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Abstract: A series of mixed bis-NHC rhodium(I) complexes of type RhCl(η2-olefin)(NHC)(NHC’)
have been synthesized by a stepwise reaction of [Rh(µ-Cl)(η2-olefin)2]2 with two different NHCs
(NHC = N-heterocyclic carbene), in which the steric hindrance of both NHC ligands and the η2-olefin
is critical. Similarly, new mixed coumarin-functionalized bis-NHC rhodium complexes have been
prepared by a reaction of mono NHC complexes of type RhCl(NHC-coumarin)(η2,η2-cod) with the
corresponding azolium salt in the presence of an external base. Both synthetic procedures proceed
selectively and allow the preparation of mixed bis-NHC rhodium complexes in good yields.

Keywords: N-heterocyclic carbene; coumarin; rhodium; mixed-NHC; anagostic interactions

1. Introduction

Since the pioneering work of Öfele [1] and Wanzlick [2] on the preparation of
N-heterocyclic carbene (NHC) complexes and, particularly, that of Arduengo on the isola-
tion of the first free NHC [3], the interest around these species in organometallic catalysis
and beyond has grown exponentially [4–8]. The relatively easy synthesis enables fine tun-
ing of their electronic and steric properties [9], which nowadays places them as the ligand
of choice in many transition metal-mediated applications. Moreover, the introduction of
a second carbene molecule in bis-NHC complexes have resulted in a synergic enhance-
ment of the benefits imparted by these ligands in inter alia catalytic applications [10], the
activation of small molecules [11], biomedicine [12] or luminescence [13]. Although less
common, the presence of two different NHC moieties provides complementary reactiv-
ity to complexes bearing identical NHC ligands. The synthesis of these mixed bis-NHC
species is not trivial due to competitive substitution reactions or the formation of isolep-
tic bis-NHC byproducts. To circumvent these problems, pre-synthesized unsymmetrical
precursors have been used for the preparation of chelated or pincer heteroleptic bis-NHC
derivatives [14–19] (Scheme 1a). Another approach involves additional functionalization
after the pre-synthesis of symmetrical complexes, either within the bis-NHC backbone for
multitopic ligands [20–22] (Scheme 1b), or on the wingtip of a monodentated NHC [23–25]
(Scheme 1c). On the other hand, mixed monodentate bis-NHC derivatives with a variety
of metals have been prepared by using a stepwise methodology [26–45] (Scheme 1d). The
dissimilar stereoelectronic properties of both carbenes, such as in expanded-ring NHCs [37],
mesoionic (MIC) [38–40] or acyclic carbenes [41–43], make the control of selectivity more
accessible. Moreover, alternative synthetic protocols such as microwave irradiation [44] or
mechanochemistry [45] have also proven to be effective.
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Scheme 1. Conventional synthetic approaches to mixed bis-NHC metal complexes.

Heteroleptic bis-NHC complexes have in some cases overcome the performances of
isoleptic bis-NHC counterparts in many applications. For example, various mixed bis-NHC
iridium [34], platinum [35], gold [36], or silver [45] complexes present promising activ-
ity as anticancer therapeutics. In material science, polystyrene-linked bis-NHC copper(I)
complexes have shown application as sensors [46], whereas cyclometalated iridium (III)
derivatives containing mixed NHC-acyclic carbene are top-performing emitters in organic
light-emitting diodes (OLEDs) [42]. Regarding organometallic catalysis, the most relevant
examples are developed for ruthenium-promoted olefin metathesis [28,41], but also for
epoxide isomerization [17], hydrogen borrowing transformations [18], cross-coupling reac-
tions [30], olefin hydrogenation [31], or azide–alkyne cycloadditions [32]. It is interesting to
note the application of mixed bis-NHC palladium complexes for a reliable determination
of the electronic properties of newly synthesized NHC via 13C NMR spectroscopy, coined
as the Huynh’s Electronic Parameter (HEP) [47].

