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a b s t r a c t   

Background: Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) and is currently a major cause of intensive care unit (ICU) admissions globally. The 
role of machine learning in the ICU is evolving but currently limited to diagnostic and prognostic values. A 
decision tree (DT) algorithm is a simple and intuitive machine learning method that provides sequential 
nonlinear analysis of variables. It is simple and might be a valuable tool for bedside physicians during 
COVID-19 to predict ICU outcomes and help in critical decision-making like end-of-life decisions and bed 
allocation in the event of limited ICU bed capacities. Herein, we utilized a machine learning DT algorithm to 
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Decision tree 
ICU 
Predictors 

describe the association of a predefined set of variables and 28-day ICU outcome in adult COVID-19 patients 
admitted to the ICU. We highlight the value of utilizing a machine learning DT algorithm in the ICU at the 
time of a COVID-19 pandemic. 
Methods: This was a prospective and multicenter cohort study involving 14 hospitals in Saudi Arabia. We 
included critically ill COVID-19 patients admitted to the ICU between March 1, 2020, and October 31, 2020. 
The predictors of 28-day ICU mortality were identified using two predictive models: conventional logistic 
regression and DT analyses. 
Results: There were 1468 critically ill COVID-19 patients included in the study. The 28-day ICU mortality 
was 540 (36.8 %), and the 90-day mortality was 600 (40.9 %). The DT algorithm identified five variables that 
were integrated into the algorithm to predict 28-day ICU outcomes: need for intubation, need for vaso-
pressors, age, gender, and PaO2/FiO2 ratio. 
Conclusion: DT is a simple tool that might be utilized in the ICU to identify critically ill COVID-19 patients 
who are at high risk of 28-day ICU mortality. However, further studies and external validation are still 
required. 
© 2022 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health 

Sciences. 
CC_BY_NC_ND_4.0   

Introduction 

Background 

Coronavirus disease 2019 (COVID-19) is caused by severe adult 
respiratory syndrome coronavirus 2 (SARS-CoV-2) and was first 
discovered in Wuhan City in late 2019 [1]. The World Health Orga-
nization (WHO) announced the disease to be a pandemic on March 
11, 2020 [2]. Since then, extensive publications on the epidemiology, 
characteristics, and outcomes of the disease from different regions 
and populations showed variable results [3]. 

The role of machine learning in the intensive care unit (ICU) is 
evolving. It has been considered in the last few years, typically in 
oncological and cardiovascular pathologies [4,5]. Yet, its use is lim-
ited to diagnostic and prognostic values. During the COVID-19 pan-
demic, few reports used it as a predictive tool for mortality to 
identify risk factors. Classical statistical analysis methods utilized to 
identify such risk factors are limited by their inability to highlight 
the effect on outcome implicated by possible interactions of these 
factors. 

Machine learning includes many methods that could be utilized 
in the ICU, and these vary in their complexity [6]. Several studies 
used different complex machine learning models to predict ICU 
admission and mortality especially during the COVID-19 pandemic  
[7,8]. Decision tree (DT) is a simple and intuitive machine learning 
method that provides sequential nonlinear analysis in algorithmic 
relationship of combined risk factors to produce a quantitative 
percentage of sensitivity to mortality. [9]. It might be a useful tool for 
bedside physicians during COVID-19 to identify critically ill patients 
and guide important decisions such as ICU resource utilization and 
clinical management during the COVID-19 pandemic. This study 
evaluated the predictors of 28-day ICU mortality in COVID-19 adults 
admitted to the ICU using a machine learning DT algorithm. 

Objectives 

We highlight the role of machine learning DT algorithms in the 
ICU at the time of a COVID-19 pandemic. 

Methods 

Study design 

This was a prospective, multicenter national cohort study con-
ducting in 14 hospitals of Saudi Arabia. We included COVID-19 pa-
tients admitted to the ICU at the participating centres between 
March 1, 2020, and October 31, 2020. Institutional review board (IRB) 

approvals were obtained from the Central Institutional Review Board 
at the Saudi Ministry of Health and the Ethical Boards for each 
participating center. The study was designed to be a platform for the 
COVID-19 patients for research purposes and could address many 
questions raised during the pandemic. 

