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Abstract

Background: The metabolite content of a seed and its ability to germinate are determined by genetic makeup and
environmental effects during development. The interaction between genetics, environment and seed metabolism
and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and
S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two
consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass
spectrometry (GC-MS) metabolic profiling and germination tests.

Results: Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity
significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical
comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids,
while positive correlations were found for several organic acids and the N metabolites urea and dopamine.
Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity,
which were also characterized by defined metabolic changes in the seed.

Conclusions: An integrative analysis of the metabolite and germination data revealed metabolite levels
unambiguously associated with germination percentage and rate, mostly conserved in the different tested
seed development environments. Such consistent relations suggest the potential for developing a method of
germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of
primary metabolic processes in germination.
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Background
Seeds play a major role in agriculture, both as products
for human food and animal feed and as plant propagation
units. The seed quality for propagation is determined by
its potential to germinate and produce viable and robust
seedlings [1, 2]. The uniformity and rate of germination
are important agronomic traits, especially in crops that
are sown directly in the field [3], which are governed by
internal mechanisms such as plant hormone levels, tran-
scription regulation [4] and environmental conditions,

including water availability, temperature, nitrate levels and
light [5–7].
Seed germination is inherently related to seed metab-

olism, which changes throughout its maturation, desic-
cation and germination processes [8, 9]. Maturing seeds
accumulate transcripts and metabolites necessary for
seed germination [10]. During germination, glucose at
high levels can support abscisic acid (ABA) signaling,
delaying germination and starch degradation in tomato
[11] and Arabidopsis [12]. Intermediates of the tricarb-
oxylic acid (TCA) cycle accumulate during seed priming
[13], likely in preparation for the high energy demands
of germination. Amino acids are also used as energy pro-
duction sources during the early stages of germination
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via various pathways [2, 14]. Cell wall metabolism is es-
sential for the loosening of the endosperm cap in tomato
and for the elongation of the radicle leading to germin-
ation [15]. Despite these studies, the understanding of
the relation between primary seed metabolism and ger-
mination is still poor [16]. Fundamental questions re-
main unanswered, including: what are the metabolic
processes required to enable or boost germination and
seedling establishment? Therefore, an integrated view of
the existing degree of variability in the metabolite profile
of seeds is necessary. High-throughput methods, such as
gas chromatography coupled to a mass spectrometer
(GC-MS) [17], combined with multivariate approaches
for analyzing mapping populations’ natural diversity, can
aid in developing a comprehensive picture of the meta-
bolic network.
The introgression line (IL) population between Sola-

num Pennelli and S. esculentum, cultivar M82 [18, 19]
has proven to be an excellent tool for researching and
identifying QTLs [20], leading to the cloning of agro-
nomically and biologically important genes [21, 22]. In
exploring the link between metabolism and plant traits,
using the natural variability of the IL population,
Schauer et al. [23] identified 889 fruit metabolic QTLs
and found that central metabolites were more associated
with morphological traits than metabolites related to
secondary metabolism. Schauer et al. [24] also studied
the mode of inheritance of the tomato fruit’s metabolic
traits. They found that metabolite content is affected by
environmental and genetic factors, and that metabolites
sharing QTLs are probably jointly regulated. In the same
IL population, Toubiana et al. [25] identified 30 QTLs
likely regulating seed metabolism. The analysis revealed
a group of amino acids that were highly co-regulated in
association with a group of genes on chromosome 2 of
the glycine and serine metabolism [26].
Salinity affects seed germination and crop establish-

ment worldwide, leading to significant reductions in
yield and crop quality. Tomato is considered to have a
moderate tolerance to salt stress and is affected by salin-
ity starting at a soil extract electrical conductivity (EC)
of 2.5–3 dS/m [27]. The effect of salinity on tomato ger-
mination has been studied in a wide range of wild spe-
cies and cultivar accessions [27, 28], and the results
show reduced germination percentages and delays in the
germination rate. The wild tomato S. pennelli has a bet-
ter tolerance to germination under saline conditions,
and several attempts were made to discover the QTLs
and wild-type alleles related to this phenotype [29, 30].
While the effects of various environmental conditions
during development on germination have been studied
[31–34], the mediating effect of parental genetics and
growth conditions during seed development on seed me-
tabolism and germination has not been entirely grasped.

By employing seeds collected from the ILs grown in
the field under fresh water and a mild salinity, we ex-
plored the link between the seed metabolic traits and
parental environmental conditions and genetics on
modulating seed germination.

Results
In this study, 72 ILs and their genetic background culti-
var M82 were examined for the effect of growth under
EC = 1.5 dS/m (control) and EC = 6 dS/m (saline) during
two seasons (2010 and 2011) on seed numbers, weight,
metabolic content and germination. Seeds developed on
plants grown under saline irrigation (SDS) were com-
pared to seeds developed on plants grown in fresh water
(SDF), as the control, for all examined traits. Identifica-
tion of putative QTLs was attained by comparing the ILs
to M82 for any given trait.

Seed weight
The average weight of mature seeds was determined and
compared between treatments and lines. No lines had a
significant (p < 0.01) difference in seed weight between
SDS and SDF. There were, however, differences in seed
weight among some ILs and M82 (Table 1). In SDF, five
ILs (IL1-1-3, IL2-4, IL4-3-2, IL7-2 and IL11-1) had sig-
nificantly (p < 0.01) lower seed weights than M82, and
six ILs (IL7-4, IL7-4-1, IL8-2-1, IL8-3-1, IL10-1-1 and

Table 1 ILs with putative QTLs for seed weight

SDF SDS

Seed Seed

Weight Weight

(mg) (sd) (mg) (sd)

M82 2.698 (0.18) M82 2.609 (0.16)

IL1-1-3 − 2.162 (0.21)* IL1-1-3 − 2.114 (0.14)**

IL2-4 − 2.123 (0.09)*** IL1-4-18 + 3.138 (0.24)*

IL4-3-2 − 2.148 (0.06)*** IL3-5 + 3.042 (0.14)**

IL7-2 − 2.393 (0.07)** IL4-3-2 − 2.221 (0.16)*

IL7-4 + 3.040 (0.1)** IL7-4-1 + 3.192 (0.17)**

IL7-4-1 + 3.497 (0.21)* IL7-5-5 + 2.880 (0.12)*

IL8-2-1 + 3.145 (0.2)* IL8-2-1 + 3.108 (0.25)*

IL8-3-1 + 3.239 (0.18)* IL8-3 + 2.982 (0.05)***

IL10-1-1 + 3.280 (0.27)* IL8-3-1 + 3.218 (0.22)*

IL11-1 − 2.090 (0.14)** IL10-3 + 3.069 (0.17)*

IL11-4-1 + 3.195 (0.15)** IL11-4 + 2.926 (0.06)***

IL11-4-1 + 3.211 (0.17)**

IL12-1-1 + 3.357 (0.11)***

ILs that had significantly increased or decreased seed weight compared to
M82 in season 1 are marked by + or−, respectively. ILs with significant
differences under both conditions are presented in bold
Asterisks mark significance levels (five replicates) with the Bcp of *p < 0.05,
**p < 0.01, ***p < 0.001
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IL11-4-1) had significantly higher seed weights. In SDS,
IL1-1-3 and IL4-3-2 had significantly lower seed
weights than M82, and eleven ILs (IL1-4-18, IL3-5, IL7-
4-1, IL7-5-5, IL8-2-1, IL8-3, IL8-3-1, IL10-3, IL11-4,
IL11-4-1 and IL12-1-1) had seed weights that were sig-
nificantly higher than M82. Six ILs (noted in bold) had
matching significant differences in both treatments, sug-
gesting putative robust QTLs for seed weight. A gene in-
fluencing seed size has been isolated from the IL4-3-2
genomic region [35], showing the potential of similar
QTL-based research.
A comparison of IL seed weight with M82 between

the two seasons revealed consistent trends of variance
(Additional File 1: Table S2). Overall, there was consid-
erable overlap in the ILs with significant differences
compared to M82 in the four growth conditions of the
two treatments and both seasons. Twelve of the 32 puta-
tive QTLs detected were confirmed in at least two con-
ditions, and seven of the putative QTLs were shared in
all conditions. The general stability in seed weight
among the ILs and M82 across environmental factors,
such as seasons and salinity treatments, suggests a
strong genetically regulated trait that is less affected by
the environment. No other physiological or metabolic
trait of the seed that was measured in this study dis-
played a similar stability.

Seed number and seed abortion
In order to improve the understanding of resource allo-
cation in the mother plants in response to salinity, the
seeds of individual fruits from each line and treatment
were sorted according to maturity and counted (see
Methods section). Only two lines, IL5-4 and IL7-4, had
a significant difference in total seed number in SDS vs.
SDF. The number of mature seeds per M82 fruit was
significantly (p < 0.01) reduced, by nearly 50%, in SDS
compared to SDF (Fig. 1). M82 also had a significant re-
duction in maturation percent, which was calculated as
the number of mature seeds out of the total seed num-
ber, in SDS compared to SDF. All but one IL displayed a
lower maturation percentage in SDS than in SDF, 13 of
which were significant. Therefore, all lines were bulked
for statistical analysis of the salinity effect in order to
improve statistical power (Fig. 1). The bulked analysis
confirmed that the decrease in the number of mature
seeds and the increased number of aborted seeds per
fruit was a significant (p < 0.0001) response to salinity
displayed across the population. The numbers of aborted
seeds per fruit in M82 was higher than the population
average in both growth conditions. The number of ma-
ture seeds per fruit in M82 was slightly higher than the
population average in SDF, but substantially lower than
the average in SDS, reflected in a greater drop in matur-
ation percentage for the control line. In contrast, the

seed weight of M82 was close to the average weight of
the ILs, and the total variation (presented by the error
bars in Fig. 1) was small relative to the variation in both
mature and aborted seed numbers.
Among SDF, 28 ILs had significant (p < 0.01) differences

in maturation percentage compared to M82 (Additional
File 1: Table S3), all of them showing increased maturation
percentages ranging from 1.12- to 1.17-fold over M82. In
SDS, all but one (IL8-1-1, which had a 0.9-fold decrease)
of the 16 significantly differing ILs had increased
(1.13–1.64 fold-change) maturation percent compared
to M82. The ILs with a significant increase of matur-
ation percent in both SDS and SDF (IL2-6, IL2-6-5,
IL5-1, IL6-4, IL10-1-1, IL10-2 and IL11-4-1) likely indi-
cate potential QTLs for genetic regulation of this trait.
All lines with significant differences between SDS and
SDF displayed an increase in aborted seed number, a
decrease in mature seeds and, therefore, a reduction in
maturation percent.
Following these findings, we hypothesize that within

fruit competition, particularly under salinity stress, leads
to abortion of part of the potential seeds to enable the
remaining ones to develop to full maturity in order to
maintain the typical, genetically determined, average
seed weight to preserve seed quality when resources are
limited. To elucidate whether the conservation of seed
weight is accompanied by preservation of seed quality,
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Fig. 1 Seed weight and numbers in response to salinity. Whole
population maturation percent (a), average seed weight in grams
(b), number of mature seeds per fruit (c) and number of aborted
seeds per fruit (d) are presented by the bars. Corresponding average
levels of M82 are noted by black horizontal lines. Error bars:
standard error
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the metabolite profile was evaluated by GC-MS, and ger-
mination trials were conducted.