Mixed monodentate bis-NHC rhodium(I) complexes are quite scarce [26,27]. They
have been prepared from dinuclear Rh-NHC precursors by CO- or chlorido-bridge cleavage
with different NHC’ moieties, being the marked difference in the stereolectronic proper-
ties of both carbenes the key for success. In this context, our research group has focused
on the development of rhodium-NHC complexes and their applications in catalytic pro-
cesses [48–52]. In particular, the dinuclear compounds [Rh(µ-Cl)(NHC)(η2-olefin)]2 are
useful starting materials for the preparation of a great variety of mononuclear complexes of
type RhCl(NHC)(η2-olefin)(L) by simple bridge-cleavage with a nucleophilic ligand, which
have proven to be efficient catalysts for gem-selective alkyne dimerization [48,51], hydroth-
iolation [50], or hydropyridonation [52]. We envisaged that nitrogen-centered nucleophiles
could be substituted by carbon-centered NHCs, giving access to mixed bis-NHC species.
Alternatively, we have synthesized a series of imidazolium salts functionalized with a
pendant coumarin group, that have allowed for the synthesis of coumarin-functionalized
NHC rhodium complexes by reaction with the internal base in the dinuclear precursor
[Rh(µ-OCH3)(η2,η2-cod)]2 (cod = 1,5-cyclooctadiene) [53]. In the course of our investigation,
we observed that in the presence of an external base, pentacoordinated bis-coumarin-NHC
rhodium derivatives were obtained. Thus, we reasoned that a stepwise reaction using
different azolium salt precursors could pave the way to mixed bis-coumarin-functionalized
NHC complexes.
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2. Results and Discussion

The James’s dimer [Rh(µ-Cl)(η2-coe)(IPr)]2 {coe = cyclooctene, IPr = 1,3-bis(2,6-diisopro
pylphenyl)imidazolin-2-carbene} (1a) [54] is a suitable precursor for the stepwise synthe-
sis of mixed bis-NHC rhodium(I) complexes. However, initial attempts to introduce a
carbene displaying stereoelectronic properties similar to IPr, such as IMes {IMes = 1,3-
bis(1,3,5-trimethylphenyl)imidazolin-2-carbene}, were unsuccessful. The addition of free
IMes to a C6D6 solution of 1a at room temperature resulted in a complex mixture of prod-
ucts, including Rh-hydride species [23], in which traces of the substitution derivative
[Rh(µ-Cl)(η2-coe)(IMes)]2 could be detected (Scheme 2). It is likely that the high steric hin-
drance imparted by both bulky NHCs, in addition to the pseudo-spherical coe ligand, could
hamper the formation of the putative mixed-NHC species
RhCl(η2-coe)(IMes)(IPr). However, the steric relief imparted by the less encumbering
ethylene ligand compared to coe [55], allowed the Tilset’s group to prepare the bis-
IMes compound RhCl(η2-ethylene)(IMes)2 [56]. Accordingly, the related IPr derivative
RhCl(η2-ethylene)(IPr)2 (2) can now be prepared. As described previously by James
et al. [54], the dinuclear Rh-IPr-coe precursor 1a does not react with an excess of free
IPr, but 2 is cleanly formed by the reaction of [Rh(µ-Cl)(η2-ethylene)(IPr)]2 (1b) [57] with
one equivalent of free IPr under an ethylene atmosphere.
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a result of the coordination of a second powerful electron releasing IPr ligand [58]. More-
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consequence of an opposite disposition of two ligands with a strong trans influence. 
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The NMR data of 2 agree with the presence of two carbene ligands in a mutual trans
disposition. In the 1H NMR spectrum, the characteristic signals of IPr integrate in a double
ratio with respect to that of ethylene, which appears as a singlet at δ 2.01 ppm in agreement
with the C2v symmetry of the complex. The appearance of two septuplets at 3.51 and
2.76 ppm, corresponding to the CH-isopropyl protons of the IPr, indicates a restricted
rotation of the carbene ligands around the Rh-C axis [49]. In the 13C{1H}-APT spectrum, the
most significant feature is the downfield shift of the carbene carbon atom to δ 191.8 ppm
related to 1b (179.7 ppm), reflecting the increase of electron density at the metal center as a
result of the coordination of a second powerful electron releasing IPr ligand [58]. Moreover,
the reduction of the rhodium-carbon coupling (JRh-C = 41.6 Hz vs. 62.3 Hz in 1b) is a
consequence of an opposite disposition of two ligands with a strong trans influence.

