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Schizophrenia is a complex disorder that involves several neurotransmitters such as

dopamine, glutamate, and GABA. More recently, the endocannabinoid system has also

been associated with this disorder. Although initially described as present mostly in

the periphery, cannabinoid type-2 (CB2) receptors are now proposed to play a role in

several brain processes related to schizophrenia, such as modulation of dopaminergic

neurotransmission, microglial activation, and neuroplastic changes induced by stress.

Here, we reviewed studies describing the involvement of the CB2 receptor in these

processes and their association with the pathophysiology of schizophrenia. Taken

together, these pieces of evidence indicate that CB2 receptor may emerge as a new

target for the development of antipsychotic drugs.
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INTRODUCTION

Schizophrenia is a highly disabling psychiatric disorder of multifactorial etiology that affects
about 1% of the world population (1). The symptoms of schizophrenia are divided into three
main groups: positive, negative, and cognitive symptoms. Positive symptoms are characterized
by an exaggeration of normal functions, presenting mainly as hallucinations, delusional ideas,
defragmentation of thought, and psychomotor agitation. On the other hand, the negative
symptoms are characterized by a loss of normal functions, leading to affective blunting, anhedonia,
and social withdrawal (2). The cognitive symptoms are related to deficits in domains such as
working memory, attention, verbal learning and memory, problem-solving, among others (3).

Although the pathophysiology of schizophrenia remains mostly unknown, it has long been
thought that it involves an imbalance among several neurotransmitter systems. The first, and likely
the most influential, hypothesis about the neurobiology of schizophrenia proposes that changes
in the dopamine system, mainly a striatal hyperdopaminergic state, would be responsible for the
psychotic symptoms (4). Following this initial proposal, it was later suggested that negative and
cognitive symptoms would be associated with a hypodopaminergic state in the prefrontal cortex
(PFC) (5).

The first drugs used to treat schizophrenia, known as typical antipsychotics, act as antagonists at
dopamine D2 receptors. Besides their effects on positive symptoms, they also cause adverse effects
such as extrapyramidal side effects and hyperprolactinemia, resulting in a high discontinuation rate.
The second-generation or atypical antipsychotics, despite also targeting dopamine D2 receptors,
also bind to receptors associated with other neurotransmitter systems (6). Although these drugs
have a lower tendency to induce adverse motor effects at therapeutic doses than first-generation
antipsychotics, they are associated with undesirable effects that may limit their use, such as
metabolic changes and weight gain (7, 8). In addition, while positive symptoms have a good clinical
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response to typical and atypical antipsychotics, the negative and
cognitive impairments are more resistant to the available drugs.
Together, these observations support the urgent need to develop
new drugs with better efficacy and tolerability (9–11).

Considering the lack of therapeutic options and the
complexity of this disorder, recent hypotheses have emerged
involving other neurotransmitter systems such as the
glutamatergic, serotonergic, gamma-aminobutyric acid (GABA),
and, more recently, the endocannabinoid (12–16).

THE ENDOCANNABINOID SYSTEM

The endocannabinoid system (ECS) is a modulatory system that
plays a crucial role in brain development, synaptic plasticity,
and response to endogenous and environmental insults (17). The
ECS comprises endogenous cannabinoids (endocannabinoids),
cannabinoid receptors, and the enzymes responsible for the
synthesis and degradation of endocannabinoids. The two main
and best-characterized endocannabinoids are N-arachidonoyl
ethanolamine (anandamide) and 2-arachidonoyl glycerol (2-AG)
which, unlike most classical neurotransmitters, are produced on
demand. There are reports, however, indicating that they might
also be stored intracellularly (18, 19).

In the central nervous system (CNS) anandamide and 2-
AG are synthesized and secreted from postsynaptic neurons.
They bind to cannabinoid CB1 and CB2 receptors located on
presynaptic terminals, acting as retrograde messengers and to
CB2 receptors located on the postsynaptic site of some neurons
(20). Once released in the synaptic cleft, endocannabinoids can
be taken up by specific transport proteins and then broken down
by the fatty acid amid hydrolase (FAAH) and monoacylglycerol
lipase (MAGL) enzymes, which degrades anandamide and 2-AG,
respectively (21, 22).

