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Background: Kidney renal clear cell carcinoma (KIRC) is one of the most lethal

malignant tumors with a propensity for poor prognosis and difficult treatment.

Endoplasmic reticulum (ER) stress served as a pivotal role in the progression of

the tumor. However, the implications of ER stress on the clinical outcome and

immune features of KIRC patients still need elucidation.

Methods: We identified differentially expressed ER stress-related genes

between KIRC specimens and normal specimens with TCGA dataset. Then,

we explored the biological function and genetic mutation of ER stress-related

differentially expressed genes (DEGs) by multiple bioinformatics analysis.

Subsequently, LASSO analysis and univariate Cox regression analysis were

applied to construct a novel prognostic model based on ER stress-related

DEGs. Next, we confirmed the predictive performance of this model with the

GEO dataset and explored the potential biological functions by functional

enrichment analysis. Finally, KIRC patients stratified by the prognostic model

were assessed for tumor microenvironment (TME), immune infiltration, and

immune checkpoints through single-sample Gene Set Enrichment Analysis

(ssGSEA) and ESTIMATE analysis.

Results: We constructed a novel prognostic model, including eight ER stress-

related DEGs, which could stratify two risk groups in KIRC. The prognostic

model and amodel-based nomogram could accurately predict the prognosis of

KIRC patients. Functional enrichment analysis indicated several biological

functions related to the progression of KIRC. The high-risk group showed

higher levels of tumor infiltration by immune cells and higher immune scores.
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Conclusion: In this study, we constructed a novel prognostic model based on

eight ER stress-related genes for KIRC patients, which would help predict the

prognosis of KIRC and provide a new orientation to further research studies on

personalized immunotherapy in KIRC.

KEYWORDS

kidney renal clear cell carcinoma, endoplasmic reticulum stress, prognosis, tumor
microenvironment, immunotherapy

Introduction

Renal cell carcinoma (RCC) has been considered one of

the most common malignancies of the urinary system, with an

increased incidence rate year by year (Znaor et al., 2015).

Kidney renal clear cell carcinoma (KIRC) is the most

representative histopathologic subtype of renal cell

carcinoma, constituting approximately 75% of renal cell

carcinoma (Moch et al., 2016; Wei et al., 2019). Although

there have been advances in multiple therapeutic methods,

including surgery, chemotherapy, and immunotherapy, the

prognosis of KIRC patients remains a major clinical challenge

because of the high incidence of recurrence and metastasis. As

reported, the recurrence rate of KIRC after curative

nephrectomy is approximately 20–30% within 5 years

(Huang et al., 2021). More importantly, studies have shown

that the 5-year overall survival rate is less than 10% in

metastatic KIRC patients (Xing et al., 2020; Lamprou et al.,

2021). Recently, immunotherapy has provided additional

options for KIRC patients and brought new hope for the

treatment of KIRC, such as immune checkpoint inhibitors

(ICIs) targeting programmed death 1/programmed death

ligand 1 (PD-1/PD-L1) and cytotoxic

lymphocyte–associated antigen 4 (CTLA-4) (Motzer et al.,

2015; Motzer et al., 2020). However, studies have

demonstrated that only specific types of KIRC patients

could respond to immunotherapy (George et al., 2019;

Derosa et al., 2020). Moreover, various research studies

have implied that prognostic models based on biomarkers

could be used to assess the survival outcome in KIRC, but

some models are more or less flawed (Bai et al., 2021; Sun et al.,

2022). Therefore, as the poor prognosis and difficult treatment

of KIRC, it is imperative to exploit novel reliable models to

evaluate the clinical characteristics and provide prognostic

indicators and clinical individualized treatments for KIRC.

The vital design of anticancer therapy depends on the

identification and application of the weak points of cancer

cells. As the largest organelle in cells, the endoplasmic

reticulum (ER) is a major site of protein synthesis,

processing, and transport (Hetz et al., 2020). ER stress is a

relatively novel cellular unfolded protein response that

maintains cell survival resulting from the accumulation of

misfolded protein in the ER. A number of factors, including

hypoxia, oxidative stress, metabolic stress, and nutrient

depletion, can reduce the capacity of protein folding and

induce ER stress (Hetz and Papa, 2018). ER stress is found to

be involved in the progression of various cancers.