The steric pressure over the η2-olefin within a rhodium-bis-IPr architecture has been
harnessed previously by Crudden et al., who described its facile decoordination un-
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der a nitrogen atmosphere to yield dinitrogen adducts [59]. Unfortunately, the mixed
bis-NHC derivative RhCl(η2-ethylene)(IMes)(IPr) could not be cleanly obtained by the
addition of IMes to 1b. In addition, attempts to use diolefin precursors of the type
RhCl(η2,η2-cod)(NHC) failed [60]. More recently, the group of Chaplin has disclosed
that bis-NHC rhodium complexes bearing a η2-coe ligand could be prepared with a less
sterically demanding IBiox carbene [61]. According to this, the treatment of 1a with
less-bulky NHCs, such as IMe or ICy, prepared in situ by deprotonation of the correspond-
ing azolium salts, resulted in the successful formation of the mixed bis-NHC complexes
RhCl(η2-coe)(IPr)(NHC) (3) {NHC = 1,3-dimethylimidazolin-2-carbene (IMe) (3a) and
1,3-dicyclohexylimidazolin-2-carbene (ICy) (3b)}, which were isolated as yellow solids
in good yields (Scheme 2). The η2-olefin ligand of complexes 3 remains coordinated in
solution at room temperature, but can be smoothly replaced by CO to yield the carbonyl
complexes RhCl(CO)(IPr)(NHC) (NHC = IMe, 4a; ICy, 4b). Single crystals of 3a suitable
for X-ray structure determination were grown by slow diffusion of hexane into a saturated
toluene solution of the complex. Figure 1 shows the molecular structure of 3a and the
selected bond lengths and angles.
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Figure 1. ORTEP view of 3a. For clarity, most hydrogen atoms are omitted and selected groups are
shown in a wireframe style. Thermal ellipsoids are at 50% probability. Selected bond lengths (Å) and
angles (◦) are: Rh-C1 2.061(2), Rh-C30 2.030(2), Rh-Cl 2.4215(6), Rh-CT1 2.0050(2), C37-C38 1.405(3),
C1-Rh-C30 169.65(9), C30-Rh-Cl 82.13(7), C1-Rh-Cl 89.07(6), CT1-Rh-Cl 169.320(18). CT1, centroid of
C37 and C38. IPr: pitch angle (θ) 5.1, yaw angle (ψ) 4.1; Ime: pitch angle (θ) 9.3, yaw angle (ψ) 2.1.

The crystal structure of 3a shows a distorted square planar geometry at the metal cen-
ter, with a trans disposition of the NHC ligands [C1-Rh-C30 169.65(9)◦]. The Rh-CNHC bond
lengths {2.061(2) Å for IPr and 2.030(2) Å for IMe} are slightly longer than that found in simi-
lar mono-NHC RhI-Cl-coe complexes {1.956(2) Å in [Rh(µ-Cl)(η2-coe)(IPr)]2 [60], 1.986(4) Å
in RhCl(η2-coe)(IPr)(pyridine) [57], and 1.9835(18) Å in RhCl(η2-coe)(IPr)(2-pyridylaceton
itrile) [49]}, reflecting the high trans influence of NHCs. The coordinated olefinic bond
C37-C38, as well as the NHC cores of the IPr and IMe ligands, lie almost perpendicular to
the coordination plane Rh-Cl-C1-C30-CT1 (79.6◦, 85.3◦, 69.6◦, respectively). In addition,
the pitch and yaw angles observed for each NHC ligand indicate a moderately distorted
coordination to the metal center with respect to the corresponding rhodium-carbon bond.