Metabolic effects of salinity
The relative content of soluble primary metabolites in
the whole mature dry seed was determined by GC-MS.
In samples from the whole population, 65 metabolites
were annotated and quantified. Only annotated metabo-
lites were included in the analysis. Among the metabo-
lites that were annotated were amino acids, sugars,
nitrogen containing metabolites, TCA cycle intermedi-
ates, organic acids and others that do not fall into these
categories.
The difference in relative metabolite content (RMC) in

the dry seed between SDS and SDF of each line was ex-
amined by a t-test for each line for the first season.
Overall, 53 significant (p < 0.01) differences in RMC be-
tween SDS and SDF were detected out of 5153 pairwise
comparisons (Table 2). The low number of significant
changes may be due to the variability between replicate
experimental plots, or due to an inherent resilience of
seed metabolism to environmental factors associated
with robust seed features, i.e., seed weight. No metabol-
ite class had a distinct representation in the differences
detected. Fructose, 2-hydroxyglutarate and dopamine
each had significant changes in three ILs, while other
metabolites differed significantly in one or two lines.
Increased abundance in response to salinity treatment

in M82 was observed for asparagine, cysteine, ferulate,
γ-amino butyric acid (GABA) and methionine, but
monomethylphosphate (MMP) had a 2-fold decrease.
IL3-2 had the highest number (10) of significant (p < 0.01)
changes in metabolite content of SDS compared to SDF.
In this IL, aspartate increased and nine other metabolites
(4-hydroxybenzoate, fructose, 2-hydroxyglutarate, Isoleu-
cine, lactate, methionine, arginine, lysine and valine) de-
creased in SDS. IL2-1 had a decrease in GABA and an
increase in nicotinate, alloinositol and dopamine. IL12-3
and IL2-4 displayed three instances of significantly chan-
ged metabolite abundance between treatments. Other ILs
had two or fewer significant differences.

Seed putative metabolic QTLs in SDF (f-QTLs), SDS (s-QTLs)
and fold-change (FC)-QTLs
Potential loci for metabolite regulation were examined
by comparing the RMC of each IL to M82 of seeds from
plants grown under the same conditions. In SDF, 94 sig-
nificant (p < 0.05; Bc: Bonferroni correction) differences
were found between the ILs and M82. Chromosomes 1, 2
and 9 stand out in having many putative QTLs (Additional
File 1: Table S4). The ILs showing the most abundant
metabolite changes in comparison to M82 were: IL1-2
(11 f-QTLs), IL2-1-1 (8 f-QTLs) and IL9-2 (10 f-QTLs).
The results for SDS (Additional File 1: Table S5) suggest

99 putative QTLs (p < 0.05, Bc). The most distinct ILs with
many putative QTLs in the salinity treatment were IL2-1
(8 s-QTLs), IL2-1-1 (7 s-QTLs), IL2-1-1 also had a notable
number of QTLs in SDF, IL3-2 (7 s-QTLs), IL3-4 (11 s-
QTLs), and IL8-1-3 (8 s-QTLs).
In both SDS and SDF, a conserved relation between

co-located putative QTLs of amino acids and other ni-
trogen compounds was found (Additional File 1: Tables
S4-S5). For example, when most protein amino acids in-
crease in abundance, GABA and ornithine increase as
well, but urea and dopamine display a reduction, and
vice versa. It is noteworthy that simple sugars (glucose,
fructose, arabinose and sorbitol-sugar alcohol) frequently
have joint QTLs, indicating putative loci of a shared
regulation mechanism. In the present experiment, su-
crose did not share QTLs with simple sugars, contrary
to the findings by Toubiana et al. [25], which might sug-
gest an environmental contribution to the sucrose level
in seeds. In general, there was little overlap in specific
putative QTLs between the separate treatment maps
(Additional File 1: Tables S4-S5). However, chromo-
somes 1, 2 and 9, having several QTLs in both SDS and
SDF maps, appeared to be important regulatory regions
for seed metabolism (e.g., IL2-1-1). The strength of the
IL2-1-1 QTL is enforced by matching s-QTLs for pro-
line and methionine found in IL2-1 whose introgression
segment contains that of IL2-1-1.
In order to locate the putative QTLs controlling the

response to seed development under salinity, the FC of
the RMC in SDS over SDF of each metabolite in each IL
was compared to the respective FC of M82. A total of
167 putative QTLs for the metabolic response to salinity
were detected (Fig. 2). The metabolites with the highest
number of FC-QTLs were dopamine (11), urea (7), fruc-
tose (5) and ferulate (6). The ILs showing the highest
number of significant (p < 0.05, Bc) differences in metab-
olite FC, compared to the M82 FC, were IL1-4-18 (15
FC-QTL), IL2-1 (8 FC-QTL), IL3-2 (10 FC-QTL) and
IL3-4 (11 FC-QTL). The many FC-QTL and s-QTLs in
IL3-2 and IL3-4 stand out in opposition to the few QTLs
in SDF. The repeated metabolic alteration measurements
in response to salinity in these lines suggest a noteworthy
stress response element harbored in their introgression
segments, which influences seed metabolism.

Germination
In order to investigate the implication of the seed me-
tabolite content and developmental conditions on ger-
mination vigor, three measures were quantified: (i) final
germination percent, (ii) day of 50% germination (T50),
as a measure of germination rate, and (iii) standard devi-
ation of germination day within an experimental plate
(SD-plate) as a measure of germination uniformity. There
was a general correspondence and a significant (p < 0.0001)
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correlation between the three measures (Figs. 3 and 4).
Germination percent was negatively correlated to T50
(r = −0.47, SDF; r = −0.51, SDS) and SD-plate (r = −0.54,
SDF; r = −0.56, SDS). This shows that plots (each field
plot consisting of four plants from which seeds were
pooled) with a high germination percent tended to have
a lower T50 and, thus, a faster germination rate and a
low SD within the plates, resulting in more uniform
germination. Plots displaying such traits would be con-
sidered to have high seed vigor. T50 and SD-plate were
found to be positively correlated to each other (r = 0.59,
SDF; r = 0.65, SDS). Despite the general correspondence,
differences between the germination traits in QTLs and
response to growth conditions were found.
Most ILs displayed no significant differences in ger-

mination in SDS compared to SDF. M82 and IL6-1 had
a significant (p < 0.05) increase in T50 in SDS compared
to SDF, and IL2-5 and IL11-4 had significant decreases
in germination percent (Table 3), thus reflecting the re-
duced vigor of SDS. IL1-1-3 showed a decrease in T50,
as well as an increase in germination percent. Additionally,
IL2-1-1, IL3-4 and IL8-3-1 had a significantly increased
germination percent in SDS, indicating improved seed
vigor. IL4-1, IL7-4 and IL12-1 all had reduced SD-plate in
SDS. It is noteworthy that despite the statistically signifi-
cant differences, the extent of change in germination per-
cent was mild and ranged from a 7% decrease to an
increase of 14% in SDS compared to SDF. The impact of
salinity on T50 and SD-plate was more severe, with two-
day changes in T50 and reductions to 48-58% in SD
within the plate, in the lines with significant differences.
A higher number of significant differences in germin-

ation were seen in the comparison of the ILs to M82
(Table 4). In SDF, three ILs (IL1-1-3, IL3-4 and IL9-2-6)
had a significantly lower germination percent compared to
M82 and eight ILs (IL2-1-1, IL2-6, IL6-4, IL7-1, IL7-5-5,

Table 2 Metabolites significantly differing in SDS compared to SDF

RMC RMC

Line Metabolite SDF (se) SDS (se)

