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Differences in outcome to COVID‐19 infection in different individuals is largely attributed to genetic hetero-
geneity leading to differential immune responses across individuals and populations. HLA is one such genetic
factor that varies across individuals leading to differences in how T‐cell responses are triggered against SARS‐
CoV‐2, directly influencing disease susceptibility. HLA alleles that influence COVID‐19 outcome, by virtue of
epitope binding and presentation, have been identified in cohorts worldwide. However, the heterogeneity in
HLA distribution across ethnic groups limits the generality of such association. In this study, we address this
limitation by comparing the recognition of CTL epitopes across HLA genotypes and ethnic groups. Using
HLA allele frequency data for ethnic groups from Allele Frequency Net Database (AFND), we construct syn-
thetic populations for each ethnic group and show that CTL epitope strength varies across HLA genotypes
and populations. We also observe that HLA genotypes, in certain cases, can have high CTL epitope strengths
in the absence of top‐responsive HLA alleles. Finally, we show that the theoretical estimate of responsiveness
and hence protection offered by a HLA allele is bound to vary across ethnic groups, due to the influence of other
HLA alleles within the HLA genotype on CTL epitope recognition. This emphasizes the need for studying HLA‐
disease associations at the genotype level rather than at a single allele level.
1. Introduction

Severe Acute Respiratory Syndrome Corona‐Virus 2 (SARS‐CoV‐2)
which is responsible for the Coronavirus Disease 2019 (COVID‐19)
pandemic, has infected over 546 million people around the world as
of 4th July 2022[1]. Susceptibility to COVID‐19 is known to vary
across individuals and the exact reasons for this differential suscepti-
bility remain to be understood completely. Host genetic factors that
are variable across individuals have been shown to contribute to this
heterogeneity in disease susceptibility and outcome [2]. The adaptive
immune response, which renders specificity and memory to the host
response against SARS‐CoV‐2, is known to be dysregulated in case of
COVID‐19 infection [3]. Thus, heterogeneity in host genetic factors
that influence the adaptive immune response can possibly explain
the widely documented heterogeneity in disease outcome [4–6].

The Human Leukocyte Antigen (HLA) super‐locus in humans har-
bors 2 main classes of HLA genes ‐ Class‐I and Class‐II that directly
influence T‐cell responses. The HLA Class‐1 system of an individual
is composed of 2 haplotypes of 3 HLA genes (HLA‐A, HLA‐B and
HLA‐C in Class‐I), thus constituting 6 HLA alleles, which we refer to
as the HLA genotype of that individual [7]. Viral proteins cleaved by
host proteases into peptides are bound by the HLA Class‐I and Class‐
II molecules and are presented to CD8+ and CD4+ T‐cells, respec-
tively, triggering their effector functions [8]. The distribution of HLA
alleles is known to vary widely across populations [9]. Thus, viral pep-
tides presented by these HLA molecules are bound to vary across pop-
ulations. It is well known that strong presentation of viral peptides by
HLA Class‐I molecules directly reflects in a strong host cytotoxic
T‐lymphocyte (CTL) response, resulting in killing of infected cells lead-
ing to viral clearance. Previous studies have identified susceptible and
protective HLA alleles in various cohorts in the context of SARS‐CoV‐2
infection [10–12]. Several bioinformatic tools that can predict HLA‐
epitope binding affinities have been developed and have been used
to identify protective and susceptible HLA alleles based on epitope
sease‐19;
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binding [13,14]. Epitope prediction tools have also been used to com-
pare CTL epitope recognition among HLA alleles across ethnic groups
[15]. However, heterogeneity in HLA distribution across cohorts also
limits the extrapolation of HLA allele‐severity associations to a global
level. Owing to paucity of data on one hand and methods to study
them on the other, heterogeneity in HLA genotypes has not been stud-
ied sufficiently to address if it can explain differences in T‐cell
responses among individuals. Further, differences in T‐cell responses
among populations may also be attributed to differences in HLA allele
distribution, which has also not received much attention.