The low temperature NMR data for complexes 3 agree with the structure reported in
the solid state for 3a. Thus, in the 1H NMR spectrum at 243 K, two septuplets ascribed to
the CH-isopropyl protons of the IPr are observed around δ 4.3 and 2.7 ppm, which broaden
at room temperature due to a Rh-IPr rotational process (see Figure S1 in Supporting
Information). The presence of different NHC ligands in 3 is confirmed by the appearance
of two resonances for the =CHN heterocyclic protons around δ 6.5 (IPr), 5.93 (IMe, 3a),
and 6.34 ppm (ICy, 3b). In addition, two relatively deshielded doublets are displayed
in the 13C{1H}-APT spectrum around δ 194 (IPr), 191.4 (IMe, 3a), and 188.0 (ICy, 3b),
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with relatively short couplings of around 42 Hz, as commented for 2. The presence of
η2-olefin ligands is corroborated by a multiplet around δ 3 ppm in the 1H NMR, and a
doublet around 54 ppm (JC-Rh = 16 Hz) in the 13C{1H}-APT spectra. The substitution of
coe by carbon monoxide in 4 results in the appearance of a new doublet in the 13C{1H}-
APT spectrum. Resonance assignment is facilitated by 1H-13C HMBC correlation peaks
between the imidazolinyl protons and the corresponding carbene-carbon atoms within
NHC moieties (Figure 2). As expected, the activation barrier for IPr-Rh rotation is reduced
for carbonyl complexes 4 [49]. Therefore, only one septuplet for CH-isopropyl protons is
observed around δ 3.4 ppm.
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Wingtip functionalized NHCs ligands can also participate in the formation of mixed
bis-NHC rhodium(I) complexes. In this context, coumarin-functionalized-NHC metal com-
plexes display interesting catalytic and luminescence properties [62–66]. In particular, we
have prepared coumarin-NHC derivatives of type RhCl(NHC-Cou)(η2,η2-cod) (5) in which,
in contrast to the behavior observed for related IPr- or IMes-cod compounds, the diolefin lig-
and can be replaced in the presence of an excess of carbene to yield bis-NHC complexes [53].
Thus, a stepwise reaction using different carbene precursors enabled the synthesis of mixed-
NHC species (Scheme 3). In this way, an imidazole-benzimidazole mixed-NHC complex
RhCl(κC,η2-BzICoutol)(κC,η2-ICouBz) {BzICoutol = 1-(4-methylbenzyl)-3-(7,8-dimethyl-2H-
chromen-2-one-4-yl)benzimidazolin-2-carbene, ICouBz = 1-(benzyl)-3-(7,8-dimethyl-2H-
chromen-2-one-4-yl)imidazolin-2-carbene} (6) was obtained by refluxing a THF solution of
the precursor RhCl(BzICoutol)(η2,η2-cod)] (5a) and the azolium salt [HICouBz]Cl in the pres-
ence of sodium methoxide for 24 h. Under similar reaction conditions, RhCl(BzICouBu)(IPr)
(7) was formed starting from RhCl(BzICoubu)(η2,η2-cod) (5b) and free IPr. Although the
solid state structure of 6 could not be determined by X-ray diffraction methods, a trigo-
nal bipyramidal structure with a trans disposition of the NHC ligands is assumed in an
analogy to the related coumarin-functionalized bis-NHC complexes RhCl(BzICouR)2 and
RhCl(ICouR)2 described previously [53]. Interestingly, the X-ray single-crystal analysis of
the mixed bis-NHC compound 7 revealed a cis disposition for the IPr and coumarin-BzI
carbenes, an uncommon feature in square planar rhodium(I) complexes when a trans
configuration is feasible [67,68] (Figure 3).
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Figure 3. ORTEP view of 7. For clarity, most hydrogen atoms are omitted and selected groups are
shown in a wireframe style. Thermal ellipsoids are at 50% probability. Selected bond lengths (Å)
and angles (◦) are: Rh-Cl1 2.4116(8), Rh-C1 2.070(3), Rh-C30 1.959(3), Rh-CT1 2.0294(3), C40-C41
1.428(4), C30-Rh-C1 98.57(12), C1-Rh-Cl1 85.11(8), C30-Rh-Cl1 175.78(9), CT1-Rh-Cl1 97.55(2), CT1-
Rh-C1 153.84(9), C30-Rh-CT01 80.07(9). IPr: pitch angle (θ) 12.7, yaw angle (ψ) 3.4; BzICouBu: pitch
angle (θ) 0.5, yaw angle (ψ) 11.1. CH···Rh contact: Rh·H14c 3.06(4), C14-H14c 0.90(4), Rh·C 3.774(4),
Rh-H14c-C14 138(3).