Although the effects of endocannabinoids are mediated
mainly by CB1 and CB2 cannabinoid receptors, others receptors
such as the peroxisome proliferator-activated receptors (PPARs)
and transient receptor potential (TRP) channels, can also be
activated by these compounds (17, 23). CB1 and CB2 receptors
are G-protein-coupled receptors (GPCRs) that, in addition
to interacting with endocannabinoids, are also activated by
synthetic and plant-derived cannabinoids.

The cannabinoid receptors are G protein-coupled receptors
(GPCR), which couple mainly to the Gi and G0 classes of
G proteins. Their activation inhibits the adenylyl cyclases
enzymes, activates mitogen-activated protein kinases and
modulates voltage-dependent ion channels (i.e., activating
voltage-dependent potassium channels and inhibiting voltage-
dependent calcium channels) (23). Overall, the intracellular
signaling induced by the activation of cannabinoid receptors
inhibits neurotransmitter release (17).

CB1 receptors are the most prevalent GPCR in the CNS
and are located mainly in the cortex, hippocampus, amygdala,
basal ganglia, and cerebellum (24). This receptor is the
major mediator of the psychoactive effects of the Cannabis
sativa plant and its derivatives. Many studies investigating
cannabis abuse and psychosis have prompted debates as

to whether the ECS is involved in the pathophysiology of
schizophrenia (25). By acting on cannabinoid CB1 receptors,
THC, the main cannabinoid found in cannabis and responsible
for the majority of its psychotropic effects, interferes with
brain maturation and causes long-lasting neurobiological
changes when chronically administered (26, 27). THC also
influences the release of neurotransmitters, such as dopamine
and glutamate, that are involved in the pathophysiology
of schizophrenia (28). Moreover, during adolescence,
cannabis abuse has been associated with an increased risk
for schizophrenia development (29). Corroborating this
observation, other results also support the involvement
of CB1 receptors in schizophrenia. For example, genetic
associations between polymorphisms of CB1 receptors
and other ECS-related genes have been related to a higher
susceptibility to schizophrenia (30, 31) and response to
antipsychotic drugs (32–34). Moreover, increased binding
of CB1 receptor ligands has been found in the post-mortem
brain of schizophrenia patients (35). It is noteworthy, however,
that negative and controversial findings have also been found.
For example, whereas increased levels of anandamide in the
cerebrospinal fluid have been described in the prodromal
stage of psychosis and antipsychotic-naïve first-episode
psychosis patients (36, 37), a decrease in endocannabinoid
synthesizing enzymes (NAPE and DAGL) was found in first-
episode (38). These controversial data suggest that the ECS
involvement in schizophrenia is complex and far from being
completely understood (36, 39–41). Also, there is a lack of
studies investigating changes in the ECS at different stages of
the disorder.

THE CB2 RECEPTOR

The CB2 receptor shares 44% homology with the CB1 receptor
(23, 42). Early studies suggested that CB2 receptors were
not present in the brain but highly expressed in peripheral
tissues, particularly in the immune system. Therefore, these
receptors became a target for developing new pharmacological
therapies to inflammatory pathological conditions, including
pain, autoimmune, and neurodegenerative disorders (43–46).
With the development of increasingly selective and sensitive
tools, it was possible to identify CB2 receptors throughout
the CNS.

CB2 receptors are expressed in the brain at lower levels than
CB1 receptors, being present in glial cells, such as microglia
and astrocytes, and specific subpopulations of neurons (20,
47–51). In neurons, unlike CB1, CB2 receptors are mainly
expressed at postsynaptic levels, which could contribute to
some of the opposite effects found after their activation (20).
For example, while presynaptic CB1 receptor activation in
GABAergic neurons increases the probability of postsynaptic
neuronal excitation, by decreasing GABA, the activation of
postsynaptic CB2 receptors usually inhibits neuronal excitability
(52, 53). However, CB2 receptors located in presynaptic terminals
have also been described, where, similar to CB1 receptors, they
modulate neurotransmitter release (54).
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Another unique feature of CB2, compared to CB1 receptors, is
that they are inducible and upregulated in glial cells in response
to various insults, including inflammation and chronic pain (55).
In glial cells, the activation of CB2 receptors inhibits the release
of several inflammatory mediators, including nitric oxide and
pro-inflammatory cytokines such as interleukin (IL)-1, tumor
necrosis factor (TNF)-α, and IL-6, and increases the release of
anti-inflammatory cytokines such as IL-10 and IL-1 receptor
antagonist (56, 57). Also, CB2 receptors modulate the activation,
proliferation, differentiation, and migration of microglia (58–
60). Due to the presence of CB2 receptors in both glial cells
and neurons, several groups have investigated the role of these
receptors in neuroinflammation and neuroprotection (44, 56, 61,
62), and as potential targets to treat chronic neurodegenerative
disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s
disease (61, 63), and psychiatric disorders, such as schizophrenia
and depression (52, 64–68). A wealth of evidence indicates
that inflammatory/immune changes are associated with these
disorders (69, 70).