Accumulating evidence has shown that ER stress has

emerged as a crucial player in tumor progression,

immunity, angiogenesis, and chemotherapy resistance

(Harnoss et al., 2020; Gilardini Montani et al., 2021). As

reported, ER stress can promote tumor progression and

chemotherapy by regulating the metabolic state of tumor

cells in gliomas (Zhang et al., 2021). Additionally, ER stress

can regulate the role of infiltrating immune cells by inducing

tumor cell escape from immunological surveillance. For

example, ER stress stimulates a series of inflammatory

factors, including IL-23 and IL-6, in macrophages, thereby

promoting tumor progression and metastasis through

modifying the immune characteristics of tumor cells (Cao

et al., 2016). ER stress is induced by three important

members of transmembrane ER sensors: protein kinase

R-like ER kinase (PERK), inositol requiring enzyme 1

(IRE1), and activating transcription factor 6 (ATF6). As

reported, the IRE1/XBP-1 pathway promotes tumor

progression in chronic lymphocytic leukemia and breast

cancer (Chen et al., 2014; Tang et al., 2014). In addition,

STF-083010, as the effective inhibitor of IRE1, suppresses the

progression of solid tumors by reducing the T-cell

expression of PD-1 (Zhan et al., 2019). Therefore,

considering the crucial role of ER stress in tumor

progression, ER stress and related genes may become the

potential prognostic biomarkers and important targets in the

treatment of KIRC.

In this study, to explore and evaluate the potential clinical

value of ER stress in KIRC, we performed a series of

bioinformatics analyses to construct a novel prognostic ER

stress-related gene model through using The Cancer Genome

Atlas (TCGA) database and confirmed the predictive

performance of the prognostic model in the Gene

Expression Omnibus (GEO) dataset. Hence, the prognostic

model and a model-based nomogram could accurately

predict the prognosis of KIRC patients. Additionally, we

explored the potential biological functions by functional

enrichment analysis. Finally, this novel prognostic model

could provide a theoretical basis for tumor

microenvironment (TME), immune infiltration, and

immune checkpoints in KIRC (Figure 1).
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Materials and methods

Data collection

ThemRNA sequencing data and clinical features of kidney renal

clear cell carcinoma patients were acquired from the TCGA-KIRC

program (https://portal.gdc.cancer.gov) to build the ER stress-

related prognostic training model (Liu et al., 2018). The TCGA-

KIRC program includes 72 normal samples and 539 carcinoma

samples. GSE29609 and GSE167573 were selected as the verification

cohorts. The corresponding expression data and follow-up files were

downloaded from the GEO (https://www.ncbi.nlm.nih.gov/geo)

database. GSE29609 and GSE167573 include 14 normal samples

and 102 carcinoma samples. Samples lacking reliable

clinicopathological or survival information were excluded from

further analysis.

The ER stress-related pathways were collected from the

Molecular Signatures Database v.7.5.1 (MSigDB; https://www.

gsea-msigdb.org/gsea/msigdb). In total, 126 ER stress-related

genes were mined from the 13 pathways in Reactome and

Gene Ontology (GO) databases. GEPIA2 (http://gepia2.cancer-

pku.cn/#index) was used to draw a survival map of 33 cancer

types in order to visualize the correlation between the expression

of these 126 genes and the overall survival time of different

tumors.

Screening of ER stress-related
differentially expressed genes

To explore the differentially expressed genes (DEGs) among

normal and KIRC specimens, we analyzed the expression data on

126 ER stress-related genes from the TCGA-KIRC program via the R

package “limma”. We used adj. p < 0.05 and |log2FoldChange |>1 as
the threshold and obtained 26DEGs. To visualize expression data, the

heatmap, volcano plot, and bar charts were plotted via the R packages

“ComplexHeatmap” and “ggplot2”.

Biological function and genetic mutation
landscape of ER stress-related DEGs

The Search Tool for the Retrieval of Interacting Genes

(STRING; http://string-db.org) database was used to depict

the protein–protein interaction (PPI) network among these

DEGs with a combined score of >0.15. Cytoscape (version 3.8.

2) and its plugins, BiNGO and MCODE, were utilized to show

gene ontology categories and hub genes.The cBioPortal

(http://www.cbioportal.org) helped illustrate the mutation

spectrum in KIRC patients.