Setting 

The participating ICUs were accredited governmental and non- 
governmental tertiary hospitals. The multidisciplinary treatment 
team included critical care physicians (consultants, specialists, and 
residents), registered ICU nurses, respiratory therapists, clinical 
pharmacists, and other ICU care providers who practiced according 
to national and international published protocols and guidelines. 
Non- ICU physicians from different specialties joined the critical care 
team during the COVID-19 surge; their participation was under the 
supervision of intensivists after receiving basic ICU management 
training. 

Patients 

Adult patients above the age of 18 were admitted to the ICU of 
participating hospitals with confirmed SARS-CoV-2 infection via 
real-time polymerase chain reaction (RT-PCR) from nasopharyngeal 
swabs or tracheal aspirate specimens. Patients who had a Do-Not- 
Resuscitate code prior to ICU admission were not included in the 
study. Immunocompromised status was defined as solid organ ma-
lignancy, leukemia, current use of steroids (prednisone > 7 mg daily 
for > 2 weeks), post-organ transplantation at any time, or rheuma-
tological disease on immunomodulators (azathioprine, metho-
trexate, infliximab, mycophenolate mofetil, or others). Infection was 
defined by a positive culture in the blood or tracheal aspirate. 

Data collection 

The data was collected manually according to the clinical record 
form CRF and entered into the electronic database Research 
Electronic Data Capture (REDCap, Vanderbilt University, Nashville, 
TN) [10]. Next, it underwent secondary data validation. The collected 
data included patient demographics, comorbidities, signs, and 
symptoms of COVID-19 illness, laboratory values, mechanical ven-
tilation (MV) utilization, adjunctive interventions, medications, 
complications, and outcomes. FiO2 was calculated for all sponta-
neously breathing patients by converting O2 supply flow to esti-
mated FiO2 [11]. 
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Measures of outcomes 

The primary outcome was 28-day ICU mortality. 

Statistical analysis 

General analysis 
Patient characteristics were summarized for the entire patient 

cohort using frequencies and percentages for categorical variables. 
An initial assessment of the variable distribution was made using the 
Shapiro-Wilk test of normality, histograms, and quantile-quantile 
plots for continuous variables. If the variable was a customarily 
distributed continuous variable (Gaussian distribution), the mean 
and standard deviation (SD) were used to summarize the data. If the 
variable was not a normally distributed continuous variable (non- 
Gaussian distribution), then the median and the interquartile range 
(IQR) were used to summarize the data. A Chi-square or Fisher’s 
exact tests compared the categorical variables. For continuous vari-
ables, the Student’s t-test was applied for normally distributed 
variables, and the Wilcoxon rank-sum test was used for non-nor-
mally distributed variables. We constructed Kaplan–Meier curves to 
assess cumulative mortality during the initial 60 days of ICU ad-
mission. In the first 28 days of ICU stay, risk factors for mortality 
were evaluated for the entire cohort using stepwise logistic regres-
sion analysis. Variables included in the stepwise logistic regression 
model were identified based on clinical interest and literature re-
view, and used to generate the predictive models. These included 
demographics, co-morbid conditions, laboratory data on ICU ad-
mission, the respiratory components of the SOFA score [11], and the 
need for intubation or vasopressors. Regression analysis used vari-
ables on the need for intubation within first 48 hours and vaso-
pressors during the first five days of ICU admission. The respiratory 
component of the SOFA score on ICU admission was classified as 
category 4 (PaO2/FiO2 < 100 with respiratory support) or category 
0–3 (PaO2/FiO2  > 100). Continuous variables were categorized using 
cut-off points based on either previous literature review or optimal 
cut-off points statistically identified using the cut pointer library in R 
software. This approach maximizes the Youden index, which de-
termines the split point between survivors and non-survivors. The 
logistic regression model results were reported as odds ratios (OR) 
with a 95 % confidence interval (95 %CI). All statistical tests were 
two-tailed, and p-values <  0.05 were considered significant. All of 
the statistical analyses were done with R software version 4.0.2 
(06–22–2020) from the R Foundation for Statistical Computing in 
Vienna, Austria. 