CB2 RECEPTORS AND SCHIZOPHRENIA

Accumulating evidence points that CB2 receptor-related changes
are present in schizophrenia. An increase in the frequency of two
single nucleotide polymorphisms (SNP) in the CB2 receptor gene
(rs12744386 and rs2501432), which decrease the function of these
receptors, was described in schizophrenia patients (71). More
recently, a genome-wide association study of more than 120,000
participants identified an SNP intronic to the CB2 receptor
gene highly associated with distressing psychotic experiences
(72). In addition, non-treated first-episode psychosis and acute
schizophrenia patients treated with antipsychotics showed a
decreased peripheral expression of CB2 receptors than to healthy
controls (38, 40). However, there has been a lack of post-mortem
and neuroimaging studies evaluating the expression of CB2
receptors in patients with schizophrenia.

The preclinical studies suggesting the involvement of CB2
receptors in key neurotransmitter systems associated with
schizophrenia have been recently reviewed (64). In the present
paper, in addition to address these studies, we further discuss
the role of CB2 receptors in inflammatory and stress-associated
neuroplastic processes that have also been associated with
this disorder.

CB2 Receptors in Animal Models of
Schizophrenia Based on Dopamine
Dysregulation
Dysregulation of the midbrain dopamine system, characterized
mainly by a striatal hyperdopaminergic state, is a hallmark of the
pathophysiology of schizophrenia (73). This hyperdopaminergic
state is implicated in psychotic symptoms, which involve
perceptual disturbances (hallucinations) and fixed beliefs
resistant to contradictory evidence (delusions).

Excitatory, inhibitory, and modulatory inputs control
the dopamine neurotransmission by modifying its release,
postsynaptic effects, and neuronal firing patterns (74). In general,

whereas glutamatergic inputs onto dopamine neurons increase
excitability, GABAergic inputs inhibit dopamine neuronal
function (75, 76). In addition, autoregulation of dopamine
release can occur through presynaptic D2 receptors. The
activation of these receptors results in inhibitory feedback that
decreases dopamine release (77).

Several studies indicate that the ECS modulates the midbrain
dopamine system and dopamine-related behaviors (78–80).
These studies have mainly focused on CB1 receptors because,
as discussed above, CB2 receptors have long been considered
as peripheral cannabinoid receptors (42). CB1 receptors are
expressed at low to moderate levels throughout the mesolimbic
dopamine pathway. They are also highly expressed in the medial
PFC (24), where they can modulate dopamine transmission (81).
In the ventral tegmental area (VTA), CB1 receptors are expressed
presynaptically in glutamatergic and GABAergic terminals,
modulating dopamine efflux in striatal regions (82). Based on
this evidence, the CB1 receptor was proposed as a promising
target for treating psychiatric disorders associated with dopamine
dysregulation, such as schizophrenia and drug abuse (83).
However, studies with the CB1 receptor antagonist rimonabant,
although yielding to promising findings on psychostimulant
addiction (84), revealed that this drug induces significant adverse
effects, including depression and suicide ideation (85), which
limited its therapeutic use.