In this study, we address this gap and mathematically reconstruct a
large number of HLA class‐1 genotypes in 240 different synthetic pop-
ulations corresponding to different ethnicities by utilizing publicly
available data on HLA allele frequencies from ethnic groups world-
wide. We predict the number of CTL epitopes recognized by each indi-
vidual using bioinformatic tools. We then compare estimated CTL
epitope strength across individuals and across populations. Our models
provide a framework to estimate the landscape of host heterogeneity
from the CTL response point of view in individuals and in populations
and provide conceptual insights to explain differences in disease out-
come. Further, it presents a scheme to place the existing knowledge
on HLA associations with susceptibility to COVID‐19.
2. Materials and methods

2.1. SARS-CoV-2 protein sequences and HLA Class-I allele frequency data

Amino acid sequences of 10 proteins of the parent Wuhan‐Hu‐1
strain of SARS‐CoV‐2 (NCBI RefSeq accession: NC_045512.2), namely
‐ ORF1ab polyprotein, Spike glycoprotein, ORF3a, Envelope protein,
Membrane protein, ORF6, ORF7a, ORF8, Nucleocapsid protein and

ORF10 were obtained from NCBI Virus [18] (https://www.ncbi.nlm.

nih.gov/labs/virus/vssi/#/).
240 ethnic groups with HLA Class‐I allele frequency data from the

Allele Frequency Net Database [19] (AFND) (http://www.allelefre-

quencies.net/), covering a diverse and near‐exhaustive set of geo-
graphical regions were considered. The ethnic groups were
shortlisted based on i) documentation of frequencies of all 3 HLA Class
I alleles ‐ A, B and C, ii) High resolution HLA allele data with polymor-
phisms denoted for all the alleles documented, since it directly impacts
the probabilistic construction of HLA genotypes. The authors of AFND
have assigned a dataset standard for each of the 3 HLA genes (HLA‐A,
HLA‐B, HLA‐C) documented within each ethnic group as a measure of
the quality of the dataset based on factors such as sample size and four‐
digit resolution of HLA alleles and HLA allele frequencies summing up
to 1, within an ethnic group [19]. Since dataset standards are provided
for each HLA gene within an ethnic group (bronze being the lowest
and gold being the highest), we noted the HLA gene with the lowest
standard for an ethnic group and considered this as the representative
dataset standard. Geographical distribution of ethnic groups along
with the dataset standards provided by AFND for each ethnic group
are provided in Supplementary File‐1. Dataset standards for each
HLA gene within the shortlisted ethnic groups are also provided in
Supplementary File‐1.
2.2. Prediction of CTL epitopes

HLA Class‐I Epitope predictions for the 10 proteins of the Wuhan‐
Hu‐1 strain were performed using the NetMHCPan BA 4.1 tool [20]
accessible through IEDB (Immune Epitope Database) [21]

(http://tools.iedb.org/mhci/). A comprehensive list of 1827 HLA Class
I alleles covered by the 240 ethnic groups were considered for pMHC
binding predictions. The length of the predicted epitopes was
798
restricted to 9 amino acids. Predicted 9‐mers which bind to a given
HLA allele with IC50 < 50 nM were shortlisted for further analysis.
2.3. Construction of synthetic populations

HLA genotypes were constructed from HLA allele frequencies for
each ethnic group by considering all combinations of 2 HLA‐A alleles,
2 HLA‐B alleles and 2 HLA‐C alleles, both homozygous and heterozy-
gous for each of the 3 genes. The product of frequencies of these alleles
was considered to be the frequency of an HLA genotype. From the set
of hypothetically generated HLA genotypes, the ones with a frequency
crossing a threshold value of 5 × 10‐7 were considered a part of the
population for the particular ethnic group. The algorithm used to con-
struct synthetic populations is similar to that used by Mukherjee &
Chandra [17].
3. Results

3.1. Host diversity in CTL responses

We shortlisted 240 ethnic groups from Allele Frequency Net Data-
base (AFND) satisfying our selection criteria (see Methods 2.1). Among
these 240 ethnic groups, 181 are Gold standard, 36 are Silver standard
and 23 are bronze standard based on the dataset standards set by
AFND [19]. Our shortlisted ethnic groups covered a diverse set of geo-
graphical regions around the world (Supplementary File‐1), enabling
us to capture population‐level heterogeneity across the globe.

We consider a set of HLA genotypes within an ethnic group to rep-
resent a population and define CTLi as the estimated CTL epitope
strength in individuals which is the number of CTL epitopes recog-
nized by an individual and CTLpop as the net CTL epitope strength
per individual in an ethnic group. A list of top 10 and bottom 10
responding HLA alleles in terms of number of epitopes recognized
are provided in Table 1. HLA‐allele groups A*02 and B*15 appear
among the top responding HLA‐alleles agreeing with previous reports
of effective epitope presentation by these allele groups [10].