Screening of prognosis-related genes

Univariate Cox regression analysis was employed to identify

prognosis-related genes of KIRC patients from TCGA database

via the R packages “survminer” and “survival”. Next, the least

absolute shrinkage and selection operator (LASSO) regression

was applied to screen genes which were significantly related to

survival time via the R packages “glmnet” and “survival”. Then,

we plotted a Venn diagram to show the intersection between

genes derived from univariate Cox regression and from

lambda.min of LASSO analysis. We also depicted the

gene–gene interaction (GGI) network via GeneMANIA

(https://genemania.org).

Construction of a prognostic model based
on ER stress-related genes

We calculated the risk scores of each sample. The formula

was as follows: Σi coefficient (gene_i) × expression (gene_i).

So far, the samples were divided into two risk groups,

according to the median risk score. In addition, the

Kaplan–Meier (K-M) curve, the time-dependent receiver

operating characteristic (ROC) curve, the heatmap, and the

forest plot using both univariate and multivariate Cox

regression analyses were plotted to illustrate the

distribution and survival status of KIRC patients in two

risk subgroups.

Establishment and verification of the
nomogram

A nomogram was plotted to predict the survival of KIRC

patients via the R packages “rms” and “survival”. It covered

different variables, including age, gender, race, TNM stage,

histological grade, tumor laterality, and risk score. The 1-year,

3-year, and 5-year calibration curves were plotted to validate the

veracity of the nomogram via the R package “rms”. Moreover, the

samples from two GEO series were combined as a verification

cohort to validate the efficiency of the constructed prognostic

model.

Functional enrichment exploration

GO analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis were applied to reveal underlying pathways via

the R package “clusterProfiler”. The corresponding chord

diagram was plotted via the R package “GOplot”.
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Immune pattern analysis of subgroups in
KIRC

The infiltrating fractions of immune cells were calculated with a

single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm

via the R package “GSVA” (Hanzelmann et al., 2013). Then, the

infiltrating levels of immune cells and immune checkpoints were

compared in the different risk score groups. In addition, we

calculated the stromal scores, immune scores, and estimate scores

of KIRC patients via the R package “ESTIMATE” (Liu et al., 2020).

FIGURE 1
Outline of the analysis process.
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Statistical analysis

R software (version 4.1.1) and its relevant packages were

applied to process, analyze, and present the data. IBM SSPS

software (SPSS Inc., Chicago, IL, United States) was also a

requisite. A p-value < 0.05 was deemed as statistically valuable.

Result

Distinction of ER stress-related DEGs in
KIRC

First, we acquired 126 ER stress-related pathways from

MSigDB (Figure 2). Next, we identified the different

expression levels of 126 ER stress-related genes in 539 tumor

specimens and 72 normal specimens with TCGA dataset

(Figure 3A). Additionally, we evaluated the correlation

between the expression levels of 126 ER stress-related genes

and the overall survival time of different tumors through

GEPIA2. As shown in Supplementary Figure S1, we identified

the different hazard ratios (HRs) of 126 ER stress-related genes in

different tumors. Then, under the cutoff values of |

log2FoldChange| > 1 and p < 0.05, a total of 26 DEGs were

found; we identified that 18 ER stress-related genes displayed

markedly high expression and eight ER stress-related genes

displayed markedly lower expression in KIRC than normal

tissues in TCGA dataset (Figures 3B–D).

Biological function and genetic mutation
landscape of ER stress-related DEGs in
KIRC

A PPI analysis by the STRING website was performed to

illustrate the interactivity of DEGs (Figure 4A). Next, we

explored the genetic mutations of these DEGs in KIRC. As

shown in Figure 4B, the main types of genetic mutations were

missense, truncating, amplification, deep deletion, and mRNA

high. Additionally, the results suggested that RCAK1 (8%) was

the gene with the highest mutation incidence, followed by

TNFRSF10B (3%), among the 26 ER stress-related genes.