IL3-2 Lactate 1.263 (0.17) 0.444 (0.04)*

Isoleucine 1.123 (0.05) 0.683 (0.03)**

Valine 1.384 (0.25) 0.439 (0.06)*

Methionine 1.321 (0.21) 0.265 (0.06)*

Aspartate 0.522 (0.07) 1.804 (0.1)**

2OH glutarate 2.728 (0.78) 0.510 (0.12)*

4OH benzoate 1.265 (0.17) 0.476 (0.06)*

Arginine 1.646 (0.44) 0.417 (0.02)*

Fructose 0.837 (0.11) 0.343 (0.03)*

Lysine 0.976 (0.17) 0.343 (0.05)*

M82 MMP 1.305 (0.18) 0.632 (0.1)*

Methionine 0.817 (0.12) 1.257 (0.12)*

GABA 0.842 (0.09) 1.292 (0.08)***

Cysteine 0.850 (0.08) 1.294 (0.1)**

Asparagine 0.863 (0.08) 1.143 (0.07)**

Ferulate 0.767 (0.06) 1.429 (0.15)***

IL2-1 Nicotinate 0.642 (0.06) 1.206 (0.11)*

GABA 1.017 (0.21) 0.267 (0.07)*

Alloinositol 0.730 (0.06) 1.149 (0.07)*

Dopamine 0.570 (0.1) 1.898 (0.15)*

IL2-4 Glycerate 0.715 (0.2) 2.520 (0.15)*

Fumarate 0.854 (0.16) 3.347 (0.45)*

Alloinositol 1.767 (0.24) 0.528 (0)*

IL12-3 2OH glutarate 0.611 (0.06) 1.192 (0.09)**

Fructose 0.472 (0.14) 1.953 (0.17)*

Glucose 0.567 (0.09) 1.780 (0.18)**

IL3-1 Succinate 0.520 (0.07) 1.143 (0.12)*

2OH glutarate 0.534 (0.05) 1.598 (0.25)*

IL7-1 Glycerol 0.355 (0.07) 0.968 (0.25)*

Saccharate 1.263 (0.13) 0.579 (0.18)*

IL7-5 Tartarate 0.730 (0.16) 1.777 (0.24)*

Saccharate 1.378 (0.07) 0.655 (0.15)*

IL1-1 Citrate 0.184 (0.03) 1.145 (0.2)*

IL1-1-3 Isoleucine 1.190 (0.08) 0.707 (0.07)*

IL1-3 Gluconate 1.082 (0.11) 1.864 (0.1)*

IL1-4 Glycerol 2 phosphate 0.564 (0.03) 0.873 (0.06)*

IL2-3 Tryptamine 2.284 (0.3) 1.072 (0.06)*

IL3-4 Aspartate 0.686 (0.09) 1.767 (0.27)*

IL3-5 Tyramine 0.965 (0.19) 0.189 (0.24)*

IL4-1-1 Arabinose 0.471 (0.04) 1.151 (0.18)*

IL4-2 Dopamine 0.879 (0.2) 0.199 (0.33)*

IL4-3-2 Galactarate 0.559 (0.04) 1.022 (0.58)*

IL5-3 Cysteine 2.114 (0.12) 1.092 (0)*

Table 2 Metabolites significantly differing in SDS compared to SDF
(Continued)

IL6-4 Arabinose 0.307 (0.06) 0.774 (0.42)*

IL7-3 Dopamine 3.641 (1.01) 0.636 (0.93)*

IL7-4-1 Sorbitol 0.231 (0.03) 1.143 (0.12)**

IL9-1 Alanine 0.476 (0.06) 0.935 (0.44)*

IL9-3 Glucose 2.714 (0.03) 0.628 (0.35)*

IL9-3-1 Arginine 1.832 (0.26) 0.864 (0.13)*

IL11-1 Fructose 0.277 (0.02) 0.497 (0.03)**

IL11-4-1 Glycerol 1.432 (0.17) 0.475 (0.09)**

IL12-2 Alanine 0.415 (0.05) 0.875 (0.05)*

IL12-4 Lactate 0.484 (0.05) 1.315 (0.19)*

The average RMC and standard error (se) in SDS and SDF for lines in which
there was a significant difference between treatments
Asterisks mark significant differences between treatments of *p < 0.01,
**p < 0.001, ***p < 0.0001
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IL8-1-3, IL10-2 and IL11-4) had higher. In SDS, all eleven
ILs (IL2-1-1, IL3-2, IL3-4, IL5-1, IL7-3, IL7-4, IL7-5-5,
IL8-3-1, IL9-2-5, IL9-3-1 and IL12-1) with significant dif-
ferences displayed a higher germination percent than
M82. IL2-1-1, IL3-4 and IL7-5-5 had significant advan-
tages over M82 under both conditions.
Only three ILs (IL6-4, IL7-2 and IL8-1-1) were found

to have significantly lower T50 than M82, and 20 ILs
(IL1-1-3, IL11-4-1, IL2-1, IL2-1-1, IL2-6, IL2-6-5, IL4-1,

IL4-1-1, IL5-5, IL7-5-5, IL8-1-3, IL8-2, IL8-2-1, IL9-1-2,
IL9-2, IL9-2-6, IL10-1, IL11-3, IL12-1-1 and IL12-3) had
T50 higher than M82 for SDF. Two of these ILs, IL11-3
and IL9-2-6, also had higher levels than M82 in SDS.
Additional ILs with elevated T50, compared to M82 in
SDS, were IL3-4, IL4-3-2, IL5-1 and IL6-1. Faster ger-
mination, i.e., lower T50, was found in IL1-4-18, IL7-2
(also in SDF) and IL9-2-5 in SDS. IL1-1-3 had a slower
and lower germination percent than M82 in SDF but

Fig. 2 QTL map of metabolic response to salinity. Metabolites which had significant (p < 0.05, Bc) differences in FC in an IL compared to M82 are
noted in parallel to the genomic location of the introgression segment. Colors represent metabolite class, as indicated
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significantly improved in response to salinity in SDS,
leading to a level similar to M82 in SDF.
For SDF, most differing ILs (12 in number; IL2-1-1,

IL3-5, IL4-1, IL6-1, IL7-4, IL8-1-3, IL8-2, IL9-3, IL9-3-2,
IL10-1-1, IL11-3 and IL12-1) had a higher SD-plate than
M82. IL7-1 and IL8-1-1 had a lower SD-plate in SDF.
IL6-1 and IL10-1-1 and IL4-2 had a higher SD-plate in

SDS. Three ILs had a decrease in SD-plate in SDS: IL2-
1, IL7-4-1 and IL11-3. Interestingly, IL11-3 had a higher
than M82 SD-plate in SDF and a lower one in SDS, but
had a consistently higher T50 in both conditions.
It is noteworthy that IL2-1-1 was the only IL that had

a significantly higher germination percent than M82 for
both SDS and SDF, and a significantly elevated germination
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percent for SDS. However, in SDF, both T50 and SD-plate
were also higher. Notably, a high number of significant me-
tabolite differences also characterized this IL compared to
M82 in both conditions (a map with QTLs overlapping in
germination and metabolite traits in SDS can be found in
Additional File 2). IL3-4 had a lower germination percent
than M82 in SDF but had a significant increase in SDS,
leading to an improved germination percent over M82 in
SDS, though at a slower rate. This same IL had a high num-
ber of significant metabolic changes in response to salinity.
These results emphasize the correspondence existing be-
tween genetic and metabolic factors modulating germin-
ation and their interaction with the maternal environment.
Taken together, the analysis of the IL population re-

vealed putative genomic regions (i.e., QTLs) regulating
the measured seed traits. Comparison of the QTL loca-
tions for the various traits and conditions revealed co-
localization of metabolic changes and of changes in ger-
mination traits. Subsequently, multivariate analysis
methods were applied to study the variation and correla-
tions between traits in the population.

Population-wide integrative analysis
Previous studies have shown the potential for using the
intrinsic variation in metabolic content within a popu-
lation for inferring biologically significant correlations
[25, 36]. Here we used a correlation network analysis to
investigate the relations between metabolite co-response
to genetic alteration and to the maternal environment and
the seed germination.

Network analysis revealed a conserved network topology
under various conditions
In order to examine the inter-relations between the
metabolite changes, pairwise correlations of RMC of all

metabolite pairs were calculated for each of the field
conditions. Correlation results from the first season
were used to construct a network for visualization and
for graph-based analysis (Figs. 3 and 4). Metabolite cor-
relations from the second season showed the strongly
correlated groups of metabolites preserved while the
networks had lower connectivity (Additional Files 3
and 4). The significance thresholds (p < 0.05; false dis-
covery rate (FDR): |r| > 0.4) were optimized using graph
theory measures as performed by Fukushima et al. [37].
Significant correlations were depicted as edges between
the nodes, representing metabolites and germination
traits. Only metabolites that had significant correlations
were included in the networks. The network based on
the SDS dataset included 527 significant correlations
connecting 60 nodes (Table 5). The SDS network had a
higher density than the SDF network, which had 301
edges and 55 nodes. The greater interconnectivity of
the SDS network was reflected by a variety of measures,
including a higher average nodal degree and clustering
coefficient, and a lower average path length and net-
work diameter. Networks based on stress conditions
have previously been found to have higher connectivity
than networks based on control conditions in grapevine
[38]. The two networks, based on SDS and SDF, had
more positive correlations than negative ones, a feature
already noted in previous studies [25].
All metabolites were divided into communities using

the “Walktrap” algorithm. Under both growth conditions,
the metabolites formed two large communities with sev-
eral additional small communities. We found that particu-
larly conserved communities in the network tended to
include metabolites sharing a biochemical pathway, indi-
cating a stronger coordination of biochemically related
metabolites, which supports other studies [37, 39].
The first and largest community included most amino

acids, some organic acids and other metabolites. Aspar-
tate and glutamate were usually correlated to each other
and were found to be negatively correlated to the amino
acids of the central cluster. Aspartate and glutamate are
primary precursors for amino acid biosynthesis by transfer
of an amino group to oxaloacetate and 2-oxoglutarate,
respectively ([39]; KEGG). The negative correlations
between the downstream amino acids and aspartate and
glutamate is most likely due to their precursor-product re-
lation in amino acid metabolism [40]. The positive correla-
tions between the downstream amino acids, such as
lysine, threonine and isoleucine for aspartate, and proline
and arginine for glutamate, demonstrate their coordinated
level of biosynthesis.
The second large community included the simple sugars

and most secondary metabolites. The simple sugars (fruc-
tose, glucose and arabinose) were strongly correlated in our
networks, though with more differences between seasons,