The crystal structure of 7 exhibits a severely distorted square planar coordination
geometry at the metal center with an Rh·H-C short contact. In fact, the NHC moieties adopt
a cis disposition [C30-Rh-C1 98.57(12)◦] with the chlorido ligand lying trans to C30 from
the BzICouBu ligand [C30-Rh-Cl1 175.78(9)◦]. On the other hand, the angle CT1-Rh-C1
[153.84(9)◦] between C1 from the IPr ligand and the centroid of the coordinated olefinic
bond C40-C41 of the coumarin moiety is significantly smaller than the ideal value for a
trans disposition. In addition, the short Rh···H14c-C14 [3.06(4) Å] contact is observed
[rvdW(H) + rvdw(Rh) ≈ 3.2 Å] [69], possibly indicating the presence of an anagostic inter-
action between one IPr methyl group and the metal center [70]. The Rh-CNHC distances
are quite different {1.959(3) Å for BzI-Cou vs. 2.070(3) Å for IPr}, likely as a consequence
of the higher trans influence of the olefin related to chlorido ligand. As for the bidentate
BzICouBu ligand, its reduced bite angle [80.07(9)◦] brings about a severe deviation of the



Molecules 2022, 27, 7002 7 of 15

NHC core from the ideal arrangement with respect to the Rh-C30 bond (yaw angle,ψ 11.1◦),
similar to what is already observed in the related bis-chelate complexes RhCl(BzICouR)2
and RhCl(ICouR)2 [71].

The presence of two different NHC ligands in 6 and 7 is confirmed by the NMR data.
The 13C{1H}-APT NMR spectrum of 6 display two doublets at δ 184.8 and 172.4 ppm with
Rh-C coupling constants around 33 Hz, ascribed to carbene carbon atoms. Correlations
of the imidazolinyl protons at δ 6.45 and 6.40 ppm with the carbon signal at 172.4 ppm in
the 1H-13C-HMBC spectrum of 6 helps to ascribe that signal to the I-Cou ligand (Figure 4).
In addition, four doublets with JH-H~13 Hz are observed for the N-methylene protons in
the 1H NMR spectrum. The coordination of the olefinic group of coumarin moieties is
reflected in the appearance of high field doublets at 72.0 ppm (JC-Rh = 12.1 Hz) and 50.8 ppm
(JC-Rh = 7.2 Hz) for BzI-Cou and 74.0 ppm (JC-Rh = 11.7 Hz) and 52.5 ppm (JC-Rh = 7.6 Hz)
ascribed to the I-Cou ligand. Regarding 7, the presence of two different NHC ligands is
corroborated by the observation of two low field doublets at 196.1 ppm (JC-Rh = 52.2 Hz)
and 191.1 ppm (JC-Rh = 60.2 Hz) for BzI-Cou and IPr, respectively, in the 13C{1H}-APT NMR
spectrum. The deshielding of these resonances compared to those of 6 could be ascribed to
a more electron-rich rhodium center due to the coordination of only one electron-acceptor
olefin ligand, whereas the higher JC-Rh values reflect Rh-C shorter separations.
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3. Materials and Methods