Similar to CB1, CB2 receptors also modulate the dopamine
system. Animals lacking CB2 receptors (CB2KO) present a
decrease in basal motor activity, disruption in the prepulse
inhibition (PPI) test, cognitive impairments, and enhanced
response to acute cocaine (66). This behavioral profile is
commonly associated with symptoms of schizophrenia. Chronic
treatment with the second-generation antipsychotic risperidone
attenuated the PPI deficits in CB2KO mice (66). Besides, the
pharmacological blockade of CB2 receptors in the nucleus
accumbens (NAc) by the local infusion of the CB2 receptor
antagonist AM630 increased locomotor activity and extracellular
NAc dopamine levels in wild-type and CB1 receptor knockout
(CB1KO), but not in CB2KO mice (79). On the other
hand, similar to antipsychotics (86), drugs that activate CB2
receptors, such as the CB2 receptor agonist JWH133, attenuate
cocaine-induced increased locomotor activity and its rewarding
properties (87). Also, Xi et al. (79) found that JWH133, in a dose-
dependent manner, inhibited cocaine self-administration, and
cocaine-enhanced locomotion and NAc dopamine levels in wild-
type and CB1KO, but not in CB2KO mice. In addition, JWH133
prevented the acquisition and expression of cocaine sensitization
inmice. Both effects were blocked by the CB2 receptor antagonist
AM630 (88). Overall, these pieces of evidence indicate that CB2
receptors modulate dopamine function and its related behaviors.
However, the mechanisms by which this modulation occurs are
not yet completely clear.

CB2 receptors are present on the cell body of dopamine
neurons in the VTA and on the terminal of these neurons in
the NAc (89–91), where they can colocalize with D2 receptors
(89). Functionally, mice with a selective deletion of CB2 receptors
in VTA dopamine neurons (DAT-Cnr2 cKO) present a greater
locomotor response to the acute administration of amphetamine
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and cocaine than wild-type animals (78). DAT-Cnr2 cKO
mice also show enhanced cocaine-induced conditioned place
preference and stereotypical behaviors, indicating that these
receptors play a role in the VTA (92). Also, behavioral changes
associated with the negative symptoms of schizophrenia were
found in DAT-Cnr2 cKO mice, including anhedonia and
enhanced behavioral despair (92). On the other hand, mice
overexpressing CB2 receptors display an opposite behavioral
profile, with lower locomotor response, self-administration, and
place preference caused by cocaine (89).

In the VTA, CB2 receptors expressed in dopamine
neurons can modulate dopamine neuronal excitability.
Electrophysiological studies indicated that activation of CB2
receptors by JWH133 inhibits VTA dopamine neurons firing in
vivo and ex vivo. Also, the infusion of this CB2 receptor agonist
into the VTA and NAc inhibited cocaine self-administration and
cocaine-enhanced extracellular dopamine levels. These effects
were not seen in CB2KO mice and after the pretreatment with
a CB2 receptor antagonist in wild-type mice (90, 93). JWH133
also decreased glutamatergic synaptic transmission in VTA
dopamine neurons. However, the pharmacological blockade of
synaptic transmission did not prevent the inhibitory effect of
JWH133 on dopamine neuronal activity (93). Therefore, CB2
receptor activation does not impair the glutamatergic excitatory
input to dopamine neurons and could directly modulate VTA
excitability. Corroborating this possibility, the activation of
postsynaptic CB2 receptors (a Gi/o-coupled receptor) in VTA
dopamine neurons reduces intracellular cAMP levels and
enhances K+ channel function, decreasing the excitability of
these neurons (93). In addition, Foster et al. have recently
shown that the activation of muscarinic M4 receptors on D1
receptor-spiny projection neurons increases the release of 2-AG.
Through the activation of CB2 receptors located in presynaptic
terminals of dopamine neurons, this endocannabinoid causes
a sustained inhibition of dopamine release. The authors have
also described that the activation of M4 receptors reverses
PPI disruption, an effect blocked by CB2 receptor antagonism
(94). Taken together, these results indicate that CB2 receptors
modulate dopaminergic transmission and, therefore, could
be a promising target for the treatment of mental disorders
associated with dopamine dysregulation, such as drug abuse and
schizophrenia (Figure 1) (64, 66, 68, 80). Additional studies are
needed to fully elucidate the modulatory role of CB2 receptors on
dopamine function and how their pharmacological manipulation
could help treat psychiatric disorders such as schizophrenia.
Moreover, the impact of repeated treatment with CB2 receptor
agonists on dopaminergic neurotransmission also needs to be
further investigated.