Table 3 Germination response to salinity

FC % FC T50 FC SDplate

M82 0.954 1.286* 1.815

IL1-1-3 1.186* 0.615** 0.632

IL2-1-1 1.021* 0.833 0.655

IL2-5 0.931* 1.000 0.936

IL3-4 1.155* 1.000 1.392

IL4-1 1.037 1.000 0.579**

IL6-1 0.724 1.500* 1.349

IL7-4 1.318 0.517 0.584*

IL8-3-1 1.029* 1.000 1.749

IL11-4 0.967* 0.857 1.750

IL12-1 1.010 0.750 0.486*

The ratio of germination measurements in SDS to SDF for lines in which there
was a significant difference between treatments
Asterisks mark significant differences between treatments with the Bcp of
*p < 0.05, **p < 0.01, ***p < 0.001
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Table 4 Putative germination QTLs for SDF and SDS

SDF SDS

% (se) T50 (se) SDplate (se) % (se) T50 (se) SDplate (se)

M82 95.13 (0.89) 2.66 (0.14) 1.00 (0.08) 90.75 (2.75) 3.42 (0.32) 1.82 (0.76)

IL1-1-2 97.33 (1.33) 2.33 (0.33) 0.87 (0.24) 95.94 (2.06) 3.00 (0) 0.92 (0.13)

IL1-1-3 79.24 (4.20)* 5.00 (0.40)*** 1.49 (0.22) 93.94 (1.50) 3.08 (0.07) 0.94 (0.13)

IL1-3 87.03 (6.78) 3.00 (0.57) 0.96 (0.14) 76.75 (16.5) 3.83 (0.44) 1.10 (0.45)

IL1-4 76.04 (23.9) 4.00 (1) 1.63 (0.74) 77.00 (23) 4.25 (1.75) 1.56 (0.74)

IL1-4-18 95.99 (1.14) 2.50 (0.28) 1.08 (0.13) 93.78 (2.32) 2.00 (0)*** 0.73 (0.22)

IL2-1 91.16 (1.73) 3.00 (0)** 0.73 (0.07) 97.33 (0.66) 2.33 (0.33) 0.47 (0.00)***

IL2-1-1 97.91 (0.08)** 3.00 (0)** 1.41 (0.13)* 100.00 (0)* 2.50 (0.5) 0.93 (0.10)

IL2-2 76.52 (10.3) 3.50 (0.56) 1.35 (0.30) 96.00 (1.54) 3.17 (0.30) 0.98 (0.05)

IL2-3 91.33 (1.33) 3.33 (0.33) 1.27 (0.25) 67.74 (NA) 4.00 (NA) 1.62 (NA)

IL2-5 98.67 (1.33) 3.00 (0.57) 1.14 (0.32) 91.87 (1.04) 3.00 (0) 1.07 (0.08)

IL2-6 98.00 (0)** 3.00 (0)** 0.65 (0.11) 91.00 (1) 3.00 (0) 1.50 (0.18)

IL2-6-5 97.21 (1.83) 3.00 (0)** 0.84 (0.22) 97.96 (2.04) 3.00 (0) 1.01 (0.38)

IL3-1 94.00 (6) 2.50 (0.5) 1.44 (0.17) 90.67 (6.56) 3.67 (0.33) 1.05 (0.24)

IL3-2 86.65 (4.40) 3.38 (0.37) 1.28 (0.49) 98.50 (0.95)* 2.00 (0.40) 0.89 (0.16)

IL3-4 85.71 (0.29)*** 4.00 (1) 0.85 (0.29) 99.00 (1)* 4.00 (0)** 1.18 (0.37)

IL3-5 95.97 (1.98) 3.00 (0.57) 1.72 (0.21)* 96.67 (3.33) 3.00 (0.57) 0.87 (0.36)

IL4-1 92.58 (3.29) 3.00 (0)** 2.21 (0.16)*** 95.98 (1.97) 3.00 (0) 1.28 (0.06)

IL4-1-1 97.33 (2.66) 3.00 (0)** 0.89 (0.12) 92.00 (4) 3.50 (0.5) 1.29 (0.38)

IL4-2 98.00 (1.15) 3.00 (0.57) 1.21 (0.36) 49.83 (8.16) 8.25 (2.25) 2.40 (0.22)***

IL4-3 92.67 (7.33) 4.67 (1.20) 1.53 (0.63) 95.00 (5) 3.50 (0.5) 1.21 (0.00)

IL4-3-2 93.93 (2.36) 3.33 (0.33) 1.19 (0.34) 90.67 (6.56) 4.33 (0.33)* 1.32 (0.53)

IL5-1 100.00 (NA) 2.00 (NA) 0.86 (NA) 99.00 (1)* 4.00 (0)** 1.26 (0.19)

IL5-3 92.67 (6.35) 4.00 (1) 1.89 (0.61) 91.00 (1) 3.50 (0.5) 1.11 (0.20)

IL5-4 97.00 (1) 3.25 (0.25) 1.23 (0.18) 98.00 (NA) 4.00 (NA) 1.44 (NA)

IL5-5 97.00 (1) 3.00 (0)** 0.43 (0.11) 92.00 (4) 3.33 (0.66) 1.18 (0.05)

IL6-1 80.00 (8.32) 3.33 (0.33) 1.94 (0.22)** 57.92 (19.6) 5.00 (0)*** 2.62 (0.07)***

IL6-4 100.00 (0)*** 1.68 (0.16)* 1.26 (0.79) 95.33 (2.90) 2.87 (1.10) 0.89 (0.25)

IL7-1 99.33 (0.66)** 2.33 (0.33) 0.65 (0.02)** 100.00 (NA) 2.00 (NA) 0.75 (NA)

IL7-2 96.67 (2.40) 2.00 (0)*** 1.02 (0.12) 94.04 (3.96) 2.00 (0)*** 0.94 (0.35)

IL7-3 82.83 (12.8) 3.00 (1) 1.23 (0.44) 100.00 (0)* 2.50 (0.5) 0.23 (0.22)

IL7-4 75.10 (8.48) 4.83 (1.16) 1.89 (0.05)*** 99.00 (1)* 2.50 (0.5) 1.10 (0.05)

IL7-4-1 98.00 (1.15) 3.00 (0.57) 0.76 (0.14) 96.67 (3.33) 3.33 (0.66) 1.49 (0.02)*

IL7-5 94.67 (2.40) 2.33 (0.33) 1.32 (0.23) 95.92 (4.08) 4.00 (1) 1.68 (1.06)

IL7-5-5 99.00 (1)* 3.00 (0)** 1.22 (0.33) 98.00 (1.15)* 2.67 (0.33) 0.82 (0.16)

IL8-1 96.63 (0.66) 2.33 (0.33) 0.59 (0.13) 90.47 (7.49) 3.00 (0) 1.02 (0.24)

IL8-1-1 98.00 (2) 2.00 (0)*** 0.39 (0.04)* 92.00 (NA) 3.00 (NA) 2.05 (NA)

IL8-1-3 99.33 (0.66)** 3.67 (0.33)* 1.39 (0.03)*** 97.00 (1) 3.00 (0) 0.98 (0.21)

IL8-2 92.00 (3.05) 3.67 (0.33)* 1.52 (0.18)* 96.67 (0.66) 3.00 (0) 0.93 (0.41)

IL8-2-1 96.00 (4) 3.00 (0)** 1.00 (0.18) 95.16 (0.71) 2.67 (0.33) 1.24 (0.07)

IL8-3 94.44 (5.55) 3.00 (0.57) 1.04 (0.42) 97.92 (2.08) 3.00 (0) 1.23 (0.72)

IL8-3-1 97.22 (0.61) 2.33 (0.33) 0.58 (0.13) 100.00 (0)* 2.33 (0.33) 1.01 (0.23)

IL9-1 95.57 (1.59) 2.40 (0.24) 0.98 (0.22) 75.00 (8.37) 3.40 (0.48) 1.65 (0.30)
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as previously described [25]. For fructose and glucose, it is
not surprising given their related metabolic pathway and
utilization. Arabinose, however, is not known to share its
metabolic pathways (KEGG, PlantCyc: [41]), but it was
closely correlated to the hexoses in both growth conditions

of the first season. The finding that sucrose is not immedi-
ately correlated to the simple sugars may be surprising, but
has been seen previously [42]. Secondary metabolites of the
phenylpropanoid biosynthesis pathway (KEGG; cinnamate,
ferulate, caffeate) were consistently correlated and clustered
in the second community. They were also positively corre-
lated to their precursor phenylalanine, which was clustered
in the central amino acid community. Phenylalanine prod-
ucts in other pathways, benzoate and salicylate, were nega-
tively correlated to them. This is possibly a sign of
competition between the pathways.
In the network based on SDF, a third community was

formed of alloinositol, galactinol, salicylate, threonate,
glycerol-3-phosphate and glycerol-2-phosphate. In the
SDS network, these metabolites (excluding glycerol-2-
phosphate) were interlinked with those of the second
community and formed one community.
Each of the two large communities included metabolites

with both positive and negative correlations. In order to
better explore the landscape of relations among the me-
tabolites, each community in the network was divided into
subsets of metabolites positively correlated to each other

Table 4 Putative germination QTLs for SDF and SDS (Continued)

IL9-1-2 95.00 (3) 3.00 (0)** 1.49 (0.21) 94.67 (2.90) 3.33 (0.66) 1.73 (0.65)

IL9-1-3 69.12 (6.41) 3.13 (0.24) 1.29 (0.15) 74.56 (13.8) 3.30 (1.15) 1.65 (0.35)

IL9-2 82.67 (11.0) 3.00 (0)** 1.14 (0.19) 93.00 (3) 3.00 (0) 0.64 (0.10)

IL9-2-5 96.00 (2.30) 3.05 (0.62) 0.84 (0.16) 99.00 (1)* 2.00 (0)*** 0.43 (0.16)

IL9-2-6 89.90 (0.10)*** 5.50 (0.5)* 1.90 (0.29) 74.00 (22) 5.17 (0.44)** 1.83 (0.39)

IL9-3 71.54 (13.3) 4.67 (1.45) 1.64 (0.23)* 78.72 (12.9) 4.00 (1.52) 1.39 (0.54)

IL9-3-1 98.00 (2) 2.75 (0.25) 0.81 (0.03) 100.00 (0)* 3.00 (0) 0.98 (0.53)