DT analysis 
Machine learning DT analysis identified characteristics of COVID- 

19 patients using the demographics and clinical variables on ICU 
admission that were predictive of 28-day ICU outcome. The model 
was generated using the standard setting in an open-source software 
library (Waikato Environment for Knowledge Analysis (WEKA, 
University of Waikato)) [12], using the C 4.5 classification algorithm 
(J48) with 20 cases as the minimum number of cases at the leaf of 
each branch (end of the tree). The C4.5 classifier used an information 
gain ratio split criterion to reduce bias towards multiple values [13]. 

We used "algorithm accuracy" as a general measure to assess the 
performance of the classifier. Accuracy is a common performance 
metric that represents the overall correctness of the algorithm. DT 
analysis used a ten-fold cross validation to assess the model's gen-
eralizability and avoid over-fitting. This approach could be used to 
calculate the accuracy, area under the receiver operating character-
istic (AUROC), and confidence intervals. These models were tuned 
with a 10-fold cross-validation, fitted in the 75 per cent split of the 
derivation set and assessed in the remaining 25 per cent. In order to 
ascertain the model’s stability, this training and testing split was 

randomly repeated 100 times (bootstraps). Finally, to decide which 
model to select, performance was evaluated through the mean 
AUROC value. The AUROC can also be used to evaluate the perfor-
mance of the DT model. It reports the predictive performance of the 
model across different thresholds of sensitivity (true positive rate 
(TPR)) plotted over different ranges of 1-specificity (false positive 
rate) [14]. Here, TPR is the true positive cases as determined by the 
algorithm, divided by the total positive cases (true positive + false 
positive). 

Missing data 
Missing data was treated as follows: Variables that had more 

than 25 % missing were excluded from the analysis unless deemed 
clinically necessary by the authors. Variables that had fewer than 
25 % missing values were treated as missing not at random (MNAR), 
where the probability of missing depends on unobserved informa-
tion (e.g., a test/measurement is only performed when the doctor 
decided that the patient was in a severe condition that justified 
ordering the test/measurement; however, the severity of the disease 
can be based on the subjective assessment of the ordering doctor). 
Based on the above and to avoid the complexity associated with the 
imputation of missing values, they were treated as unobserved va-
lues (also known as missing values). 

Results 

Patient characteristics and ICU admission data 

There were 1468 patients admitted to the ICUs during this study 
period across the 14 participating hospitals. Table 1 shows the pa-
tients’ demographics and data over the first 24 hours of ICU ad-
mission among the 28-day ICU survivors vs. non-survivors. The 
mean age was 55.9 (SD ± 15.1) years; 74 % of the patients were males, 
and 69 patients (4.8 %) were healthcare workers. Hypertension, is-
chemic heart disease, and smoking were significantly more common 
in the non-survivors group (p-values of 0.0187, 0.0016, and 0.0333, 
respectively). SOFA score, median score of 7 (IQR 4–10), was sig-
nificantly higher in patients who died within the first 28 days of ICU 
admission. Survivors had a higher PaO2/FiO2 ratio on the day of ICU 
admission than non-survivors at 28 days of ICU admission [142 (IQR 
72–176) vs. 92 (IQR 66–138), p-value <  0.001]. (Table 1). 

Interventions during the ICU stay 

Of the study cohort, 778 patients (52.9 %) required invasive 
mechanical ventilation (IMV) during ICU admission. Of these, 128 
patients were intubated prior to transfer to the ICUs of the partici-
pating centers. High flow nasal cannula (HFNC) was used in 446 
patients (35.3 %) with a median duration of three days (IQR 2–6). In 
non-intubated patients, an awake and prone position was utilized in 
350 patients (27.7 %), of whom 194 patients (57.4 %) utilized it for 
longer than 4 h/day. Of the patients who required IMV, 506 patients 
(75.3 %) received neuromuscular blockade, and 319 patients (47.8 %) 
received prone positioning (Table 2). 