Furthermore, functional enrichment analyses were conducted

to demonstrate the biological process, cellular component, and

molecular function involving the 26 ER stress-related DEGs. ER

stress-related DEGs were prominently enriched in the biological

processes of coenzyme biosynthetic process, acetyl-CoA

metabolic process, acetyl-CoA biosynthetic process, and

pyruvate metabolic process (Figure 4C). Meanwhile, cellular

components of the pyruvate dehydrogenase complex and

FIGURE 2
ER stress-related pathways from MSigDB.
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FIGURE 3
Distinction of ER stress-related DEGs in KIRC. ER stress-related DEGs were identified between KIRC and normal specimens in TCGA dataset
with the cutoff values of |log2FC| > 1. (A) Heat map visualized upregulated and downregulated ER stress-related genes in tumor specimens (T) and
normal specimens (N). Red means upregulated genes, and blue means downregulated genes. (B) Volcano map visualized upregulated and
downregulated ER stress-related genes. Red means upregulated genes, blue means downregulated genes, and gray means nonsignificant
genes. (C,D) Expression of 26 ER stress-related genes between tumor specimens (T) and normal specimens (N) (***p < 0.001).
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FIGURE 4
Biological function and genetic mutation landscape of ER stress-related DEGs in KIRC. (A) PPI network acquired from the STRINGwebsite of ER
stress-related DEGs. (B)Main types of genetic mutations of ER stress-related DEGs. (C–E) Biological processes, cellular components, and molecular
functions of ER stress-related DEGs. (F) Relationship among the protein expression of 26 ER stress-related DEGs by using the MCODE plugin. Yellow
means hub genes.
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mitochondrial pyruvate dehydrogenase complex were

markedly modulated by these ER stress-related genes

(Figure 4D). These ER stress-related DEGs possessed the

molecular functions of cofactor binding, coenzyme binding,

lipoic acid binding, carboxylic acid binding, acyltransferase

activity, and transferase activity (Figure 4E). Then, we further

identified CEBPB, ERO1L, ATF3, BAX, BBC3, TRIB3,

TNFRSF10B, NUPR1, and CASP4 were hub genes by

FIGURE 5
Construction of the prognostic model based on ER stress-related DEGs. (A) Univariate Cox regression analysis of 26 ER stress-related DEGs.
(B,C) LASSO coefficient profiles of 26 ER stress-related DEGs. (D) Venn diagram visualized the intersecting genes between the K-M-relatedDEGs and
lambda minimum genes. (E) GGI analysis by the GeneMANIA website among candidate ER stress-related DEGs. (*p < 0.05, **p < 0.01, and ***p <
0.001).

Frontiers in Molecular Biosciences frontiersin.org08

Shen et al. 10.3389/fmolb.2022.928006

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.928006


MCODE analysis (Figure 4F). Collectively, these results

demonstrated the potential role of these ER stress-related

DEGs in KIRC tumorigenesis.

Construction of the prognostic model
based on ER stress-related DEGs

To construct an ER stress-related prognostic model, we

further screened 26 candidate prognostic ER stress-related

DEGs by univariate Cox regression analysis. As shown in

Figure 5A, among the 26 prognostic ER stress-related DEGs,

AGR2, CHAC1, CEBPB, CLGN, FCGR2B, TRIB3, and ATP2A1

were regarded as high-risk genes based on their HRs, whereas

SVIP, PRKN, and CREB3L3 were regarded as low-risk genes.

Subsequently, through a LASSO Cox regression analysis with

10-fold cross-validation to identify the optimal lambda value

(λ) which came from the minimum partial likelihood

deviance, CHAC1, ATF3, SVIP, PRKN, BAX, CASP4,

CEBPB, CLGN, CREB3L3, TRIB3, ATP2A1, and PDX1 were

significantly associated with the prognosis of KIRC (Figures

5B,C). After intersecting the aforementioned K-M related

DEGs and lambda minimum genes, we obtained eight ER

stress-related DEGs as candidate prognostic model-related

genes (Figure 5D). In addition, to reveal the latent

intermediate genes among these eight genes from three

aspects, including co-expression, shared protein domains,

and genetic interactions, we performed a GGI analysis by

using the GENEMANIA website (Figure 5E).