In order to assess differences in CTLi in different individuals and
CTLpop across ethnic groups, we theoretically constructed synthetic
populations using a probabilistic approach such that the product of fre-
quencies of 6 HLA alleles from an ethnic group constituting an HLA
genotype crosses a pre‐defined threshold. A threshold was set for
HLA genotype frequency (see Methods Section 2.3), beyond which
the appropriate combination of 6 HLA alleles (2 HLA‐A + 2 HLA‐
B + 2 HLA‐C) was considered as a frequently occurring HLA genotype
in the population (Fig. 1A). The number of HLA genotypes was seen to
vary across ethnic groups, owing to differences in the diversity of HLA
distribution (Fig. 1B); ethnic groups with an even distribution of HLA
alleles would harbor more combinations of HLA genotypes, resulting
in a diverse population while ethnic groups with an uneven distribu-
tion would show a less diverse population, dominated by the highly
frequent HLA alleles. We then pooled HLA genotypes from all the
240 ethnic groups to examine host diversity in CTLi at a global level.
A nearly continuous gradient was observed in the CTLi across individ-
uals (Fig. 1C) suggesting that the estimated CTL responses across indi-
viduals are highly heterogeneous. The top 10 and bottom 10 HLA
genotypes based on their CTLi are provided in Table 1.

From these global HLA genotypes, we selected the top 1 % (high),
middle 1 % (medium) and bottom 1 % (low) responders, based on
their CTLi (listed in Supplementary File‐2) and tested if they were
explained by the presence or absence of top‐responsive HLA alleles.
For this, HLA alleles were ranked based on the number of epitopes rec-
ognized, and the top 20 were shortlisted as the top‐responsive HLA
alleles (listed in Supplementary File‐2) and their frequency of occur-
rence was compared across the high, medium and low responding
genotypes. The frequency of the top‐responsive HLA alleles was rela-

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
http://www.allelefrequencies.net/
http://www.allelefrequencies.net/
http://tools.iedb.org/mhci/


Table 1
Top and bottom 10 responding HLA alleles, genotypes and ethnic groups.
Response of HLA alleles is measured as the number of epitopes recognized.
Response of HLA genotypes and ethnic groups are measured in terms of CTLi and
CTLpop respectively. Since CTLpop is the CTL epitope strength averaged over the
entire population, it is rounded off to the nearest integer value.

Top 10 Bottom 10
HLA Allele Epitopes HLA Allele Epitopes

A*02:11 353 A*25:04 1
A*02:50 325 B*38:12 1
B*15:62 324 B*38:20 1
A*02:22 323 A*66:01 1
A*02:104 323 B*27:14 1
A*02:122 280 B*40:110 1
C*12:19 272 B*51:93 1
B*15:156 270 B*51:64 1
B*15:132 270 C*02:17 1
B*15:03 270 B*57:07 1
HLA Genotype Epitopes