IL9-3-2 97.33 (2.66) 3.33 (0.33) 1.71 (0.26)* 95.16 (1.82) 3.67 (0.33) 1.85 (0.35)

IL10-1 92.67 (6.35) 3.67 (0.33)* 1.19 (0.30) 94.00 (NA) 3.00 (NA) 1.19 (NA)

IL10-1-1 85.33 (4.37) 4.00 (0.57) 1.70 (0.12)*** 81.33 (6.35) 4.67 (0.88) 2.02 (0.14)**

IL10-2 100.00 (0)*** 2.50 (0.5) 0.93 (0.18) 100.00 (NA) 3.00 (NA) 0.81 (NA)

IL10-2-2 93.33 (6.66) 3.00 (1) 0.92 (0.27) 91.17 (7.85) 3.67 (0.66) 1.19 (0.29)

IL10-3 77.35 (9.03) 3.33 (0.88) 1.91 (0.50) 77.71 (6.28) 5.00 (1) 2.35 (0.67)

IL11-2 90.00 (4) 4.50 (0.5) 1.04 (0.29) 96.67 (3.33) 4.00 (1) 1.45 (0.86)

IL11-3 98.67 (1.33) 4.67 (0.33)** 1.66 (0.09)*** 88.64 (8.34) 5.00 (0)*** 1.73 (0.06)**

IL11-4 100.00 (0)*** 3.50 (0.5) 0.68 (0.09) 96.67 (0.66) 3.00 (0) 1.19 (0.42)

IL11-4-1 92.00 (6) 4.00 (0)*** 1.32 (0.34) 92.67 (6.35) 4.00 (0.57) 1.35 (0.36)

IL12-1 98.00 (2) 4.00 (1) 1.55 (0.06)*** 99.00 (1)* 3.00 (0) 0.75 (0.00)

IL12-1-1 96.96 (0.95) 3.00 (0)** 0.79 (0.23) 90.14 (6.79) 3.00 (0.57) 0.99 (0.11)

IL12-2 91.96 (2.93) 2.77 (0.32) 0.82 (0.10) 88.80 (4.14) 2.44 (0.39) 0.83 (0.14)

IL12-3 89.18 (6.49) 3.67 (0.33)* 1.14 (0.10) 92.00 (NA) 3.00 (NA) 1.01 (NA)

IL12-3-1 96.00 (4) 3.50 (0.5) 1.22 (0.30) 97.92 (2.08) 4.00 (1) 1.18 (0.33)

IL12-4 76.67 (16.3) 4.17 (1.16) 1.80 (0.70) 92.00 (6) 2.50 (0.5) 1.14 (0.13)

IL12-4-1 95.83 (4.16) 3.00 (1) 1.10 (0.44) 94.00 (2) 2.50 (0.5) 0.94 (0.11)

Germination measurements of M82 and ILs with significant differences compared to M82 within the same treatment
Asterisks mark significance levels with the Bcp of *p < 0.05, **p < 0.01, ***p < 0.001

Table 5 Network Attributes

SDF SDS

Number of nodes 55 60

Number of positive edges 223 325

Number of negative edges 78 202

Total number of edges 301 527

Ration edges/nodes 5.472 8.783

Average nodal degree 8.852 15.5

Network diameter 7 4

Network density 0.132 0.231

Average path length 2.319 1.888

Clustering coefficient (transitivity) 0.607 0.643

Attributes of the correlation networks constructed from SDF and SDS seed
metabolite levels
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and negatively correlated to the other subset (Figs. 3 and
4). The positive and negative correlations in the commu-
nities corresponded in a manner that created two overall
metabolite sets. The first metabolite set 1 (ms1), shown on
the lower half of the network graphs, included subsets of
the two communities with positive correlations between
all metabolites. The second metabolite set (ms2), shown
on the upper half of the network graphs, included subsets
of the two communities and additional small communities
with all metabolites positively correlated to each other.
The partition of metabolites into the two sets was consist-
ent between the network graphs of growth conditions and
seasons. Metabolite classes were represented in both sets.
While consistent relations between metabolites within the
same pathways are expected, the conserved nature of posi-
tive and negative relations between metabolites from
seemingly unrelated pathways, such as aspartate, malate,
dopamine and phosphoric acid, was not automatically
expected. The consistency of metabolite partitioning
hints at a fundamental metabolic balance with bio-
logical relevance, which we studied further in relation
to germination.

The seed metabolic profile is related to germination vigor
In order to assess the global effect of dry seed metabolite
levels on germination, the metabolic profiles of all seed
batches evaluated for germination were subjected to
principal component analysis (PCA). SDF plots are
marked with full circles and SDS plots are marked with

empty triangles. Each data point was then colored ac-
cording to the germination value associated with it
(Fig. 5). There was no notable separation between SDF
and SDS plots. With few exceptions, all samples that did
not germinate were grouped together, and the rest of the
samples were dispersed along the x axis (principal com-
ponent 1; PC1) ranging from low germinating seed plots
on the left to high germination plots on the right. The
non-germinating phenotype may have resulted from
post-harvest stress. The PCA and the false-scale coloring
of the samples demonstrate a link between the seeds’
metabolic profile and their germination ability.
The metabolites that had the highest contribution to

the variance in PC1 included methionine, proline, lysine,
uracil, leucine and GABA. The second component (PC2)
showed a separation between non-germinating and ger-
minating seeds. PC1 and PC2 explained 28% and 10%
of the variance, respectively. In PC2, glucose displayed
the most negative eigenvalue, and dopamine, galactinol,
threonate and tyramine had the most positive (i.e.,
higher in germinating seeds).
The K- means clustering (KMC) method (tMeV; [43]),

based on RMC, was next applied to the dataset. The inclu-
sion of non-germinating (0% germination), intermediate-
germinating (1–94%) and well-germinating (95–100%) plots
in each cluster was tested by chi-square. There was a sig-
nificant (p < 0.0001) differential distribution of the germin-
ation groups between the three metabolite-based clusters
(Fig. 6) compared to their distribution in all plots. Cluster 1

Principal component 1 (24.1% variance explained)
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Fig. 5 PCA of seed metabolic content with germination percent. PCA of metabolic content of the seed distinguishes between poorly and highly
germinating seeds, but not between SDF and SDS. Dots are located on axis according to PCA of primary metabolite content. Full circles
represent SDF and empty tringles represent SDS. Dots are colored by final germination percentage, as indicated
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contained all but three of the non-germinating plots and
was significantly enriched in this germination group
(51.43% compared to 9.7% of all sampled plots). The cluster
analysis validated the PCA and network analysis. For in-
stance, metabolites that had low abundance in cluster 1
were from ms2 and were the same metabolite with the
most positive eigenvalues in PC2, which separated non-
germinating from germinating seeds. The second cluster
was significantly dominated by well-germinating plots,
which made up 74.77% of this cluster, compared to 51.49%
of all sampled plots. The RMC pattern of this cluster gener-
ally opposed the patterns found in cluster 1. For example,
the amino acids of the central module in ms1 were in low
abundance and the metabolites of ms2 had high levels. The
third cluster comprised 64.41% of the intermediate-
germinating plots (compared to 38.81% of all sampled
plots) and 34.75% well-germinating seeds. The metabolites
with the lowest levels in this cluster were glucose, fructose,
arabinose and urea. The central amino acids and nitrogen
containing compounds of ms1 were found in high abun-
dance in this cluster.
T-tests were performed to identify the metabolites that

were significantly (p < 0.05; Bcp: Bonferroni correction
permissive) different between the well-germinating and
non-germinating plots (Fig. 7), and the results confirmed
the PCA, the KMC and the network communities group-
ing. Glucose showed a 5.2-fold significantly higher RMC
in non-germinating plots than in well-germinating plots.
The other metabolites from the second community of
ms1 (Fig. 7c) also displayed high differences between non-

germinating seeds and all levels of germinating seeds; for
example, arabinose, uracil, cinnamate, fumarate, fructose
and methionine had more than 3-fold higher RMC levels
in non-germinating seeds. The amino acids and other me-
tabolites from the first community of ms1 (Fig. 7b) dis-
played a different pattern in which plots with intermediate
levels of germination had intermediate RMC levels. Me-
tabolites of ms2, such as threonate, galactinol, MMP and
dopamine, were significantly lower in non-germinating
seeds. For this group, most metabolites had intermediate
levels in intermediate-germinating seeds (Fig. 7a).

Metabolite-germination correlations were consistent with
the metabolite correlation sets
In order to study the relation between metabolites and
germination, germination traits were integrated into the
network analysis (Figs. 3 and 4). All the metabolites with
negative correlations to germination percent or positive
correlations to T50 or to SD plate were grouped in ms1
under both growth conditions. The metabolites with the
strongest negative correlation to germination percent
(p < 0.05 FDR, r < −0.4, ordered by r in both networks)
were proline, methionine, leucine and lysine. All metabo-
lites with positive correlations to germination percent and
negative correlations to T50 were within ms2. Metabolites
with the strongest positive correlation to germination per-
cent (p < 0.05 FDR, r > 0.4, ordered by r in both networks)
were threonate, phosphoric acid, malate and glycerol-3-
phosphate. Sucrose was negatively correlated to T50 in
the SDS network and to aspartate and benzoate in the
SDF network. Amino acids and other metabolites from
the first community in ms1 were positively correlated to
T50 and SD-plate, in both networks. No metabolites
had significant negative correlations to SD-plate, in either
network.
Taken together, these results demonstrate a strong

association between the balance of metabolite levels be-
tween ms1 and ms2 and the germination percent and
rate. The four groups of metabolite communities and sets
presented in the network topology represent four major
patterns of association between RMC and germination.
This grouping was reflected in the various types of analyses:
PCA, KMC and RMC comparison in the germination
percentage groups.