To further verify the correlation between the eight candidate

ER stress-related DEGs and the prognosis of KIRC, we screened

the eight candidate ER stress-related DEGs by multivariate Cox

regression analysis. Among the eight genes, CHAC1, CEBPB,

CLGN, TRIB3, and ATP2A1 were regarded as high-risk genes,

whereas SVIP, PRKN, and CREB3L3 were regarded as low-risk

genes (Figure 6A). Ultimately, according to our results, we

developed a prognostic model, which contained CHAC1,

SVIP, PRKN, CEBPB, CLGN, CREB3L3, TRIB3, and ATP2A1.

Then, the risk scores were computed on the basis of the

normalized expression of eight prognostic ER stress-related

genes and their regression coefficients: risk score =

(0.16891800 * CHAC1 expression) + (-0.33279463 * SVIP

expression) + (-0.19868751 * PRKN expression) +

(0.06170303 * CEBPB expression) + (0.11164955 * CLGN

expression) + (-0.07175666 * CREB3L3 expression) +

(0.02883605 * TRIB3 expression) + (0.26298195 *

ATP2A1 expression). Therefore, the patients were separated

into two risk groups (low and high) on the foundation of the

median risk score. As shown in Figure 6B, the mortality of the

high-risk group was higher than that of the low-risk

group. Moreover, our result demonstrated the assignation of

the eight ER stress-related DEG expressions in tumor specimens

in the subgroups of the risk score (Figure 6C). In addition, K-M

curves indicated that the patients in the high-risk group had

worse overall survival than the patients in the low-risk group (p <
0.001, Figure 6D). To assess the accuracy of the prognostic

model, we also performed a time-dependent ROC curve. As

shown in Figure 6E, the area under the ROC curve (AUC) was

0.755 for 1-year overall survival (OS), 0.703 for 3-year OS, and

0.710 for 5-year OS, indicating that this eight-gene prognostic

model performed well as a predictor of OS.

Independent prognostic value and clinical
utility of the prognostic model

We then performed univariate and multivariate Cox

regression analyses to examine whether the prognostic

model was an independent prognostic value for other

clinical features. The univariate Cox regression analysis

showed that age, T3-stage, T4-stage, N-stage, M-stage, and

risk score were marked correlated with KIRC prognosis

(Figure 7A). Following multivariate Cox regression

analysis, M-stage and risk score acted as independent risk

factors of KIRC (Figure 7B). Furthermore, to provide

clinicians with a more accurate and reliable prognostic

model, we performed a nomogram by integrating the risk

score and other clinical parameters, indicating 1-, 3-, and 5-

year OS for KIRC patients (Figure 7C). Meanwhile, the

calibration curves of the constructed nomogram presented

great accuracy between predicted values and actual

observations (Figures 7D–F).

Validation of the prognostic ER stress-
related gene model

To validate the prognostic model we constructed, we

further evaluated this model in the testing set by using the

patients from GSE29609 and GSE167573 datasets. First, we

evaluated the different expression levels of the eight

prognostic ER stress-related genes in the tumor specimens

and normal specimens. Our results suggested that CHAC1,

CEBPB, CLGN, TRIB3, and ATP2A1 had high expression in

KIRC; on the contrary, SVIP, PRKN, and CREB3L3 had low

expression (Figure 8A). Next, based on the aforementioned

median risk score, the patients were separated into high-risk

groups and low-risk groups. As shown in Figure 8B, the

mortality of the high-risk group was higher than that of the

low-risk group; meanwhile, the assignation of the eight ER

stress-related gene expressions in tumor specimens were

plotted in the subgroups of the risk score. The K-M curves

indicated that the patients in the high-risk group had worse

overall survival than the patients in the low-risk group (p <
0.001, Figure 8C). In addition, the AUC was 0.541 for 1-year

OS, 0.558 for 3-year OS, and 0.610 for 5-year OS
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FIGURE 6
Correlation between the eight candidate ER stress-related DEGs and the prognosis of KIRC. (A) Multivariate Cox regression analysis of eight
candidate ER stress-related DEGs. (B) Ranked dot and scatter plots showing the risk score distribution and patient survival status. (C) Heat map
visualized upregulated and downregulated eight candidate ER stress-related DEGs between two risk groups in tumor specimens. Red means
upregulated genes, and blue means downregulated genes. (D) K-M analysis of the OS between the two risk groups. (E) ROC curves to predict
the sensitivity and specificity of 1-, 3-, and 5-year survival, according to the risk score. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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FIGURE 7
Independent prognostic value and clinical utility of the prognostic model. (A,B) Univariate and multivariate Cox regression analyses for
investigating the association of the ER stress-related gene model and conventional clinical factors with KIRC prognosis. (C) Prognostic nomogram
based on the ER stress-related model for prediction of 1-, 3-, and 5-year survival rates. (D–F)Calibration plots of the nomogram at 1-, 3-, and 5-year
survival.
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(Figure 8D). These results collectively indicated that the

prognostic model we constructed performed well as a

predictor of OS in KIRC.