(CTLi)
HLA Genotype Epitopes

(CTLi)
A*68:01|A*02:05|B*15:03|

B*41:01|C*14:03|
C*07:01

699 A*66:01|A*66:01|B*58:02|
B*37:01|C*04:01|C*04:01

1

A*68:01|A*02:05|B*15:03|
B*41:01|C*14:03|
C*02:02

698 A*74:01|A*74:01|B*14:02|
B*58:02|C*04:01|C*04:01

1

A*02:03|A*11:01|B*15:25|
B*55:02|C*14:02|
C*03:04

691 A*74:01|A*74:01|B*15:10|
B*58:02|C*04:01|C*04:01

1

A*02:03|A*11:01|B*15:25|
B*13:01|C*14:02|
C*03:04

682 A*74:01|A*74:01|B*49:01|
B*58:02|C*04:01|C*04:01

1

A*02:03|A*11:01|B*15:25|
B*51:01|C*14:02|
C*03:04

682 A*66:01|A*66:01|B*58:02|
B*58:02|C*04:01|C*04:01

1

A*02:03|A*11:01|B*15:25|
B*46:01|C*14:02|
C*03:04

680 A*66:01|A*74:01|B*58:02|
B*58:02|C*04:01|C*04:01

1

A*68:01|A*68:02|B*15:03|
B*41:01|C*14:03|
C*07:01

677 A*66:01|A*66:01|B*37:01|
B*37:01|C*04:01|C*04:01

1

A*68:01|A*68:02|B*15:03|
B*41:01|C*14:03|
C*02:02

676 A*66:03|A*66:03|B*58:02|
B*37:01|C*04:01|C*04:01

2

A*02:03|A*11:01|B*58:01|
B*40:01|C*14:02|
C*03:02

675 A*66:03|A*66:03|B*37:01|
B*37:01|C*04:01|C*04:01

2

A*02:22|A*68:01|B*15:39|
B*35:05|C*03:04|
C*04:01

669 A*66:03|A*66:01|B*58:02|
B*58:02|C*04:01|C*04:01

2

Ethnic group Epitopes
(CTLpop)

Ethnic group Epitopes
(CTLpop)

Paraguay Argentina Ache
NA-DHS 24

417 Singapore SGVP. Indian INS 167

India Khandesh Region
Pawra

398 Colombia North Wiwa El
Encanto

166

Colombia Waunana NA-
DHS 20 (G)

378 Singapore Javaneses 162

Paraguay Argentina
Guarani NA-DHS 23 (G)

372 Colombia North Chimila
Amerindians

162

Brazil Terena 358 Papua New Guinea Madang 161
Costa Rica Guaymi NA-DHS

10 (G)
342 Malaysia Peninsular Malay 160

Colombia Inga NA-DHS 11
(G)

331 Georgia Tibilisi Kurd 158

Colombia Zenu NA-DHS 18
(G)

327 Singapore Riau Malay 155

Mexico Oaxaca Mixe 326 India West Coast Parsi 153
Mali Bandiagara 309 USA NMDP Southeast Asian 151
Paraguay Argentina Ache

NA-DHS 24
417 Singapore SGVP. Indian INS 167
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tively higher in the medium and high responding HLA genotypes, as
expected (Fig. 1D). However, these top‐responsive alleles were not suf-
ficient to completely cover the high responding genotype group, indi-
799
cating that certain individuals (HLA genotypes) might respond better
due to a combination of relatively low‐responding HLA alleles that
can together, recognize a large epitope set resulting in a larger CTLi.
In addition, low frequency of occurrence of the top HLA alleles in cer-
tain ethnic groups might limit certain HLA combinations with high
CTLi.

3.2. Comparison of CTL epitope strength across populations (CTLpop)

From the synthetic population, we computed overall CTL epitope
strength for each ethnic group (CTLpop) as the sum of CTL epitope
strength exhibited by each individual (CTLi), weighted by the fre-
quency of occurrence of the HLA genotype in the population
(Fig. 2A). Upon comparison of the consolidated CTLpop across popula-
tions, a wide distribution in CTLpop values was observed across ethnic
groups (Fig. 2A), illustrating the extent of heterogeneity in HLA distri-
bution and the impact it has on triggering CTL responses. Among the
ethnic groups included in the study, the ‘Paraguay Argentina Ache
NA‐DHS 240 ethnic group shows the highest CTLpop while the ‘Israel
Ashkenazi and Non Ashkenazi Jews’ group showed the lowest (Supple-
mentary File‐3). The top 10 most responding and least responding eth-
nic groups are provided in Table‐1. We then considered 2 ethnic
groups each from the high (‘Paraguay Argentina Ache NA‐DHS 240,
‘India Khandesh Region Pawra’), medium (‘China Yunnan Hani’, ‘Mex-
ico Mexico City Mestizo pop 20) and low (‘New Caledonia’, ‘Israel
Ashkenazi and Non Ashkenazi Jews’) responding ethnic groups based
on their CTLpop. The CTLi of HLA genotypes within the low responding
ethnic groups were generally low compared to those within the high
responding ethnic groups (Fig. 2B‐G), eliminating the possibility that
the low response might be driven by specific low‐responding sub‐
groups within the low‐responding ethnic groups.

Next, we considered the top 5 most responding and least respond-
ing HLA genotypes within each of these 6 ethnic groups (listed in Sup-
plementary File‐3) and checked for the occurrence of high responding
HLA alleles (>200 epitopes) and low responding HLA alleles (1 epi-
tope) (listed in Supplementary File‐3) in these genotypes. In most
cases, high responding alleles were represented in the top 5 HLA geno-
types of the medium and high responding ethnic groups (Fig. 2B‐G).
However, in the ‘Israel Ashkenazi and Non Ashkenazi Jews’ ethnic
group which is a low responder, a low responding HLA allele was pre-
sent among the top 5 HLA genotypes (Fig. 2B). This indicates that the
particular HLA genotype remains high responding by virtue of the
other HLA alleles that may be relatively high responders, suggesting
that the HLA genotype as a whole, determines the extent of the CTL
epitope strength and hence the CTL response.