Discussion
In the present study, we harnessed the natural variability
of the introgression line population to explore the effects
of genetics and maternal environment on seed traits and
metabolism and the latter’s implications on germination.
We identified putative genetic loci for tomato seed qual-
ity traits and metabolism, in response to different mater-
nal environments. We further showed that the relative

Fig. 6 Distribution of germination groups among the K-means
clusters. Plots tested for germination were clustered according
to their RMCs using K-means clustering. The abundances of
non-germinating, intermediate germination (5–95%) and
well-germinating (95–100%) plots are indicated in black, gray
and white, respectively
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levels of metabolites in the dry seed can indicate the ger-
mination potential of the seed.
S. pennelli has much lighter seeds than the cultivated

tomato M82 [35], and seed weight varied across the
population. ILs displayed consistent differences in seed
weight, demonstrating the same trend under different
conditions (treatments and seasons). These results and
the tight genetic control of the trait are in line with earl-
ier works in intercrossed populations [44, 45]. The in-
verse relation between seed number and size has been
long known both across species [46] and within the
same species [45]. However, when resources are limited,
a plant tends to reduce seed number while maintaining
seed weight [47]. Seed weight may also be affected under
severe stress [48, 49]. The environmentally induced
abortion of seeds after seed set, as shown in our study,
in place of producing fewer ovules, is a known strategy
among plants [50] to regulate seed number for resource-
expensive seed filling [51]. In our study, saline conditions
affected seed number but not seed weight. Likewise, indi-
vidual fruit weight was less affected than fruit number by
the salinity stress. Still, overall fruit yield was negatively
affected by salinity in all ILs, as was fresh vegetative

weight in most ILs (Perelman, unpublished observa-
tions). The stability of seed weight in all lines, amid the
environmental perturbation, points to its fundamental
evolutionary advantage.
Several reports have suggested a positive relation be-

tween seed size, emergence [52, 53] and seeding vigor,
especially under stress conditions [54]. Indeed, Khan et al.
[44] found that seed weight in a tomato recombinant in-
bred line (RIL) population was correlated to seedling vigor
measurements, but not to germination percentage, T50
and uniformity, which is similar to our findings. We hy-
pothesized that maintaining seed weight leads to conser-
vation of seed quality and germination vigor. This
hypothesis was supported by the relatively low number of
significant metabolic changes in the seeds and the overall
moderate germination differences in response to salinity.
Nevertheless, among those seeds that reached maturation,
no clear relation was found between seed weight and
either metabolic content or germination vigor traits,
suggesting the occurrence of a threshold at which other
determinants come into play.
The stability of multiple QTLs for seed weight under

varying conditions suggests the important role of seed

Fig. 7 Seed RMC by germination groups. Plots tested for germination were divided according to level of germination into non-germinating
(0% germination), intermediate germination (5–95%) and well-germinating (95–100%), indicated in black, gray and white, respectively. The
RMC of each germination group is presented, for metabolites that significantly (p < 0.05, Bcp) differed in RMC between non-germinating and
well-germinating plots. a Metabolites of ms2. b Metabolites of ms1 of the first community. c Metabolites of ms1 of the second community.
Error bars represent standard error
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weight (and vigor) in plant evolution. Low levels of QTL
co-localization for seed size, seed numbers and matur-
ation percent were also observed (e.g., IL7-4-1, IL8-3-1
and IL11-4-1). The maturation percent of IL7-4-1 was
reduced by salinity, but the maturation percent of the
other ILs was not. Study of this introgression may lead
to improved understanding of this trait’s regulation by
the environment.

Germination QTLs and the effect of maternal growth
conditions
The germination of tomato seeds in saline conditions has
been widely studied [27–29]. However, to our knowledge,
no record is available on the germination of tomato seeds
matured under different environmental or stress conditions.
Trans-generational stress implications have been studied in
other species. Lower germination was found for soybeans
from a mother plant grown under conditions of severe
drought and high temperature [48] and in leaf removal ex-
periments in radish [55]. It has been shown in numerous
studies that environmental conditions, such as temperature,
light [56] and possibly others, during lettuce seed matur-
ation have an effect on seed germination and plant growth.
Lettuce seeds that developed at higher temperatures had re-
duced weight but germinated at higher percentages [57],
specifically under higher than optimal germination
temperatures [58, 59]. In Arabidopsis, temperature dur-
ing development was found to have a strong influence
on germination [33, 34], and higher light intensity,
photoperiod, nitrate and phosphate also increased ger-
mination under stress conditions [32]. These studies
demonstrate the positive and negative effects of maternal
stress on offspring.
Despite the fact that S. pennelli is known as being

more tolerant to stress than cultivated tomato variety
M82 [28], QTLs conferring either higher or lower ger-
mination compared to M82 were found in both SDS and
SDF. Other studies have found evidence of what could
be considered transgressive segregation whereby alleles
from the “tolerant” parent can contribute to an unex-
pected “sensitive” phenotype [24, 60–63]. A number of
germination QTLs were found under both conditions,
indicating independent genetic factors influencing ger-
mination, while other QTLs were detected only under
one condition, suggesting environmentally responsive
QTLs. Examples are present in the introgression seg-
ments IL1-1-3, IL2-1-1, IL3-4 and IL8-3-1, which had
improved germination and IL2-5, IL6-1, IL11-4, which
showed reduced germination in SDS compared to SDF.
ILs that did not differ in germination, compared to M82,
in SDF but did in SDS are potential candidates for har-
boring loci of maternal environmental response.
Consistency was observed between the QTLs for ger-

mination found in the present study and QTLs previously

identified using an S. esculentum and S. pennelli cross F2
population [60]. However, less overlap was observed when
comparing our data with the germination QTLs from an
S. esculentum and S. pimpinellifolium (accession LA722)
back cross (BC) 1 population [64]. This demonstrates the
influence of different parental allelic variation on QTL de-
tection, and the benefit of using multiple parents for QTL
mapping [63].
QTLs related to germination from seeds developed in

different maternal environments have been identified in
a lettuce RIL population [65]. QTLs’ underlying mater-
nal environmental effects on dormancy and germination
have also been studied in Arabidopsis [66]. A study on a
combination of near-isogenic lines (NIL) and mutant
Arabidopsis lines showed that the ABA-related genes
DOG1 and cyp707a1 mediate the influence of various
developmental conditions on dormancy and germination
[32]. In addition, the expression of FLOWERING LOCUS
T in silique tissue was found to convey the effect of mater-
nal growth temperatures on seed germination [34].
Possible mechanisms of the trans-generation “stress im-

print” include the accumulation of resistance-conferring
proteins, the induction of stress response transcription
factors and epigenetic modifications [67, 68]. These envir-
onmentally induced factors are preserved in the dry seed
and influence germination. Similarly, during seed matur-
ation and desiccation changes in metabolic gene tran-
scripts, proteins and metabolites that are preserved in dry
seeds are functionally involved in modulating germination
[9, 69–72]. The high number of metabolite-germination
correlations found suggests that primary metabolites
could play a role in mediating the effect of maternal
growth conditions on seed germination.

Metabolic response to salinity
We observed little alteration in seed metabolites in re-
sponse to stress; only 1% of the RMC comparisons be-
tween SDS and SDF showed statistical significance. This is
in contrast to previous studies on the effect of salinity on
tomato pericarp metabolites [73, 74] and of temperature
and nitrogen on Arabidopsis seeds [75]. Nevertheless, it
has been shown that different parts of the plant, even
different parts of the fruit, can have different metabolic
responses to salt stress [73]. Supported by the higher
broad-sense heritability found in seed metabolic traits,
as opposed to fruit metabolic traits [25], these results
further indicate the highly preserved traits amid envir-
onmental perturbations in seeds compared to fruit. Of
the RMC comparisons that did change in response to
the maternal environment, some were found in M82
seeds and a number were found in ILs seeds. In M82,
all metabolites displaying increased RMC in SDS, compared
to SDF, clustered to ms1 (such as methionine, GABA, cyst-
eine, asparagine and ferulate). The accumulation of ms1
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metabolites in SDS was found also in the few ILs that, like
M82, had reduced germination in SDS, whereas metabo-
lites with a decreased abundance in response to salinity in
these ILs were clustered to ms2. ILs with improved germin-
ation in SDS had the opposite pattern, an increase in me-
tabolites from ms2 and a decrease in ms1. Taken together,
these results demonstrate that changes in the metabolite
sets are accompanied by differences in germination and
validate our hypothesis of a metabolic imprint in seeds
conferring effects on germination.

Metabolic relations to germination
The most remarkable finding from the data analysis was
that the metabolic network could be divided into two
opposite sets, ms1 and ms2, which show complete cor-
respondence to the germination measures. All metabo-
lites with positive correlations to germination were in
ms2, while all metabolites with negative ties were in
ms1. The division of metabolites into the two balanced
sets, based on positive correlations to metabolites within
the same set, was conserved throughout the four examined
networks (salinity conditions and seasons). The unequivo-
cal relation between ms1 and ms2 and germination in
the additional analysis methods emphasizes its biological
significance.
Correlations do not necessarily imply a cause and ef-

fect relationship, but it may be suggested that the levels
and proportions of some metabolites in the seed affect
processes required for germination. Allen et al. [76] sug-
gested that metabolites may play a regulatory role over
gene expression, resulting in correlations between me-
tabolites and between metabolites and gene expression.
Alternately, metabolite accumulation or depletion can be
an outcome/byproduct of processes the seed underwent,
which also affects germination ability; for example, it
may represent a defined metabolic status of different
levels of after-ripening or dormancy. Nevertheless, we
will attempt to discuss the possible link between some
specific metabolites and germination.
Amino acids of the central network module were

negatively correlated to germination. Free amino acids are
known to act as substrates for energy production in early
germination stages [10, 13, 77–79], hence the results were
not expected. They also provide nitrogen resources and
amino acids readily available for protein synthesis, which
is required for germination [2, 80]. Nevertheless other
studies that harnessed the balance of given amino acids,
specifically in the seeds, showed that accumulation of me-
tabolites such as methionine, lysine and GABA can lead to
decreased germination [13, 81, 82]. External applications
of several amino acids also significantly reduce germin-
ation of lettuce and broomrape, and have been suggested
as a means of biological control [83, 84]. A possible
explanation for the phenomenon is that higher levels