All reactions were carried out with the rigorous exclusion of air and moisture, us-
ing Schlenk-tube techniques and a dry box when necessary. The reagents were pur-
chased from commercial suppliers and used as received. Organic solvents were dried
by standard procedures and distilled under argon prior to use, or obtained oxygen- and
water-free from a Solvent Purification System (Innovative Technologies). Deuterated
solvents were deoxygenated and dried over sodium metal (C6D6 and toluene-d8) or acti-
vated molecular sieves (CDCl3). The organometallic precursors [Rh(µ-Cl)(η2-coe)(IPr)]2
(1a) [54], [Rh(µ-Cl)(η2-ethylene)(IPr)]2 (1b) [57], and RhCl)(η2,η2-cod)(NHC-Cou) (5) [53]
were prepared as previously described in the literature. Chemical shifts (expressed in parts
per million) are referenced to residual solvent peaks. Coupling constants, J, are given in
Hz. Spectral assignments were achieved by a combination of 1H-1H COSY, 13C{1H}-APT
and 1H-13C HSQC/HMBC experiments. The attenuated total reflection infrared spectra
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(ATR-IR) of solid samples were run on a PerkinElmer Spectrum 100 FT-IR spectrometer.
C, H, and N analyses were carried out in a Perkin–Elmer 2400 CHNS/O analyzer. High-
resolution electrospray mass spectra (HRMS) were acquired using a MicroTOF-Q hybrid
quadrupole time-of-flight spectrometer (Bruker Daltonics, Bremen, Germany).

Preparation of RhCl(η2-CH2=CH2)(IPr)2 (2). A solution of complex 1b (300 mg,
0.27 mmol) and free IPr (230 mg, 0.59 mmol) in 50 mL of toluene was treated with 2 bars
of ethylene and stirred for 1 h at room temperature. After filtration through Celite, the
solvent was evaporated to dryness. The addition of n-hexane induced the precipitation
of a yellow solid, which was washed with n-hexane (3 × 4 mL) and dried in vacuo. Yield
(392 mg, 77%). HRMS (ESI) m/z Calcd for RhC54H72N4 (M-C2H4-Cl): 879.4807. Found:
879.4840. 1H NMR (400.1 MHz, C6D6, 298 K): δ 7.28 (t, JH-H = 7.9, 4H, Hp-IPr), 7.20 and 7.06
(both d, JH-H = 7.9, 8H, Hm-IPr), 6.34 (s, 4H, =CHN), 3.51 and 2.76 (both sept, JH-H = 7.1, 8H,
CHMeIPr), 2.01 (d, JH-Rh = 2.0, 4H, CH2=CH2), 1.27, 1.08, 0.98, and 0.96 (all d, JH-H = 7.1,
48H, CHMeIPr). 13C{1H}-APT NMR (75.5 MHz, C6D6, 298 K): δ 191.8 (d, JC-Rh = 41.6,
Rh-CIPr), 148.4 and 145.2 (both s, Cq-IPr), 138.2 (s, CqN), 129.1 (s, CHp-IPr), 124.3 and 123.0
(both s, CHm-IPr), 123.9 (s, =CHN), 38.8 (d, JC-Rh = 15.7, CH2=CH2), 28.8 and 28.5 (both
s, CHMeIPr), 26.3, 26.2, 23.2, and 22.9 (all s, CHMeIPr). Figure S2: 1H NMR spectrum
of 2 in C6D6 at 298 K. Figure S3. 13C{1H}-APT NMR spectrum of 2 in C6D6 at 298 K.
Figure S4. 1H-1H COSY NMR spectrum of 2 in C6D6 at 298 K. Figure S5. 1H-13C HSQC
NMR spectrum of 2 in C6D6 at 298 K. Figure S6. 1H-13C HMBC NMR spectrum of 2 in
C6D6 at 298 K.