Outcomes 

Of the 1468 patients, 540 (36.8 %) died within 28 days of ICU 
admission; 757 (51.6 %) were discharged alive from the hospital. The 
90-day ICU mortality was 600 patients (40.9 %), and the median ICU 
length of stay was nine days (IQR 5–16). The length of hospitaliza-
tion was 15 (IQR 9–24) days. Blood cultures were positive in 267 
patients (24.3 %) and respiratory samples in 227 patients (33.4 %) 
(Table 3). The Kaplan Maier curve for COVID-19 cumulative in-
cidence of mortality showed 40 % mortality at day 60 of ICU ad-
mission (Fig. 1). 
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Predictors of 28-day ICU mortality 

The results of the decision tree analysis 
Five variables were identified and allocated to patients in the 

final binary outcome (survival versus mortality). These variables 
arranged according to their significance were the need for intubation 
or vasopressors, gender, PaO2/FiO2 on ICU admission, and age. The 
resulting DT assigned the root node (start of the tree or first splitting 
criteria) to the need for intubation. The tree continued to grow, and 
we then assigned patients into their respective groups sequentially, 
utilizing the four other variables. The model discrimination, DT 
model's ability to correctly assign patients to their respective groups, 
was assessed using the ROC-AUC and was 75.42 % (95 % CI = 
74.84–78.95). The DT model accuracy was 73.1 % (number of re-
tained patients on the model: 1043 out of 1468) (Fig. 2). 

The results of the logistic regression 
The stepwise logistic regression analysis retained: age groups, 

gender, the respiratory component of the SOFA score (category 4), 

need for intubation, or vasopressors, and neutrophil-lymphocytes 
(NL) ratio as variables that may predict 28-day ICU mortality. (Fig. 3). 

Discussion. 
We utilized the DT analysis and identified the interaction of five 

features predictive of 28-day ICU outcomes: the need for intubation, 
vasopressors, age, gender, and PaO2/FiO2 ratio. The COVID-19 pan-
demic overwhelmed the health care system and led to constrained 
medical resources, especially in terms of critical care unit capacity; 
there was even a shortage of mechanical ventilators [15–17]. 

Many hospitals utilized machine learning analyses by combining 
clinical, radiological, and laboratory data for the prognostication and 
rapid risk stratification of PCR-confirmed COVID-19 patients [18–20]. 
The severity of illness among ICU patients was stratified via different 
general scoring methods such as the acute physiology and chronic 
health evaluation (APACHE) II and IV [21,22], the Simplified Acute 
Physiology Score (SAPS) [23], SOFA scores [11], or COVID-19 specific 
scores as 4 C mortality scores [24,25]. 

Machine-learning models have been increasingly utilized in the 
medical field, especially for cancer outcome predictions [27–29]. 
Random Forest classifiers, decision trees, and artificial neural 

Table 1 
Baseline general characteristics and ICU admission data of 1468 patients according to their 28-day survival status.       

Patient characteristic All Patients (n = 1468) /Denominator 28-day non-survivors (n = 540) 28-day survivors (n = 928) p-value  