of specific amino acids could deplete the level of other
metabolites important for the advancement of germination.
For example, in KD mutants where lysine catabolism is
blocked by siRNA, the mutants display lysine accumulation
and deficient germination [13], in accordance with the
negative correlation between lysine and germination found
here. Lowered levels of TCA cycle metabolites in the KD
mutant suggest that lysine accumulation interferes with
germinating seeds’ energy production via the TCA cycle.
Alternatively, a regulatory link between metabolites and
gene expression might also be hypothesized. For example,
in the seed-specific gad1 Arabidopsis transgenic lines that
accumulate GABA, the major regulatory gene of germin-
ation, DELAY OF GERMINATION1 (DOG1), was among
the few genes significantly induced [82]. Recent studies
have found DOG family genes to be involved in the
germination and dormancy response of seeds to maternal
environment [32].
Methionine was one of the metabolites most negatively

and strongly correlated to germination in our study. It has
been found to strongly inhibit germination in lettuce [83].
In some studies, high methionine levels in seeds were
found to be a limiting factor for the synthesis of sulfur-rich
proteins [81], inhibiting germination. Only a few successful
attempts at increasing methionine content in storage pro-
tein led to normal germination [85] or mild reduction [86].
In Arabidopsis, de novo methionine biosynthesis is required
for germination [87]. When the methionine biosynthesis
pathway was blocked, germination was greatly reduced and
seedlings did not reach establishment. A possible mechan-
ism for this negative correlation is the inhibitory effect that
S-adenosylmethionine (AdoMet), a product of methionine
catabolism, has on cystathionine γ-synthase, an enzyme
in the early stages of its biosynthesis pathway [88]. Fur-
thermore, AdoMet induces precursor allocation to
other pathways [2], thereby perhaps reducing the produc-
tion of essential metabolites, such as methylation compo-
nents and ethylene that are products of the methionine
pathway. While the relation between the alteration in me-
tabolite level and the induction of regulatory genes needs
to be elucidated, these studies demonstrate the inhibitory
effect of unbalanced amino acid metabolism in seeds on
germination.
Notably, the N-containing metabolites dopamine and

urea were, in ms2, positively correlated to germination. In
plants, dopamine is part of catecholamine biosynthesis
from tyrosine (plantCyc: [41]). It has been found in low
amounts in tomato and in other plant species [89, 90].
Catecholamines and dopamine increase stress tolerance,
which can be attributed to dopamine’s high antioxidant
potency [90, 91]. In addition, it was found to improve rice
germination under salinity [92]. Indeed, in this study,
dopamine was 3.9 times higher in well-germinating seeds
than in non-germinating seeds. That said, the mechanisms
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underlying a dopamine-positive association with germin-
ation remains unclear. Urea is a product of amino acid ca-
tabolism, and the effect it has on germination has not
been directly studied to our knowledge.
Accumulated amino acids could also reflect the deg-

radation of proteins during development or post-harvest,
leading to defective germination. Controlled deterior-
ation and post-harvest stress studies have shown an in-
crease in protein degradation and increased levels of
amino acids and their leakage accompanied by the loss
of germination vigor [93–95]. Nevertheless protein deg-
radation would be accompanied by a general increase in
free amino acids, not in specific amino acids.
Simple sugars, although expected to support germin-

ation as energy sources, were also negatively correlated
to germination. Carbohydrate degradation, accompanied
by the accumulation of simple sugars, has been linked to
poor germination influenced by stress and seed aging
[96, 97]. Glucose utilization has been suggested as a bio-
marker for seed vigor, as its levels were found to be sen-
sitive and to precede any visible growth change in
response to seed aging [98]. Glucose was one of the me-
tabolites with the highest contribution to the separation
of non-germinating seeds and germinating seeds in PCA,
and all simple sugar levels were significantly higher in non-
germinating seeds than in all other germination levels. In
line with our results, glucose has been shown to delay ger-
mination [99], suppress starch degradation in lupine [100]
and rice [99, 101] and starch mobilization [11], as well as
induce ABA production in germinating seeds [11, 101].
The latter likely accounts for the observed inhibition of
seed germination [12]. Interestingly, in mutant Arabidopsis
seeds unable to remove ABA inhibition during imbibition,
ABA signaling was overruled by exogenous sucrose [102],
whose endogenous levels in the present work were found
to have a positive correlation to germination.
Galactinol levels were significantly higher in germinat-

ing seeds and contributed to their separation from non-
germinating seeds in PC2. Galactinol is related to the
raffinose family of oligosaccharides and a precursor in
raffinose biosynthesis from galactose (KEGG). It has
been shown to increase in Arabidopsis seeds developed
under high light intensity, and was correlated to seed
longevity [75]. Transcripts of Galactinol synthase accu-
mulate prior to desiccation in tomato and maize seeds
[103, 104]. Raffinose and similar compounds have been
found to contribute to seeds as energy sources for early
germination [10]. Thus, it is likely that seeds with higher
galactinol levels could provide the germination process
with immediate, easily mobilized energy. In addition, as
a product of galactose, galactinol could accumulate due
to the enhanced cell wall degradation of which galactose
is a byproduct. The metabolite with the strongest positive
association to germination in this study was threonate.

Threonate was more than four-fold higher in well-germin-
ating plots than in non-germinating plots. A product of as-
corbate, threonate also made a high contribution to the
variance in PC2 and had a strong positive correlation to
germination percent. To the best of our knowledge, no pre-
vious study has addressed the effect of threonate on seeds
and germination, although it has been found in seeds
[105, 106]. Together with threonate, malate also dis-
played a positive correlation to germination. A possible
way this metabolite can enhance germination is by
“Perl’s pathway”, first suggested by Perl [107]. In this
pathway, malate and aspartate, both positively related
to germination, are utilized for ATP production in the
early stages of germination [10, 108].

Outstanding ILs
Several ILs stand out with a high number of significant
differences in various traits.
IL1-4-18 displayed many QTLs of FC in RMC in response

to salinity. It also had a QTL for improved germination rate
(Additional File 2) and higher seed weight in SDS. The
corresponding genomic segment was identified as a QTL
affecting tolerance to germination under salinity [60].
IL2-1-1 displayed many metabolic differences com-

pared to M82 in both SDS (Additional file 2) and SDF,
accompanied by several FC-QTLs. IL2-1, whose intro-
gression segment completely contains that of IL2-1-1,
also showed numerous s-QTLs and f-QTL with overlap
in specific metabolite QTLs. It had an improved germin-
ation percent in SDS vs. SDF and a higher percent than
M82 in both conditions. Under both conditions, metab-
olites of ms2 were higher in these ILs than in M82, and
metabolites from ms1 were lower. Also, in SDS vs. SDF,
metabolites of ms2 and ms1 displayed an increase and a
decrease, respectively, further validating how the two
groups relate to germination in specific ILs. The corre-
sponding region to IL2-1 and part of IL2-1-1 have previ-
ously been identified to have a germination QTL [60].
IL3-2 and IL3-4 share many characteristics, as well as

morphological and physiological traits. They also shared
several QTLs of leaf antioxidant content in response to
salinity [74], as well as similar metabolite differences,
compared to M82, in dry seeds [25]. Eshed and Zamir
[18], in the earliest report of the IL population, also
demonstrated similarities in IL3-2 and IL3-4 in their re-
productive traits, fruit mass, Brix°, yield and Brix-yield;
however, they differ in vegetative weight, according to
both Eshed and Zamir and the data collected for this re-
port. Foolad [109] found salinity tolerance during germin-
ation QTLs using RFLP markers corresponding with the
genomic span of IL3-2 and IL3-4. Both ILs had orange
fruit, with color further reduced by salinity, and a lower
number of fruit than M82 in both treatment regimes, as
well as some reduction in fruit weight. Although IL3-2
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had higher fruit Brix° than M82, both ILs had considerably
lower yield measures in all conditions (Perelman, unpub-
lished observations). The number of mature seeds per fruit
was reduced by about half in these ILs compared to M82,
but with no significant difference in seed weight between
lines or growth conditions. In contrast to M82, IL3-4
maintained and even improved its seed germination per-
cent in SDS (IL3-2 had improved germination, but did not
meet the significance threshold). Many s-QTLs and FC-
QTLs in IL3-2 and IL3-4 stand out in opposition to the
few QTLs in SDF. Metabolites that increased by salinity in
these ILs belonged to ms2, and decreased metabolites
belonged to ms1, supporting a relation between seed
metabolic balance in response to salinity and germination.
The consistent similarity and proximal genomic location
may suggest a duplication of a chromosomal segment,
which evolved paralogous genes.

Conclusions
In tomato, seed weight is genetically governed and main-
tained despite moderate stress conditions at the expense
of seed number. The hypothesis that seed weight is con-
served to maintain seed quality is supported by the over-
all weak effect of the environment on seed metabolism
and germination observed. Metabolite profiles were
found to have an unequivocal relation to germination.
We demonstrate that it is not the accumulation of one
metabolite but a metabolic balance between groups of
metabolites that mediates germination. Irrespective of
the origin or effect of primary metabolites on germin-
ation, the multiple analyses demonstrate that there is a
relationship between the dry seed metabolic profile and
the germination ability of the seeds. This suggests a po-
tential for determining a metabolic signature that can be
used for assessing and possibly predicting the germin-
ation vigor of seed batches.

Methods
Plant material and growth conditions
A population of 72 introgression lines (ILs), each con-
taining a well-defined chromosome segment of a wild
tomato species, S. pennellii, in the background of do-
mesticated tomato L. esculentum cultivar M82 [18], was
used. The ILs and their control line M82 were grown in
a field experiment under fresh water (EC = 1.5 dS/m)
and saline water (EC = 6 dS/m) irrigation regimes, dur-
ing two consecutive seasons. Each line had five replicate
plots under each treatment, organized in a split plot (sal-
inity in main plots, genotypes in sub-plots) random
block design. The experiment was conducted in the
Ramat-Negev R & D Facility in the summers of 2010
(season I) and 2011 (season II). For each field plot, seeds
from four plants were extracted, pooled, dried and
stored at room temperature. Seed samples were used for

seed morphology examination, germination tests and
metabolite profiling by GC-MS.