CB2 Receptors in Animal Models of
Schizophrenia Based on NMDA Receptor
Hypofunction
Ketamine and phencyclidine (PCP) induce schizophrenia-like
signs in healthy subjects (95) and exacerbate schizophrenia
symptoms in schizophrenia patients (96). Since ketamine and
PCP act mainly as NMDA receptor antagonists, these clinical

observations led to the proposal that a hypofunction of NMDA
receptors may underlie schizophrenia symptoms. Unlike drugs
that enhance dopamine neurotransmission, which induce only
psychotic symptoms, ketamine and PCP evoke behavioral
changes associated with not only the positive but also the negative
and cognitive symptoms observed in schizophrenia patients
(96). In rodents, acute or repeated administration of NMDA
receptor antagonists such as ketamine, PCP, and MK-801, have
been used to model schizophrenia (97). The schizophrenia-
like signs induced by these drugs are proposed to depend on
NMDA receptors blockade in parvalbumin containing inhibitory
GABAergic interneurons (98, 99). A decrease in parvalbumin
expression is one of the most robust findings in post-mortem
brains of schizophrenia patients (100). This decrease is also
described in several animal models of schizophrenia (101),
including those based on NMDA receptor hypofunction (102,
103). The functional loss of theses interneurons could result
in the dopamine dysregulation and cognitive deficits seen
in schizophrenia.

The acute administration of NMDA receptor antagonists
induces hyperlocomotion and PPI deficits in rodents. CB2
receptor agonists were found to either attenuate or reverse these
changes. For example, the CB2 receptor agonist JWH105
reversed MK-801-induced PPI deficits. Supporting the
involvement of CB2 receptor, JWH105 effects were blocked
by the CB2 receptor antagonist AM630, but not by the CB1
receptor antagonist AM251 (104). As expected, contrary to
the effects of the CB2 receptor agonists, the blockade of CB2
receptors exacerbates both the PPI impairments and increased
the locomotor activity induced by MK-801 (71, 105).

Numerous preclinical and clinical studies have indicated that
cannabidiol (CBD), the major nonpsychotomimetic compound
found in the Cannabis plant, presents antipsychotic properties
(106). Several pharmacological targets have been suggested to
mediate CBD effects (107), including CB2 receptors (108, 109).
In a recent work from our group, however, a CB2 receptor
antagonist failed to reverse the positive effects of CBD on
the memory and social interaction deficits caused in mice by
repeated treatment with MK-801 (110). In this study CBD
was administered after the treatment with NMDA receptor
antagonist. In a previous study we found that CBD prevents the
behavioral deficits and microglial activation caused by 28 days
of daily MK-801 administration (111). The involvement of CB2
receptors in this preventive effect has not yet been investigated.

CB2 Receptors as Targets for Controlling a
Pro-inflammatory State in the
Schizophrenic Brain
Besides the widely accepted hypotheses based on dysfunctions
in dopamine and GABA-glutamate systems, dysregulation
of the immune system has also been associated with the
pathophysiology of schizophrenia (112).

In a healthy brain, constitutive cytokines play an important
role in physiological and functional processes such as brain
development, neurotransmission, and cognition (113–115).
Under normal and pathological conditions in the CNS,
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FIGURE 1 | CB2 receptors as a target to treat midbrain dopamine system dysregulation and neuroinflammation in schizophrenia. The activation of CB2 receptors

located in the cell body of ventral tegmental area (VTA) dopamine (DA) neurons and the terminal of these neurons in the nucleus accumbens (NAc) decreases DA

neuron firing and DA release, respectively. In addition, the activation of CB2 receptors in microglia decreases the release of pro-inflammatory mediators and, possibly,

microglia-mediated neurotoxicity. Several risk factors for schizophrenia, such as stress and maternal immune activation, lead to microglia activation, which has been

associated with abnormal synaptic pruning, neurogenesis impairment, deficits in parvalbumin expression, and neuroinflammation, all common findings in

schizophrenia.

cytokines are produced mainly by microglia and astrocytes
(116, 117). Microglia are the CNS resident macrophages
and play an important role in innate immunity, rapidly
responding to any pathological changes in the brain. In normal
conditions, microglia contributes to synaptic development and
plasticity promotes neuronal survival, and always monitors
the environment by continually moving their processes (118).
Prolonged microglia activation might cause brain injuries.
For example, increased microglia activation during brain
development may lead to abnormal synaptic pruning, which
has been associated with schizophrenia (119). Besides, increased
microglia activation may result in expression deficits in
parvalbumin containing interneurons and in their perineuronal
nets (120).