Functional analysis of DEGs based on the
prognostic model

To explore the potential biological functions between the

two risk groups in KIRC, we identified the GO terms and

KEGG of the eight ER stress-related DEGs (Figure 9A). The

BP GO analysis showed that differentially expressed genes

were mainly enriched in the response to ER stress, intrinsic

apoptotic signaling pathway, intrinsic apoptotic signaling

pathway in response to ER stress, and topologically

incorrect protein (Figure 9B). For MF analysis,

differentially expressed genes were significantly enriched

in ubiquitin-like protein ligase binding, DNA-binding

transcription repressor activity, RNA polymerase II-

specific, histone deacetylase binding, and calcium-

transporting ATPase activity (Figure 9C). However, for

CC analysis, there was no term that was enriched. In

FIGURE 8
Validation of the prognostic ER stress-related gene model by using the patients from GSE29609 and GSE167573 datasets. (A) Heat map
visualized differential expression of eight ER stress-related genes in tumor specimens (T) and normal specimens (N). Red means upregulated genes,
and blue means downregulated genes. (B) Ranked dot and scatter plots showing the risk score distribution and patient survival status. (C) K-M
analysis of theOS between the two risk groups. (D)ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to
the risk score. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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FIGURE 9
Functional analysis of DEGs based on the prognostic model. (A) Potential biological functions between the two risk groups in KIRC. (B,C) GO
enrichment analysis of DEGs based on a prognostic model, including biological processes and molecular function. (D) KEGG pathway enrichment
analysis of DEGs based on the prognostic model. (E) Chord diagram visualized the correlation between eight ER stress-related DEGs and potential
biological functions.
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addition, according to the KEGG pathway analysis,

differentially expressed genes were primarily correlated

with protein processing in the ER, cGMP-PKG signaling

pathway, adrenergic signaling in cardiomyocytes, TNF

signaling pathway, and insulin resistance (Figure 9D).

Furthermore, we identified the correlation between eight

ER stress-related DEGs and potential biological functions

(Figure 9E).

Assessment of the tumor
microenvironment and immune
checkpoints

Recent research studies had revealed that the tumor immune

microenvironment was significantly correlated with malignant

behavior; therefore, we assessed the unique features of the TME

to distinguish between the two risk groups in KIRC. As shown in

FIGURE 10
Assessment of the tumor microenvironment and immune checkpoints between two risk groups. (A) Infiltration levels of 24 immune cell types
between high-risk and low-risk groups. (B) Immune score between high-risk and low-risk groups. (C) ESTIMATE score between high-risk and low-
risk groups. (D) Stromal score between high-risk and low-risk groups. (E) Expression of immune checkpoints between high-risk and low-risk groups.
(*p < 0.05, **p < 0.01, and ***p < 0.001).
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Figure 10A, the abundance of activated DC cells, B cells, CD8+

T cells, cytotoxic cells, DC cells, immature DC cells,

macrophages, NK CD56 bright cells, TFH cells, Th1 cells,

Th2 cells, and Treg cells in the high-risk group was

significantly higher, whereas the abundance of eosinophils,

neutrophils, T helper cells, Tcm cells, and Th17 cells was

opposite. Then, we performed an ESTIMATE algorithm to

further evaluate the correlation between risk score and

immune cell infiltration. The immune score and the

ESTIMATE score of the high-risk group were significantly

higher (Figures 10B,C). However, there was no statistical

difference in the stromal score between the two risk groups,

but the high-risk group had a trend of higher stromal score

(Figure 10D). In addition, we evaluated the correlation between

the risk score and 24 immune checkpoints. Among the

24 immune checkpoints, 14 immune checkpoints were

discrepantly represented in the two risk groups, such as

TNFSF18, CD40, and CD44 (Figure 10E).