Seed weight and count
Average seed weight was calculated based on seed count
and the exact seed weight used for metabolite extraction.
In season I, seeds from two ripe tomato fruits from each
plot were sorted according to maturity and counted. Ma-
ture seeds were defined as seeds with a hard and slightly
hairy seed coat, with typical seed size, thickness and
color. Other seeds, such as greatly deformed or aborted
seeds, were counted separately. Aborted seeds were
identified by the lack of a hard seed coat and very thin
and light-colored seeds. Dissection of seeds of this de-
scription under a binocular microscope showed they
contained no embryo. The aborted seeds constituted the
great majority of non-mature seeds.

Germination tests
Mature seeds from the season I field experiment, from
both growth conditions, were examined for germination
vigor. The seeds were surface-sterilized in 2% bleach for
10 min and rinsed three times in autoclaved tap water.
Seeds were germinated on three layers of filter paper sat-
urated with water, and the excess water was drained.
The experiment was conducted in a growth room with
16 h of light, 8 h of dark, and a temperature range of
20–25 °C. Each day, the number of seeds that had ger-
minated was recorded. We then calculated the percent-
age of seeds that germinated and the number of days
until 50% (T50) of those seeds germinated, and we de-
scribed the variation in the number of days to germin-
ation within plates using the standard deviation of the
average days to germination within each plate. There
were at least three replicate plates for each line and con-
dition, with 50 seeds per plate.

Metabolite quantification: sample extraction and
derivatization
Mature dry seeds from each four plant plot in the field
experiments were pooled and extracted using a standard
lab protocol. Approximately 50 mg of seeds were ground
using a pre-cooled tissue lyzer (400MM, Retsch, Germany).
In season I, metabolites were extracted from each experi-
mental plot separately, and in season II, seeds of the five
replicate plots were pooled for extraction and analysis. Seed
powder was kept in liquid nitrogen from grinding until
complete immersion in 1 ml of pre-cooled extraction mix.
The mix contained a ratio of 2.5:1:1 (v/v) of methanol,
DDW and chloroform, respectively. A ribitol (Fluka
Analytical) internal standard was dissolved in DDW to
a final concentration of 3.8 mg/ml prior to mixing with
chloroform and methanol. In addition to the mix,
100 μl of pre-cooled methanol was added to the sample.
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The sample was homogenized by vortex and then put in a
shaker (1000 rpm) at room temperature for 10 min,
followed by 10 min in a sonication bath. Next, samples
were centrifuged for 4 min at 14,000 rpm in an Eppendorf
5417 R centrifuge. The supernatant was transferred to a
new test tube and an additional 300 μl of chloroform and
300 μl of water were added. Samples were vigorously vor-
texed and then centrifuged for 2 min at 14,000 rpm. The
top phase was separated and 100 μl was dried in a vacuum
using an Eppendorf concentrator plus for GC-MS analysis.
The dried samples were derivatized prior to GC-MS ana-
lysis. A volume of 40 μl of 20 mg/ml metoxyaminehy-
drochloride (Sigma-Aldrich®) in pyridine was added to the
dried pellet and incubated for 2 h in an orbital shaker at
1000 rpm at 37 °C. An N-methyl-N-(trimethylsilyl) tri-
fluoroacetamide (MSTFA) mix containing time standards
(Alkanes for Thermo GC-MS or fatty acid methyl-esters
(FAMEs) for Agilent GC-MS, 1.2 μg of each FAME) in a
volume of 77 μl was added to each sample and then incu-
bated for an additional 30 min in an orbital shaker at
37 °C. Finally, 1 μl of the derivatized sample was injected
into the GC-MS machine.

Metabolite profiling: CG-MS-qTof analysis
All sample analyses and metabolite quantification were
achieved by using a GC-MS system from Waters Ltd,
which consisted of an Agilent 7683B series autosampler
and injector (Agilent Technologies), an Agilent 7890A gas
chromatograph, and a Xevo™ QTof mass spectrometer.
Sample volumes of 1 μL were injected onto the GC column
with a splitless and split mode ratio of 10:1. GC was per-
formed on a 30-m VF-5 ms column with 0.25-mm i.d. and
0.25-μm film thickness +10 m EZ-Guard (Agilent). Inlet in-
jection temperature was set at 280 °C. The carrier gas used
was helium set at a constant flow rate of 1 ml/min. The
temperature program was 1 min isothermal heating at
70 °C, followed by a 10 °C/min oven temperature ramp
to 350 °C, followed by a final 5 min of heating at 350 °C.
The transfer line temperature was set to 310 °C. The
makeup gas for APGC was nitrogen from tanks at 110 psi.
The MS system used was Xevo™ QTof (Waters MS Tech-
nologies, Manchester, UK) operating in a positive ion
mode. The MS source used was API. Analysis calibration
was obtained using a siloxane mass of 281.05 Da m/z for
lock mass calibration to ensure accuracy and reproducibil-
ity, with a scan time of 0.5 s, a cone voltage of 35 V and a
capillarity of 2 kV. For the samples, the following parame-
ters were used: capillary voltage: +3.1 kV; sampling cone
voltage: 14 V (season II 35 V); extraction cone voltage 4 V;
source temperature: 150 °C; desolvation temperature: 45 °C;
cone gas flow: 11 L/h; desolvation gas flow: 400 L/h; and
collision energy: 6 V. For the MS/MS spectra, collision en-
ergies were set from 10 to 30 V. Detection modes for MS

and MS/MS were: scan ranges from 50–700 m/z. Scan time
was 0.08 s.
Initial peak identification was performed using a

Thermo GC-MS, since structural libraries for analyses of
the Waters machine output are limited. The GC-MS sys-
tem consisted of an AS 3000 autosampler, a TRACE GC
ULTRA gas chromatograph, and a DSQII quadrupole
mass spectrometer (Thermo-Fisher Scientific Ltd). GC
was performed on a 30-m VF-5 ms column with 0.25-
mm i.d. and 0.25-μm film thickness +10 m EZ-Guard
(Agilent). The gradient of injection temperature (PTV)
was from 60 °C to 300 °C at 14.5 °C/s. The transfer line
was set to 300 °C, and the ion source adjusted to 250 °C.
The carrier gas used was helium set at a constant flow
rate of 1 ml/min. The temperature program was 1 min
isothermal heating at 70 °C, followed by a 1 °C/min oven
temperature ramp to 76 °C, followed by a 6 °C/min oven
temperature ramp to 350 °C, and a final 5 min of heating
at 350 °C. The mass spectrometer was tuned according to
the manufacturer’s recommendations using tris-(perfluor-
obutyl)-amine (CF43). Mass spectra were recorded at 8
scans per second with a mass-to-charge ratio of 70 to 700
scanning range, with electron energy of 70 eV. Spectral
searching and peak identification utilized the National In-
stitute of Standards and Technology (NIST, Gaithersburg,
USA) algorithm incorporated in the Xcalibur® data system
(version 2.0.7) against RI libraries downloadable from the
Max Planck Institute for Plant Physiology in Golm (http://
gmd.mpimp-golm.mpg.de/).

Metabolite annotation
Initial metabolite annotation was carried out with sam-
ples run in the Thermo GC-MS using Xcalibur® software
and the “var” and “mainlib” libararies in the NIST soft-
ware. The initial annotation list was compared to sam-
ples run in the Waters GC-MS-Tof using MassLynxTM
software and verified using ChemSpider structural elucida-
tion software online ([110]; http://www.chemspider.com).
For some metabolites, chemical standards were examined
for verification.

Data treatment (normalization) and statistical analysis
Metabolite content quantification was achieved using
MarkerLynx (Waters Ltd.) software. The height of selected
mass peaks was extracted from the program output by a
specifically designed R script. Peak height was normalized
according to seed weight before extraction, the sum of
peaks in the sample, and for each metabolite, to the me-
dian of value of the specific metabolite across samples of
every run (block) separately. The complete normalized
dataset is available in Additional File 1: Table S1. In order
to improve normality, the data was log transformed prior
to statistical tests. Calculation of descriptive statistics,
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t-tests and correlation analysis was performed in R stat-
istical and graphics software v2.14.0 (R core team).
In an attempt to maximize the discovery power of the

statistical test, but avoid false discovery, a permissive
Bonferroni correction threshold was used by applying
the Bonferroni correction for the square-root of the
number of comparisons (√n) on α = 0.05 (p < 0.05, Bcp).
Prior to correlation analysis, missing values were com-

pleted with the “completeObs” function of the R PCA
package [111, 112]. For correlations, the FDR equivalent
of p = 0.05 was used as a threshold. Metabolite and ger-
mination correlation were calculated using Spearman’s
rank correlation [40]. Node communities were calculated
using the Walktrap algorithm in the R “igraph” package
[113]. Significant correlations were transformed into a
graphic network using Cytoscape v3.1.1.
Principal component analysis (PCA) and K-means

clustering (KMC) were obtained using tMeV software
v4.8 ([114]; http://www.tm4.org).

Additional files

Additional File 1: Table S1. Normalized full metabolic dataset. Table S2.
Seed weight in response to salinity for both seasons. Table S3. Putative
QTLs for maturation percent. Table S4. Putative QTLs for RMC in SDF.
Table S5. Putative QTLs for RMC in SDS. (XLSX 882 kb)

Additional File 2: QTL Map of co-localized metabolite and germination
QTLs in SDS. (PDF 230 kb)

Additional File 3: Correlation networks of 2010 for SDF. (PDF 545 kb)

Additional File 4: Correlation networks of 2010 for SDS. (PDF 786 kb)
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