Age (years), mean (  ±  SD) 55.9 (15.1)/1423 58.4 (15.2) 54.3 (14.9)  <  0.001 * 
Gender, n ( %)     
Male gender, n ( %) 1085 (74)/1467 413 (76.6) 672 (72.4) 0.0765 
Female Gender, n ( %) 382 (26)/1467 126 (23.4) 256 (27.6)  
Pregnancy, n ( %) 19 (5.1)/372 2 (1.6) 17 (6.8) 0.0425 * 
Healthcare worker, n ( %) 69 (4.8)/1436 15 (2.9) 54 (5.9) 0.009 * 
BMI (kg/m2), mean (  ±  SD) 30.1 (6.8)/1369 29.5 (6.5) 30.5 (7) 0.009 * 
Comorbidity     
Diabetes mellitus, n ( %) 770 (54.8)/1405 297 (58.1) 473 (52.9) 0.0589 
Hypertension, n ( %) 676 (48.6)/1391 267 (52.8) 409 (46.2) 0.0187 * 
Ischemic heart disease, n ( %) 184 (13.8)/1333 85 (17.8) 99 (11.6) 0.0016 * 
Bronchial Asthma, n ( %) 128 (9.6)/1333 37 (7.7) 91 (10.6) 0.0845 
Chronic Kidney Disease, n ( %) 123 (9.2)/1339 47 (9.7) 76 (8.9) 0.656 
Smoker, n ( %) 85 (7.2)/1180 21 (5) 64 (8.4) 0.0333 * 
Left ventricular failure, n ( %) 74 (5.6)/1331 32 (6.7) 42 (4.9) 0.181 
Immunocompromised status, n ( %) 72 (5.4)/1332 19 (4) 53 (6.2) 0.079 
Renal Replacement therapy, n ( %) 54 (4.1)/1332 25 (5.2) 29 (3.4) 0.12 
Cancer, n ( %) 48 (3.6)/1333 17 (3.5) 31 (3.6) 0.913 
Chronic Lung Disease, n ( %) 38 (2.9)/1327 14 (2.9) 24 (2.8) 0.891 
Solid-organ transplant, n ( %) 29 (2.2)/1334 8 (1.7) 21 (2.5) 0.337 
COPD, n ( %) 26 (2)/1327 12 (2.5) 14 (1.6) 0.27 
Chronic Liver Disease, n ( %) 24 (1.8)/1332 10 (2.1) 14 (1.6) 0.557 
Chronic Hematological Disease, n ( %) 12 (0.9)/1337 3 (0.6) 9 (1.1) 0.553 
ICU admission data (first 24 hours)     
Use of inotropes, n ( %) 189 (15.3)/1235 120 (29.4) 69 (8.3)  <  0.001 * 
New AKI on ICU admission, n ( %) 98 (8.6)/1137 60 (14.4) 38 (5.3)  <  0.001 * 
MAP (mmHg), mean (  ±  SD) 86.1 (16.1)/1299 84.7 (16.7) 86.8 (16.3) 0.0246 * 
HR (beat/min), mean (  ±  SD) 91.2 (20.4)/1294 95.1 (20.7) 89.3 (20)  <  0.001 * 
RR (per min), mean (  ±  SD) 27.9 (7.2)/1274 28.3 (7.1) 27.8 (7.3) 0.196 
GCS, median (  ±  IQR) 15 (14–15)/1259 15 (9–15) 15 (15–15)  <  0.001 * 
SOFA, median (  ±  IQR) 4 (3–8)/1333 7 (4–10) 4 (2–6)  <  0.001 * 
PO2/FiO2 ratio, median (IQR) 134 (71–163)/1217 92 (66–138) 142 (72–176)  <  0.001 * 
PO2/FiO2 ratio, n ( %)     <  0.001 *  
<  100 550 (50)/1099 210 (57.9) 340 (46.2)  
100 -  <  200 361 (32.8)/1099 110 (30.3) 251 (34.1)  
200–300 116 (10.6)/1099 27 (7.4) 89 (12.1)   
>  300 72 (6.6)/1099 16 (4.4) 56 (7.6)  
ICU admission laboratory data (first 24 hours)     
WBC (x 109/L), mean (  ±  SD) 10.7 (6.3)/1378 12.3 (7.8) 9.7 (5)  <  0.001 * 
NL Ratio, mean (  ±  SD) 10.3 (8.7)/1126 11.8 (9.4) 9.4 (8.1)  <  0.001 * 
Creatinine (nmol/L), median (IQR) 83 (63–130)/1289 106 (71–187) 75 (60–105)  <  0.001 * 
Lactate (mmol/L), median (IQR) 1.5 (1.1–2.2)/652 1.8 (1.2–3) 1.5 (1.1–2)  <  0.001 * 
Procalcitonin (ng/mL), median (IQR) 0.36 (0.15–1.5)/669 0.96 (0.27–3.6) 0.3 (0.13–0.64)  <  0.001 * 
LDH (IU/L), median (IQR) 504 (363–706)/1028 584 (411–826) 467 (353–641)  <  0.001 * 
D-Dimer (mcg/mL), median (IQR) 1.51 (0.8–2.8)/1060 2.38 (1.2–5.4) 1.2 (0.7–2.8)  <  0.001 * 
Ferritin (ng/mL), median (IQR) 802 (396–1295)/850 915 (486–1166) 772 (370–1295)  <  0.001 * 
CRP (mg/l), median (IQR) 104 (33–196)/937 117 (40–198) 99 (30–194) 0.0524 

COPD, chronic obstructive pulmonary disease. BMI, body mass index. COPD, chronic obstructive pulmonary disease. CRP, C - reactive protein. GCS, Glasgow coma scale. HR, heart 
rate. LDH, Lactic Acid Dehydrogenase. MAP mean arterial pressure. NL ratio, Neutrophil-to-lymphocyte ratio. RR, respiratory rate. SOFA, Sequential Organ Failure Assessment. 
WBC, white blood cells.  
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Table 2 
Interventions, Respiratory support modalities,Respiratory data following invasive mechanical ventilation and medication during ICU stay.       