Discussion

KIRC is a common and highly heterogeneous malignant

tumor that develops through multiple complex biological processes.

Due to the high metastasis and recurrence rate of KIRC, the efficacy

of traditional treatment is limited, and the prognosis of KIRCpatients

is dismal. Thus, novel prognostic biomarkers and valid therapeutic

targets are urgently needed. ER is the most important intracellular

organelle for protein synthesis and cellular homeostasis, which is

involved in the regulation of various signaling pathways. A specific

state named “ER stress” will be triggered when ER homeostasis is

disrupted by a number of intrinsic or extrinsic factors, such as

hypoxia, oxidative stress, metabolic stress, and nutrient depletion.

In fact, accumulating evidence has demonstrated the inevitable

association between ER stress and the development of multiple

cancers, including KIRC (Chen and Cubillos-Ruiz, 2021; Varone

et al., 2021). Recently, according to numerous research studies,

multiple gene models, which are applied to predict outcomes and

therapeutic effect, seem to have high credibility (Divate et al., 2022;

Zhai et al., 2022). However, most of the research studies focus on the

effect of ER stress in cancer progression and metastasis, and few

studies have illustrated the prognostic value of ER stress-related genes

in cancers, especially in KIRC.

Hence, in the current study, we systematically evaluated the

expression of 126 ER stress-related genes between KIRC

specimens and normal specimens based on public databases

and identified that 26 genes were differentially expressed in

KIRC. Then, we performed PPI analysis and functional

enrichment analyses to explore the potential biological

function of 26 ER stress-related DEGs. Meanwhile, according

to the hub genes by MCODE analysis, we further revealed the

potential role of ER stress-related genes in KIRC tumorigenesis.

Finally, an eight ER stress-related prognostic model was

constructed by LASSO and univariate Cox regression analyses.

To further explore the prognostic value and clinical significance,

we also performed survival and ROC analysis to validate the

predictive performance of this novel prognostic model.

Moreover, subgroup analyses stratified by clinical features also

evidenced that KIRC patients with low-risk scores had better

overall survival than those with high-risk scores. Altogether,

these results indicated that the eight ER stress-related gene

prognostic model had a significant potential in clinical

application of KIRC patients.

In the eight ER stress-related DEGs which were significantly

associated with the prognostic signature, CHAC1, CEPBP, CLGN,

TRIB3, and ATP2A1 were risk factors, while SVIP, PRKN, and

CREB3L3 were protective factors. Glutathione (GSH) acted as a

reactive oxygen species (ROS) scavenger and was significantly

associated with the induction of ER stress (Proneth and Conrad,

2019). CHAC1 was a novel proapoptotic member of ER stress-

related genes and possessed γ-glutamyl cyclotransferase activity,

thus regulating the degradation of GSH (Cui et al., 2021). Previous

research studies suggested that CHAC1 was correlated with a high

risk of metastasis and poor prognosis and exerted a harmful

influence on clinical outcomes in uveal melanoma (Liu et al.,

2019). As reported, tumors should adapt to the ER stress

mechanisms which contained the unfolded protein response

(UPR) and the ER-associated degradation (ERAD) to keep

protein homeostasis if they were to survive and grow. Thus,

ERAD ensured protein quantity and quality through degrading

misfolded or unassembled proteins by the ubiquitin–proteasome

system (Vembar and Brodsky, 2008). Mounting research studies

suggested that small VCP interacting protein (SVIP), an endogenous

inhibitor of ERAD, acted as a tumor feature, and its recovery after

epigenetic silencing was correlated with increased ER stress and

tumor growth inhibition. Meanwhile, this research also

demonstrated that cancer cells harboring DNA methylation-

associated loss of SVIP could obtain the cellular energy for their

survival mainly through glucose and aerobic glycolysis, while SVIP

restoration could promote the use of the homeostatic mitochondrial

respiration (Llinas-Arias et al., 2019). PRKN, also called PARK2, is a

cytosolic E3 ubiquitin ligase and was first shown to be involved in

Parkinson’s disease (Kitada et al., 1998). To date, evidence indicated

that PRKN is a tumor suppressor. As reported, downregulation of

PRKN had been associated with ovarian, colorectal, and cervical

cancers (Song et al., 2013; Klimczak et al., 2016; Bhat et al., 2019).

