of the rotation is hard to observe since there 
is still a large gap between the predicted ligand position and the true ligand position. In 
addition, it is still applicable to use the critic distance as a stopping criterion because it 
shows the same tendency as the real distance curve.

Further analysis on binding specificity

Considering the fact that both copper and sulfate ions can be found at nonspecific sites 
on a protein surface with no known biological function, we split out test samples into 
specific and nonspecific binding group by comparing the shortest distance between the 

Table 4  The means and medians of the RMSD and improvement rate in the training process and 
test process for Cu-ligand dataset

Training dataset Test dataset

Mean Median Mean Median

RMSD 2.0566 1.5183 3.1816 2.5215

Improvement rate 76.46% 83.87% 62.13% 73.15%
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ion and specific atoms in the protein and vdW bond [29]. This split is straightforward 
in the Cu2+ data, while significantly more challenging in the SO4

2− data. Hence, we 
restrict our samples to the copper-ligand. We then perform the same prediction steps 
as described for the overall data, and the result in the test data is given in Table 6 below.

In the Cu2+ data, 75% of test samples are specific binding and the other 25% are set to 
be nonspecific binding samples. Compared with nonspecific binding samples, the pre-
dicted final position for specific binding case is closer to the true location on average, 
and the improvement rates in both mean and median values are higher. This indicates 
that our model might be more capable of adopting specific binding patterns and find the 
corresponding binding location.

Summary and discussion
In this study, we have proposed a novel framework based on the A3C model for protein–
ligand docking (PLD) and tested its feasibility. Using single-atom ligands and a small 
multi-atom ligand, we showed that the algorithm could move the ligands to locations 
very close to their true binding sites when starting from random starting locations far 
away from the proteins. In particular, we point out that our promising results on SO4

2− 
demonstrated the potential ability of generalization on more complicated ligands in the 
future study. In addition, when PDB structures show protein–ligand binding, it can be 
difficult to distinguish whether it is real binding or artifacts when the binding sites are 

Fig. 7  Four cases of the critic distances and the real distance in the training process for Cu-ligand dataset. 
Upper left: Episode 10,000. Upper right: Episode 13,000. Lower left: Episode 16,000. Lower right: Episode 
20,000. The red curve is the critic model predicted distance between the current state and the true ligand 
site. The blue curve is the real distance between the current state and the true ligand site. The X-axis denotes 
the step number in the episode and the Y-axis denotes the distance value
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not functional sites of the protein. In our study, we did not make that distinction. As a 
result, the performance was probably negative affected. If the artifacts cases can be iden-
tified and removed from the dataset, the performance may be improved.

The models built in this study are ligand-specific because we want to start from a sim-
ple scenario to see whether the RL would work in this simple case. Another reason for 
developing ligand-specific models first is because the general model would require a 
large number of ligands and ligand–protein complexes. Developing such a model would 
be well beyond the goal of this study, which is to demonstrate the feasibility of apply-
ing RL to PLD problem. In fact, ligand-specific models can be quite useful for solvent 

Fig. 8  The actor model and critic model performances of Cu-ligand dataset in the test process. Upper left: 
The searching path in episode 2000. Upper right: The searching path in episode 4000. The red point is the 
start ligand site, the green point is the true ligand site, and the blue path is the searching path. Environment 
atoms are not presented in plots. Lower left: The critic distances and the real distance in episode 2000. Lower 
right: The critic distances and the real distance in episode 4000. The red curve is the critic model predicted 
distance between the current state and the true ligand site. The blue curve is the real distance between the 
current state and the true ligand site. The X-axis denotes the step number in the episode. The Y-axis denotes 
the distance value. Because of the stop criterion, different episodes may have different step numbers

Table 5  The means and medians of the last position distance and improvement rate in the training 
process and test process for the SO4

2−-ligand dataset

Training dataset Test dataset

Mean Median Mean Median

The last position permutation-distance 4.2566 3.8366 4.4347 3.9361

The last position center-distance 4.1057 3.7129 4.2810 3.8191

Improvement rate for permutation-distance 49.00% 59.22% 48.08% 58.80%

Improvement rate for center-distance 50.08% 60.85% 49.12% 60.01%
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mapping [24], which has been used widely in structure-based drug design to provide 
useful information on potential binding pockets on protein surfaces and the correspond-
ing ligand properties. These ligand-specific models can be directly trained as long as 
there are enough data in PDB for the ligand of interest. It would be an interesting topic 
for future studies to investigate the amount of data necessary for building a ligand-spe-
cific model, which is likely dependent also on the type of ligands.

In this study, we used a carefully designed Convolutional Neural Network (CNN) 
architecture to learn both the actor and critic models. More sophisticated architectures 
can also be used such as DenseNet, ResNet, and various attention mechanisms [30], 
Kimber et al. [31], Kandel et al. [32]. We expect the performance to be further improved 
with the latest deep learning architectures.

One of the future studies would be to combine all the ligands together and train a gen-
eral model for protein ligand docking. Such model would require the model to learn more 
specific interactions among different atoms on both proteins and the ligands. To extend 
out framework to more general applications, we first need to add more atom types for 
ligands (Sciortino et al. [33, 34], and increase the dimension of the input data to accom-
modate more atoms on the ligands. In addition, we will need to train such a model using 
training data from more databases such as Binding MOAD [35] and CCDC/Astex [36].

We emphasize that the proposed RL framework is still preliminary. Apart from what 
has been covered, alternative methods, more datasets and more types of proteins, and 
detailed comparison with the state-of-the-art would be explored in the future. In par-
ticular, we could collect multiple history steps in a set, called the replay buffer [37], and 
draw a batch of de-correlated samples to perform mini-batch gradient descent. Such an 
approach could accelerate the learning speed and training efficiency.
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