Patient characteristic All Patients (n = 1468) /Denominator 28-day non-survivors (n = 540) 28-day survivors (n = 928) p-value  

Vasopressors n ( %) 395 (26.9)/1468 246 (45.5) 149 (16)  <  0.001 * 
Oxygen delivery modes     
HFNC, n ( %) 446 (35.3)/1264 105 (25.1) 341 (40.4)  <  0.001 * 
HFNC days, median (IQR) 3 (2–6)/429 2 (1–4) 4 (2–6)  <  0.001 * 
NIPPV, n ( %) 205 (16.2)/1267 96 (22.8) 109 (12.9)  <  0.001 * 
NIPPV days, median (IQR) 2 (1–4)/198 2 (1–4) 2 (2–6) 0.527 
Awake prone positioning, n ( %) 350 (27.7)/1263 86 (20.6) 264 (31.2)  <  0.001 * 
Awake prone days, median (IQR) 3 (2–5)/316 2 (1–4) 4 (2–6)  <  0.001 * 
Awake prone  >  4 h/day, n ( %) 194 (57.4)/338 49 (60.5)/81 145 (56.4) 0.518 
IMV, n ( %) 778 (52.9)/1468 454 (83.9) 324 34.9)  <  0.001 * 
First 24 hs of intubation, mean (  ±  SD)     
PaO2/FiO2 125.5 (80)/535 115 (76) 137.7 (83) 0.001 * 
PCO2 (mmHg) 46.6 (14.7)/558 48 (15.5) 45 (13.5) 0.015 * 
Static Compliance (mL/cmH2O) 27.8 (11.2)/152 27 (11.7) 28.6 (10.6) 0.382 
Dynamic Compliance (mL/cmH2O)) 22.2 (14.6)/324 20.6 (9.4) 24.1 (19.2) 0.045 * 
Peak airway pressure (cmH2O) 31.2 (6.7)/335 31.7 (7.1) 30.6 (6.2) 0.131 
Plateau pressure (cmH2O) 27.3 (5.7)/156 27 (5.4) 27.5 (5.9) 0.549 
Tidal Volume (mL per IBW) 6.94 (1.34)/601 6.87 (1.2) 7.04 (1.51) 0.135 
Interventions during IMV, n ( %)     
Neuromuscular blockade infusion 562 (74.8)/751 332 (76.1) 230 (73) 0.329 
Recruitment maneuvers use 91 (12.3)/737 50 (11.6) 41 (13.4) 0.482 
iNO use 64 (8.6)/742 37 (8.5) 27 (8.7) 0.927 
Prone positioning during MV 350 (47)/745 194 (44.6) 156 (50.3) 0.123 
Rescue APRV use 20 (2.7)/739 10 (2.3) 10 (3.2) 0.444 
Rescue HFOV use 12 (1.6)/740 8 (1.8) 4 (1.3) 0.563 
Tracheostomy 60 (7.7)/778 8 (1.5) 52 (5.6)  <  0.001 * 
ECMO 71 (9.1)/778 40 (7.5) 31 (3.4)  <  0.001 * 
Medications and interventions, n ( %)     
Azithromycin 1069 (74.2)/1440 366 (68.9) 703 (77.3)  <  0.001 * 
Corticosteroids 1048 (73.1)/1433 401 (75.8) 647 (71.6) 0.081 
Chloroquine 429 (30.5)/1406 152 (29.2) 277 (31.3) 0.403 
Tocilizumab 426 (30.1)/1414 126 (24) 300 (33.7)  <  0.001 * 
Favipiravir 316 (22.4)/1441 111 (21.2) 205 (23.1) 0.401 
Ribavirin 241 (17.2)/1402 79 (15.3) 162 (18.3) 0.141 
Convalescent plasma 53 (3.8)/1409 12 (2.3) 41 (4.6) 0.026 * 
IVIG 51 (3.6)/1401 18 (3.5) 33 (3.7) 0.792 
Plasmapheresis 26 (1.8)/1409 17 (3.2) 9 (1) 0.002 * 
Remdesivir 13 (0.9)/1399 5 (1) 8 (0.9) 0.91 