4. Discussion

Heterogeneity in numerous genetic factors that influence disease
conditions is known to exist across human populations [5]. Some of
these genetic factors such as the HLA genotype which directly influ-
ences the host immune response has been extensively studied in the
context of human diseases [16]. However, current analyses of HLA‐
association with disease severity are largely restricted to individual
alleles rather than HLA genotypes and further restricted to specific
cohorts rather than the global population.

Our approach of reconstructing synthetic populations that mimic
natural ones based on the recorded frequencies of individual alleles
enables us to ask several questions that were not easily tractable
before. Specifically, we have been able to ask how CTLi may differ
among the entire pool of individuals globally, within our reconstructed
set of HLA genotypes. Further, we have been able to ask a similar ques-
tion at a population level to find high‐responding and low‐responding
populations. In principle, given the HLA genotype of an individual,
our analysis will facilitate in classifying the individual into high,



Fig. 1. Modeling CTL epitope strength across individuals(CTLi). (A) Using the input HLA allele frequency data from each ethnic group annotated in the Allele
Frequency Net Database (AFND), hypothetical genotypes (individuals) were constructed by defining a threshold frequency beyond which a particular HLA
genotype which is a combination of 6 HLA alleles is considered to be a member of the population. The frequency was then scaled with respect to the least frequent
genotype in the population so that the scaled frequency represented the number of individuals with the particular genotype. (B) A barplot representing the number
of HLA genotypes present in each ethnic group. (C) CTLi across global HLA genotypes. The top, middle and bottom 1% HLA genotypes, sorted based on their CTLi,
are marked as ‘high’, ‘medium’ and ‘low’ responding genotypes, respectively. (D) A bubble plot representing the frequency of occurrence of the top 20 responding
HLA alleles in the low, medium and high responding HLA genotypes.
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intermediate or low‐response groups to a given strain of SARS‐CoV‐2.
With advances in sequencing methods, HLA genotyping is becoming
more accessible, which may make it feasible to envisage a clinically
useful responsiveness prediction method.

Our results show that there is about a 700‐fold difference in the
CTL epitope strength (CTLi) between least responding and highest
responding individuals. This observation holds for the pooled set of
HLA genotypes reflecting individuals throughout the world. Although
high responding HLA alleles were largely represented in the high
responding HLA genotypes, absence of these alleles in some of the high
responding genotypes suggests that a HLA genotype can still be high
responding if its HLA alleles are diverse enough to recognize a large
set of epitopes. Next, we compared CTL epitope strength (CTLpop)
across ethnic groups and found that the distribution was heteroge-
neous which can be attributed to population‐level differences in HLA
distribution. However, we cannot discount the influence of differential
sampling coverage across ethnic groups, due to which certain HLA
alleles might not have been captured and the HLA frequencies might
not be unbiased in ethnic groups with low coverage. Despite this lim-
itation, a substantial number of HLA genotypes were constructed
within each ethnic group. A deeper analysis of ethnic groups with
low, medium and high CTLpop showed that the magnitude of CTLpop
800
is determined by the entire population rather than specific sub‐
populations. However, this does not eliminate the possibility of exis-
tence of sub‐populations that differ in their epitope strengths within
ethnic groups. In fact, it is evident that responses within a population
are also heterogeneous and hence, a population can be further classi-
fied based on CTLi as shown previously in case of Influenza [17]. It
is also important to note that the CTL epitope strength is computed
under the assumption that all epitopes equally influence the CTL
response i.e, they are equally immunodominant. Experimental tech-
niques like AIM [22] and ELISPOT [23] assays which measure the
extent of T‐cell activation and cytokine release respectively, upon
peptide‐based antigenic stimulation, would be needed to study the rel-
ative immunodominance of T‐cell epitopes. However, these techniques
are limited by the diversity of HLA‐alleles that can be covered which
forms a major part of our analysis. Despite this limitation in our anal-
ysis, it captures a theoretical pool of all high‐affinity epitopes pre-
sented. In addition, overall susceptibility to COVID‐19 is highly
dependent on non‐HLA immune factors such as the magnitude of the
B‐cell and antibody responses and innate immune responses as well
as other factors like age, gender, comorbidities etc. [24–26] which is
bound to affect association analyses of HLA with COVID‐19 severity.
However, the goal of our study is to show the theoretical extent of