CCAAT/enhancer binding protein beta (CEBPB), as a family of

transcription factors of the basic leucine zipper (bZIP) class, is bound

toDNA as homodimers and heterodimers. CEBPB could upregulate

the expression of various target genes and was involved in numerous

metabolic processes. Additionally, CEBPB could also regulate

sequences of genes which were correlated with inflammatory

response or ER stress (Akira et al., 1990; Meir et al., 2010).

Recent studies had revealed that the expression of CEBPB was

high in ovarian cancer, breast cancer, and colorectal cancer

(Hungness et al., 2002). Calmegin (CLGN), a vital component
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for themembrane transport of target proteins, had been shown to be

positively correlated with the progression of breast cancer (Ozkaya

et al., 2017). CREB3L3, which was an ER stress-related transcription

factor, had been proven to exert a tumor suppressor role in various

cancers. For instance, CREB3L3 was associated with the

proliferation and prognosis of hepatocellular carcinoma by

regulating PI3K/Akt and AMPK signaling pathways (Vecchi

et al., 2014). Additionally, CREB3L3 could initiate the human

innate immune system by regulating the M2 marker gene

expression in macrophages (Luan et al., 2015). However, the

relationship between CREB3L3 and KIRC had not been

investigated in detail. TRIB3 was a member of the pseudokinase

tribbles family that played an important role in ER stress. Recent

research studies evidenced that the expression of TRIB3 could be

upregulated in a number of cancers, such as breast cancer, colorectal

cancer, and lung cancer (Wennemers et al., 2011; Yu et al., 2019; Yu

et al., 2020). Meanwhile, TRIB3 was involved in tumor progression

and was related to a poor prognosis. ATP2A1, also called SERCA1,

exerted a critical role in modulating ER Ca2+ dynamics. Several

studies had shown that ATP2A1 was associated with apoptosis and

immune responses in various cancers (Chemaly et al., 2018). For

instance, a decrease in the ATP2A1 activity was associated with the

upregulation of PD-L1 under glutamine-limited conditions (Byun

et al., 2020).

Previous research studies have revealed that ER stress could

promote cancer cells to evade immunity and facilitate metastasis.

Moreover, ER stress was highly correlated with the TME. As

reported, immune cells and stromal cells are the critical elements

of the TME, and immune score and stromal score are correlated

with the clinical features and prognosis in KIRC. Therefore, we

calculated these scores by using the ESTIMATE algorithm and

found that the immune score and the ESTIMATE score of the high-

risk group were significantly higher than those of the low-risk

group. These results indicated that ER stress could be associated

with the involvement of the TME to regulate the development of

KIRC. As reported, Treg cells could control NK cells, B cells, DC

cells, and macrophages and inhibit tumor immune responses

through regulating humoral and cell–cell contact (Tanaka and

Sakaguchi, 2017). Another research study suggested that the

enrichment of Treg cells could inhibit the anti-tumor

immunoreactivity and was highly correlated with poor survival

(Goschl et al., 2019). These findings were in line with our results

of abundant Treg cells, macrophages, and B cells in the TME of

KIRC patients with a high risk score. Finally, we identified the

different expressions of immune checkpoints between the two risk

groups to evaluate whether patients could benefit from ICI therapy.

Therefore, the novel prognostic model probably could help assess

the immune microenvironment of KIRC, and targeting ER stress

might probably be a potentially valuable strategy for

immunotherapy of KIRC patients.

However, there were still some limitations that warrant

consideration. First, since the results of this study were based

on bioinformatics and relied on public databases, there was no

experimental validation of the results. Second, the

performance of our prognostic model lacked validation in

more independent databases. Finally, further study and

complementary in vivo and in vitro experiments are

necessary to confirm our findings.

Conclusion

In conclusion, we constructed a novel prognostic model

based on eight ER stress-related genes for KIRC patients and

verified its independent prognostic value. We also clarified

that this prognostic model was highly correlated with

clinical characteristics and the immune microenvironment

of KIRC patients. The novel prognostic model would help

predict the prognosis of KIRC and provide a new orientation

to further research studies on personalized immunotherapy

in KIRC.
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