HFNC, high flow nasal cannula. IVIG, Intravenous immunoglobulin. NIPPV, non-invasive positive pressure ventilation. IMV, Invasive Mechanical Ventilation. PaO2/FiO2, Partial 
pressure of oxygen to fraction of inspired oxygen ratio. PCO2, Partial pressure of Co2. Fio2, fraction of inspired oxygen. MV, mechanical ventilator. APRV, Airway pressure release 
ventilation. ECMO, extracorporeal membrane oxygenation. HFOV, high-frequency oscillatory ventilation. iNO, inhaled nitric oxide.  

Table 3 
Patient's clinical outcomes.        

All Patients (n = 1468) /Denominator 28-day non-survivors  
(n = 540) 

28-day survivors (n = 928) p-value  

ICU Mortality at 28 days, n ( %) 540 (36.8)    
90-day mortality, n ( %) 600 (40.9)    
Discharge from ICU alive, n ( %) 869 (59.1)    
Discharged from hospital alive, n ( %) 757 (51.6)    
Transfer to another institution, n ( %) 94 (6.5)    
Mortality Subgroup analysis according to time of 

death     
0–28 days, n ( %) 540 (90.05)    
29–60 days, n ( %) 54(8.9)    
61–90 days, n ( %) 6 (0.06)    
ICU length of stay (days), Median (IQR) 9 (5–16)/1468 10 (5–16) 9 (5–17) 0.356 
Hospital length of stay, (days) Median (IQR) 15 (9–24)/1468 13 (7–18) 18 (11–31)  <  0.001 * 
Mechanical ventilation duration (days) Median (IQR) 7 (0–14)/1082 10 (4–15) 3 (0–11)  <  0.001 * 
Infection (positive culture, respiratory), n ( %) 227 (33.4)/679 131 (46.6) 96 (24.1)  <  0.001 * 
Infection (positive culture, blood), n ( %) 267 (24.3)/1100 151 (34.2) 116 (17.6)  <  0.001 * 
AKI requiring RRT, n ( %) 178 (14.1)/1259 130 (28.6) 48 (6)  <  0.001 * 
Pneumothorax, n ( %) 89 (6.2)/1440 55 (10.4) 34 (3.7)  <  0.001 * 
Myocardial infarction, n ( %) 64 (4.5)/1433 40 (7.6) 24 (2.6)  <  0.001 * 
GI Bleeding, n ( %) 52 (3.6)/1438 27 (5.1) 25 (2.7) 0.019 * 
Pulmonary embolism, n ( %) 44 (3.1)/1435 20 (3.8) 24 (2.6) 0.215 
Deep vein thrombosis, n ( %) 33 (2.3)/1435 17 (3.2) 16 (1.8) 0.070 
Intracranial hemorrhage, n ( %) 33 (2.3)/1432 15 (2.9) 18 (2) 0.277 
Ischemic Stroke, n ( %) 32 (2.2)/1438 14 (2.7) 18 (2) 0.39 

AKI, acute kidney injury ICU, intensive care unit. GI, gastrointestinal. RRT, renal replacement therapy.  
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networks (ANNs) were among the earliest used techniques in 
medical research [30,31]. DT analysis is an effective classifier and has 
been applied in many domains [32,33]. DTs are an intuitive non-
linear approach and can automatically detect independent variables 
that predict outcomes as well as the interactions between these 
variables. DTs also offer an easy-to-understand visual representation 
of the relationships between the variables and the primary out-
come [34]. 

The standard logistic regression analysis can predict outcomes of 
interest, but it does not model nonlinear relationships of multiple 
dimensional data [26]. DT analysis were built using the same pre-
defined set of variables used for stepwise logistic regression. 
Nevertheless, retained variables were comparable between both 
models. Our research emphasizes the benefits of DT analysis in terms 

of providing simple rules-based algorithmic prediction rather than 
merely identifying associations and relationships between variables, 
as conventional regression models offer [35,36]. 