Fig. 2. Comparing CTL epitope strength across ethnic groups (CTLpop). (A) CTL epitope strength for an ethnic group (CTLpop) was computed as the sum of
epitopes recognized by each individual within the synthetic population (CTLi), weighted by the scaled frequency of occurrence of genotype i. This was divided by
the number of individuals within the population to obtain CTLpop. (B-G) Pairs of representative ethnic groups for (B-C) low, (D-E) medium and (F-G) high
responders were considered and the variation of CTLi within these ethnic groups across individuals is shown. From each of these ethnic groups, the 5 highest and 5
lowest responding HLA genotypes (dotted arrows) are represented below. Each circle represents a HLA allele and a string of 6 circles represents a HLA genotype.
High-responding HLA alleles (>200 epitopes) are shaded in green while low-responding ones (1 epitope) are shaded in orange. Blank circles represent HLA alleles
that show intermediate response, as they neither belong to the highest nor the least responding HLA allele groups.
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influence of one of the heterogeneous factors, namely HLA, on disease
outcome at a global level. Although a theoretical exercise, the tools
and datasets used in our analysis are obtained from experimental data.
The algorithms used by the bioinformatic tool NetMHCPanBA 4.1 [20]
for prediction of HLA‐epitope binding affinity are trained on experi-
mental data of HLA‐epitope binding affinity. HLA allele frequencies
documented in AFND are obtained by targeted sequencing of HLA loci
801
among individuals within an ethnic group, sampled in an unbiased
manner.

Finally, examination of the highest and lowest responding HLA
genotypes within the selected ethnic groups revealed that low
responding HLA alleles can also be represented in high responding
genotypes. This can be explained based on two factors: i) the low‐
responding HLA allele was represented in a high responding HLA
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genotype of an ethnic group that has a low overall CTLpop. Thus, the
presence of one low responding HLA allele does not majorly influence
CTLi of the genotype since the overall CTLi of the genotype is expected
to be low. ii) the presence of one low‐responding HLA allele can be
compensated by the presence of relatively high‐responding HLA alleles
with diverse epitope recognition within the HLA genotype, so that the
genotype as a whole has a high CTLi. This provides a strong reason as
to why HLA‐disease outcome associations within cohorts cannot be
trivially extrapolated to the global level; an HLA allele might be
high‐responding in a cohort where the CTLpop is low in general, but
the same HLA allele might be a medium or low responder in a cohort
where the CTLpop is high. However, under the assumption that non‐
HLA factors important for triggering a T‐cell response are not as
heterogeneous across populations, we can say that an HLA genotype
is bound to trigger a similar level of CTL response, irrespective of
the cohort identity due to theoretically identical CTLi. Thus, our anal-
ysis emphasizes the need for studying and comparing HLA associations
at the genotype level rather than the allele level to understand the
influence of HLA on COVID‐19 disease outcome. Our analysis forms
a stimulus to study how this population‐level heterogeneity in CTL epi-
tope recognition can trigger evolution of viral variants that escape
from host CTL recognition.

Declaration of Competing Interest

NC is a co‐founder of qBiome Research Pvt ltd and HealthSeq Preci-
sion Medicine Pvt ltd. They had no role in this manuscript. Both authors
declare that the research was conducted in the absence of any commer-
cial or financial relationships that could be construed as a potential con-
flict of interest.

Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.humimm.2022.09.008.

References

[1] World Health Organization. (July 5, 2022). “WHO Coronavirus (COVID-19)
Dashboard”. Retrieved from https://covid19.who.int/.

[2] D’Antonio, M., Nguyen, J. P., Arthur, T. D., Matsui, H., D’Antonio-Chronowska, A.,
Frazer, K. A., & COVID-19 Host Genetics Initiative. (2021). SARS-CoV-2
susceptibility and COVID-19 disease severity are associated with genetic variants
affecting gene expression in a variety of tissues. Cell reports, 37(7), 110020.