Schizophrenia patients show increased serum levels of pro-
inflammatory cytokines such as IL-2, IL-6, and IL-8 (121, 122).
Elevated IL-1β levels were also found in the cerebrospinal
fluid of drug-naïve patients (123). Moreover, infections during
the perinatal period lead to maternal immune activation
characterized by a marked increase in pro-inflammatory
cytokines. It may disrupt neurodevelopmental processes in the
fetus and be associated with a greater risk for schizophrenia
development (124–126).

Increased microglia density and in markers of microglia
activation have been reported in the post-mortem brain of
schizophrenia patients (127). In addition, neuroimaging studies
have revealed an overactivated state of microglia in schizophrenia
patients (128, 129). This state has been correlated with positive
symptoms and disease duration (130). Thus, the appropriate
control of microglial activation might be a promising therapeutic
strategy for schizophrenia. In accordance with this proposal,
some reports have demonstrated antipsychotic-like effects of
minocycline, an inhibitor of microglial activation. Adjunctive
therapy of minocycline to antipsychotics was beneficial in
animal models and schizophrenia patients, especially against
negative symptoms (131–134). Other studies, however, have
failed to show any beneficial effect of this treatment (135).
Furthermore celecoxib, an anti-inflammatory drug, used as
an add-on medication to antipsychotics chronic schizophrenia
effectively treated positive symptoms (136, 137). Taken together,
these studies suggest that, even if it is still unknown whether the
immune dysfunction seen in schizophrenia is a primary factor
or a secondary consequence, controlling this dysfunction could
be beneficial.

The expression of CB2 receptors in microglia is modified
depending on their activation, being low in the healthy brain,
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and high under pathological conditions (138, 139). Several
studies indicate that CB2 receptor activation inhibits microglia-
mediated neurotoxicity and reduces pro-inflammatory cytokine
levels (140). When exposed to injury or infection, the resident
microglia, similar to what occurs with macrophages, polarizes
toward a pro-inflammatory phenotype (M1), characterized
by the production of pro-inflammatory cytokines and antigen
presentation. After activation, the M2 phenotype facilitates the
resolution of the inflammatory state, through anti-inflammatory
cytokines, establishing homeostasis (141). CB2 receptor
activation facilitates microglia transformation from M1 to M2
phenotype, leading to a reparative scenario (142). On the other
hand, CB2 receptor deletion exacerbated neuroinflammatory
response in animal models of experimental autoimmune
encephalomyelitis and cerebral ischemic/reperfusion injury
(143–145). Thus, CB2 receptors seem to play a prominent
role in inflammatory responses in the CNS. Its upregulation
and activation may facilitate the downregulation and control
of inflammatory processes (146). In agreement with this
proposal, Ehrhart and colleagues showed that the CB2 receptor
agonist JWH015 reduces IFN-γ-induced upregulation of CD40
expression in mouse microglia, which is involved in pathological
activation of these cells (60).

In an animal model of Parkinson’s disease, CB2 receptor
activation reduced the neuroinflammatory process, brain-blood-
barrier damage and T-cell infiltration, and increased nigrostriatal
dopamine neuronal survival (147). In vitro studies demonstrated
that the selective CB2 receptor agonists JWH133 and HU-
308 reduced pro-inflammatory cytokines release in microglia
culture (148, 149). The treatment with HU-308 decreased
striatal neuroinflammation in a rodent model of L-dopa induced
dyskinesia (150). This anti-inflammatory-like effect induced by
the activation of CB2 receptors is also seen after a traumatic
brain injury. The treatment with a selective CB2 receptor
agonist decreased macrophage infiltration and pro-inflammatory
cytokine expression, and increased M2 macrophage polarization
(151). Other in vivo studies also demonstrated an anti-
inflammatory effect of CB2 receptor activation in different animal
models of neurodegenerative diseases (152–154).

In summary, some schizophrenia patients present marked
microglia activation and increased levels of pro-inflammatory
markers. The modulation of these changes as a strategy to treat
this disorder seems promising (146). Given that the activation of
CB2 receptors leads to the inhibition of microglial activation and
the release of pro-inflammatory cytokines (65), these receptors
have emerged as potential therapeutic targets (Figure 1).