The use of machine learning in the ICU is evolving. It is currently 
limited to diagnostic and prognostic values. However, DT analysis 
offers a simple method for the sequential analysis of variables. For 
example, patients in this cohort who were not intubated nor re-
quired vasopressor support early in ICU admission, if they were in 
the age group younger than 40 years, the true positive rate of sur-
vival is 88 % (Fig. 2). This DT provides simple valuable tool for bed-
side physicians during COVID-19 to guide critical decisions, making 
decisions on end-of-life and bed allocation easier. The algorithmic 
relationship of combined risk factors offers a quantitative percen-
tage of sensitivity to outcomes [9]. 

Fig. 1. Kaplan Maier curve for COVID-19 cumulative incidence of mortality.  

Fig. 2. Decision tree (DT) algorithm for predictors of mortality.  
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Predictors of mortality in COVID-19 are widely reported in many 
studies with different settings and designs. These include laboratory 
and radiological variables [37,38]. However, there are limited reports 
on clinical variables on ICU admission as predictors of mortality. 
Such variables can facilitate the early identification of critically ill 
COVID-19 patients at a higher risk of 28-day mortality [39]. A me-
taanalysis by Du et al. addressed the predictors of mortality utilizing 
the classic logistic regression analysis; they showed that advanced 
age, male gender, comorbidities of chronic respiratory disease, DM, 
hypertension, and chronic kidney or cardiovascular diseases were 
associated with severe illness or death among COVID-19 pa-
tients [40]. 

Studies that report predictors of mortality utilizing DT analysis in 
critically ill COVID-19 patients are quite limited [41–43]. One of 
these analyses by Yang et al. showed a rapid, simple, and easy-to- 
interpret DT model built via three biochemical markers on ICU ad-
mission (LDH, NLR, and CRP). There was a high true sensitivity rate 
that could predict death in severe COVID-19 disease [41]. 

The strengths of this study include different nationalities and a 
multicenter nature, which improves generalizability. In addition, 
unlike earlier reported experiences from the Middle East [44], the 
28-day ICU mortality of 36.8 % in this cohort was comparable to 
reported experiences during the pandemic [45–47]. We used 
stepwise logistic regression to evaluate the results of the DT 
analysis (Fig. 3). This is comparable to regression analysis. To our 
knowledge, the number of patients enrolled here is the largest in 
the Middle East. Thus, the results offer a valuable analysis to ex-
plain the disease and its effects in the Gulf and Middle East re-
gions The performance of DT analysis was comparable to Stepwise 
Logistic Regression, as both had ROC AUC in the acceptable range, 
70–80 %, (79.96 % (95 % CI = 76.91–83.02) 75.42 % (95 % CI = 
74.84–78.95), respectively) as well as retraining similar variables 
as predictors of outcome. DT analysis, on the other hand, used a 
ten-fold cross validation to assess the model's generalizability and 
avoid over-fitting. DT analysis provides algorithmic visualization 
of non-linear interactions between variables that standard logistic 
regression cannot. 

Our study does have some limitations, including the lack of ex-
ternal validation for the proposed model of predictors. We did not 
include centers as a preset variable for regression and DT analysis; 
rather, we decided not to adjust for centers in the logistic model or 
DT models because of the following: 1-The variability of resources 
available in each center might have an unobserved yet strong effect 
on 28-day mortality. 2-The number of cases varied significantly be-
tween centers and can significantly influence confidence intervals 
and interpretation of the results. 3-Difficulties in identifying a re-
ference center due to the variability of the patient population pre-
senting to more prominent hospitals in different regions. Finally, the 
DT model accuracy was 73.1 % (the number of retained patients on 
the model was 1043 out of 1468), despite being comparable to the 
analysis of logistic regression, which is not assuring and needs fur-
ther research to prove that. 

Conclusion 

Five clinical predictors of 28-day ICU outcomes were identified 
using DT algorithmic analysis of COVID-19 patients admitted to the 
ICU. DT is a simple tool that might be utilized in the ICU for early 
identification of critically ill COVID-19 patients who are at high risk 
of 28-day mortality. However, further studies are required to vali-
date these results and evaluate the role of DT analysis in the ICU. 
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Board at the Saudi Ministry of Health [20-80E]. Individual ethical 
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Fig. 3. Stepwise logistic regression of 28-day mortality.  
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