[3] E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, K. Akinosoglou, A.
Antoniadou, N. Antonakos, G. Damoraki, T. Gkavogianni, M.-E. Adami, P.
Katsaounou, M. Ntaganou, M. Kyriakopoulou, G. Dimopoulos, I.
Koutsodimitropoulos, D. Velissaris, P. Koufargyris, A. Karageorgos, K. Katrini, V.
Lekakis, M. Lupse, A. Kotsaki, G. Renieris, D. Theodoulou, V. Panou, E. Koukaki, N.
Koulouris, C. Gogos, A. Koutsoukou, Complex immune dysregulation in COVID-19
patients with severe respiratory failure, Cell host & microbe 27 (6) (2020)
992–1000.e3.

[4] C.W. Thorball, J. Fellay, A. Borghesi, Immunological lessons from genome-wide
association studies of infections, Current Opinion in Immunology 72 (2021)
87–93.

[5] J. McClellan, M.C. King, Genetic heterogeneity in human disease, Cell 141 (2)
(2010) 210–217.

[6] N. Sambaturu, S. Mukherjee, M. López-García, C. Molina-París, G.I. Menon, N.
Chandra, C. Viboud, Role of genetic heterogeneity in determining the
epidemiological severity of H1N1 influenza, PLoS computational biology 14 (3)
(2018) e1006069.
802
[7] T. Shiina, K. Hosomichi, H. Inoko, J.K. Kulski, The HLA genomic loci map:
expression, interaction, diversity and disease, Journal of human genetics 54 (1)
(2009) 15–39.

[8] P.C. Doherty, D.J. Topham, R.A. Tripp, R.D. Cardin, J.W. Brooks, P.G. Stevenson,
Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus
infections, Immunological reviews 159 (1) (1997) 105–117.

[9] S. Buhler, A. Sanchez-Mazas, I. Mokrousov, HLA DNA sequence variation among
human populations: molecular signatures of demographic and selective events,
PloS one 6 (2) (2011) e14643.

[10] F. Tavasolian, M. Rashidi, G.R. Hatam, M. Jeddi, A.Z. Hosseini, S.H. Mosawi, R.D.
Inman, HLA, immune response, and susceptibility to COVID-19, Frontiers in
Immunology 11 (2021) 3581.

[11] Yu, X., Ho, K., Shen, Z., Fu, X., Huang, H., Wu, D., ... & Su, Z. (2021, September).
The Association of Human Leukocyte Antigen and COVID-19 in Southern China. In
Open Forum Infectious Diseases (Vol. 8, No. 9, p. ofab410). US: Oxford University
Press.

[12] J. Weiner 3rd, P. Suwalski, M. Holtgrewe, A. Rakitko, C. Thibeault, M. Müller, B.
Heidecker, Increased risk of severe clinical course of COVID-19 in carriers of HLA-
C* 04: 01, EClinicalMedicine 40 (2021) 101099.

[13] J. Sidney, B. Peters, A. Sette, Epitope prediction and identification- adaptive T cell
responses in humans, Seminars in Immunology 50 (2020) 101418.

[14] A. Nguyen, J.K. David, S.K. Maden, M.A. Wood, B.R. Weeder, A. Nellore, R.F.
Thompson, Human leukocyte antigen susceptibility map for severe acute
respiratory syndrome coronavirus 2, Journal of virology 94 (13) (2020).
e00510-20.

[15] T. Bose, N. Pant, N.K. Pinna, S. Bhar, A. Dutta, S.S. Mande, Does immune
recognition of SARS-CoV2 epitopes vary between different ethnic groups?, Virus
research 305 (2021) 198579

[16] J.M. Blackwell, S.E. Jamieson, D. Burgner, HLA and infectious diseases, Clinical
microbiology reviews 22 (2) (2009) 370–385.

[17] S. Mukherjee, N. Chandra, Grouping of large populations into few CTL immune
‘response-types’ from influenza H1N1 genome analysis, Clinical & translational
immunology 3 (8) (2014) e24.

[18] E.L. Hatcher, S.A. Zhdanov, Y. Bao, O. Blinkova, E.P. Nawrocki, Y. Ostapchuck, J.
R. Brister, Virus Variation Resource–improved response to emergent viral
outbreaks, Nucleic acids research 45 (D1) (2017). D482-D490 https://www.
ncbi.nlm.nih.gov/labs/virus/vssi/#/.