CB2 receptors also seem to play a role in stress regulation.
In mice, deletion of CB2 receptors increases stress responsivity
(66) and stress exposure decreased hippocampus CB2 receptor
expression (67). On the other hand, the genetically-induced
overexpression of CB2 receptors produced anti-stress effect (68).
In addition, the activation of CB2 receptors also induces anti-
stress effects in rodents (65, 68, 155, 156). Exposure to stress,
a well-known risk factor for the development of schizophrenia
(157), increases microglia activation (158). Individuals at high
risk of developing schizophrenia show increased responsivity
to stress and are more likely to develop the disorder if they

have decreased tolerance to stress (159). In animal models,
stress relief during adolescence prevented the development
of a schizophrenia phenotype at adulthood (160). Thus, the
activation of CB2 receptors, due to its anti-stress effects (65,
68, 155, 156), may represent a strategy to prevent the transition
from a high-risk state to full-scale schizophrenia. CB2 receptor
may also be associated with anxiety and depression symptoms,
which are clinical manifestations present in schizophrenia. A
detailed discussion on this possibility was recently reviewed by
Banaszkiewicz et al. (64).

CB2 Receptors, Neurogenesis, and
Synaptic Plasticity
Neuroplastic changes have also been associated with
schizophrenia (161, 162). For instance, impaired adult
hippocampal neurogenesis, which correlates with reduced
cognitive function and affective symptoms (163), has been
observed in patients with this disorder (164, 165). Corroborating
these findings, in vitro models of hippocampal neurogenesis
using fibroblasts-derived induced pluripotent stem cells (iPSCs)
indicated that iPSCs from schizophrenia patients showed deficits
in the generation of hippocampal granule neurons with lowered
levels of adult neurogenesis-related genes (166). In addition,
the lack of genes thought to regulate neurogenesis produced
schizophrenia-like changes in mice (167).

Some authors suggest that impaired hippocampal
neurogenesis may act as a susceptibility factor for schizophrenia
development, then repairing and boosting neurogenesis
may be beneficial (168). Preclinical studies have indicated a
neuroprotective role of CB2 receptors against impaired adult
hippocampal neurogenesis (169). Activation of these receptors
also enhances the proliferation of embryonic and hippocampal
neural progenitor cells andmay increase neurogenesis (170, 171).
Thus, CB2 receptor activation might improve cognitive deficits
and affective schizophrenia symptoms through neuroprotective
mechanisms against impaired neurogenesis. Corroborating
this possibility, we have recently found that repeated CBD
prevents synaptic remodeling and the decrease in hippocampal
neurogenesis caused by chronic stress (108). In the hippocampus
of stressed mice, CBD enhanced the branching and number of
dendrite spines and increased the proliferation and migration
of newborn granule cells. These effects were prevented by
co-administration of the CB2 receptor antagonist AM630 (108).
Similar effects have been described after clozapine administration
(172). It remains to be further investigated if these CB2 receptor-
mediated effects could play a role in schizophrenia by preventing
stress-induced neuroplastic changes in susceptible individuals.

CONCLUSION

Schizophrenia is a multifaceted disorder and is improbable that
a single drug could adequately treat all its manifestations. So far,
the available drug treatments have focused on trying to restore
the hyperdopaminergic state seen in the disease. This approach
is unmistakably insufficient in most patients and probably
reflects the multifactorial pathophysiology of this disorder. A
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complementary approach would be to act on several targets
involved in complex disorders. This approach could explain why
clozapine, a multi-target compound, is still the more efficacious
antipsychotic drug available (173).

After thirty years of their discovery, it has become clear
that endocannabinoids play a fundamental modulatory role over
not only several neurotransmitter systems and cellular processes
such as immune responses that can play an important role
in psychiatric disorders. As discussed above, the involvement
of CB1 receptors in schizophrenia is still controversial. CB2
receptors, on the other hand, seem to modulate some of
the critical processes associated with this disorder, meaning
the dopaminergic, glutamatergic, and immune systems (see
Figure 1). The potential of new therapies focused on these
receptors needs to be further evaluated, particularly after long
term administration in models based on neurodevelopmental
disruption. In addition, given its role in regulating stress and
neuroinflammation, the CB2 receptors may be more critical in
early psychosis development than in chronic states.
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