[19] Gonzalez-Galarza FF, McCabe A, Santos EJ, Jones J, Takeshita LY, Ortega-Rivera
ND, Del Cid-Pavon GM, Ramsbottom K, Ghattaoraya GS, Alfirevic A, Middleton D
and Jones AR. Allele frequency net database (AFND) 2020 update: gold-standard
data classification, open access genotype data and new query tools Nucleic Acid
Research 2020 48:D783-8. http://www.allelefrequencies.net.

[20] B. Reynisson, B. Alvarez, S. Paul, B. Peters, M. Nielsen, NetMHCpan-4.1 and
NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by
concurrent motif deconvolution and integration of MS MHC eluted ligand data,
Nucleic acids research 48 (W1) (2020). W449-W454.

[21] Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK,
Sette A, Peters B. The Immune Epitope Database (IEDB): 2018 update. Nucleic
Acids Res. 2018 Oct 24. doi: 10.1093/nar/gky1006. [Epub ahead of print]
PubMed PMID: 30357391. http://tools.iedb.org/mhci/.

[22] R. da Silva Antunes, S. Paul, J. Sidney, D. Weiskopf, J.M. Dan, E. Phillips, S. Mallal,
S. Crotty, A. Sette, C.S. Lindestam Arlehamn, G.P. Bansal, Definition of human
epitopes recognized in tetanus toxoid and development of an assay strategy to
detect ex vivo tetanus CD4+ T cell responses, PloS one 12 (1) (2017) e0169086.

[23] Y. Miyahira, K. Murata, D. Rodriguez, J.R. Rodriguez, M. Esteban, M.M. Rodrigues,
F. Zavala, Quantification of antigen specific CD8+ T cells using an ELISPOT assay,
Journal of immunological methods 181 (1) (1995) 45–54.

[24] B.G. Pijls, S. Jolani, A. Atherley, R.T. Derckx, J.I.R. Dijkstra, G.H.L. Franssen, S.
Hendriks, A. Richters, A. Venemans-Jellema, S. Zalpuri, M.P. Zeegers,
Demographic risk factors for COVID-19 infection, severity, ICU admission and
death: a meta-analysis of 59 studies, BMJ open 11 (1) (2021) e044640.

[25] A. Sanyaolu, C. Okorie, A. Marinkovic, R. Patidar, K. Younis, P. Desai, Z. Hosein, I.
Padda, J. Mangat, M. Altaf, Comorbidity and its impact on patients with COVID-
19, SN comprehensive clinical medicine 2 (8) (2020) 1069–1076.

[26] M. Mutambudzi, C. Niedzwiedz, E.B. Macdonald, A. Leyland, F. Mair, J. Anderson,
C. Celis-Morales, J. Cleland, J. Forbes, J. Gill, C. Hastie, F. Ho, B. Jani, D.F.
Mackay, B. Nicholl, C. O'Donnell, N. Sattar, P. Welsh, J.P. Pell, S.V. Katikireddi, E.
Demou, Occupation and risk of severe COVID-19: prospective cohort study of 120
075 UK Biobank participants, Occupational and Environmental Medicine 78 (5)
(2021) 307–314.

https://doi.org/10.1016/j.humimm.2022.09.008
https://doi.org/10.1016/j.humimm.2022.09.008
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0015
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0020
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0020
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0020
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0020
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0025
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0025
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0025
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0030
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0030
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0030
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0030
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0035
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0035
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0035
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0035
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0040
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0040
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0040
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0040
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0045
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0045
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0045
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0050
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0050
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0050
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0060
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0060
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0060
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0065
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0065
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0070
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0070
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0070
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0070
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0075
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0075
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0075
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0080
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0080
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0080
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0085
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0085
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0085
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/%23/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/%23/
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0100
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0100
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0100
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0100
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0110
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0110
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0110
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0110
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0115
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0115
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0115
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0115
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0120
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0120
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0120
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0120
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0125
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0125
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0125
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0125
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0130
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0130
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0130
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0130
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0130
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0130
http://refhub.elsevier.com/S0198-8859(22)00202-6/h0130

	In-silico study of influence of HLA heterogeneity on CTL responses across ethnicities to SARS-CoV-2
	1 Introduction
	2 Materials and methods
	2.1 SARS-CoV-2 protein sequences and HLA Class-I allele frequency data
	2.2 Prediction of CTL epitopes
	2.3 Construction of synthetic populations

	3 Results
	3.1 Host diversity in CTL responses
	3.2 Comparison of CTL epitope strength across populations (CTLpop)

	4 Discussion
	Declaration of Competing Interest
	Supplementary data
	References