Preparation of RhCl(η2-coe)(IMe)(IPr) (3a). A solution of dinuclear complex 1a
(300 mg, 0.23 mmol) in 50 mL of toluene was treated with a solution of IMe (50 mg,
0.51 mmoles) in THF and stirred for 1h at room temperature. After filtration through Celite,
the solvent was evaporated to dryness. The addition of n-hexane induced the precipitation
of a yellow solid, which was washed with n-hexane (3 × 4 mL) and dried in vacuo. Yield:
280 mg (83%). Anal. Calcd. for C40H58N4ClRh: C, 65.52; H, 7.97; N, 7.64. Found: C,
65.63; H, 7.99; N, 7.62. 1H NMR (300.1 MHz, toluene-d8, 243 K): δ 7.4-7.2 (6H, HPh-IPr),
6.63 (s, 2H, =CHNIPr), 5.93 (s, 2H, =CHNIMe), 4.41 and 2.58 (both sept, JH-H = 6.6, 4H,
CHMeIPr), 3.46 (s, 6H, MeIMe), 2.97 (m, 2H, =CHcoe), 1.8-0.8 (12H, coe), 1.66, 1.42, 1.14,
and 1.01 (all d, JH-H = 6.6, 24H, CHMeIPr). 13C{1H}-APT NMR (75.5 MHz, toluene-d8,
243 K): δ 194.9 (d, JC-Rh = 41.2, Rh-CIPr), 191.4 (d, JC-Rh = 43.8, Rh-CIMe), 148.5 and 146.3
(both s, Cq-IPr), 137.8 (s, CqN), 129.3 (s, CHp-IPr), 124.3 and 122.4 (both s, CHm-IPr), 123.7
(s, =CHNIPr), 120.2 (s, =CHNIMe), 54.1 (d, JC-Rh = 16.8, =CHcoe), 37.2 (s, MeIMe), 28.9 and
28.7 (both s, CHMeIPr), 31.7, 30.9, and 26.8 (all s, CH2-coe), 27.0, 26.8, 23.2, and 22.4 (all s,
CHMeIPr). Figure S7. 1H NMR spectrum of 3a in toluene-d8 at 243 K. Figure S8. 13C{1H}-
APT NMR spectrum of 3a in toluene-d8 at 243 K. Figure S9. 1H-1H COSY NMR spectrum
of 3a in toluene-d8 at 243 K. Figure S10. 1H-13C HSQC NMR spectrum of 3a in toluene-d8
at 243 K. Figure S11. 1H-13C HSQC NMR spectrum of 3a in toluene-d8 at 243 K.

Preparation of RhCl)(η2-coe)(ICy)(IPr) (3b) A solution of dinuclear complex 1a (300 mg,
0.23 mmol) in 50 mL of toluene was treated with a solution of ICy (118 mg, 0.51 mmoles)
in THF and stirred for 1h at room temperature. After filtration through Celite, the solvent
was evaporated to dryness. The addition of n-hexane induced the precipitation of a yellow
solid, which was washed with n-hexane (3 × 4 mL) and dried in vacuo. Yield: 387 mg
(87%). Anal. Calcd. for C50H74N4ClRh: C, 69.07; H, 8.58; N, 6.44. Found: C, 68.83; H,
8.61; N, 6.62. 1H NMR (300.1 MHz, toluene-d8, 243 K): δ 7.4-7.2 (6H, HPh-IPr), 6.52 (s, 2H,
=CHNIPr), 6.34 (s, 2H, =CHNICy), 5.10 (t, JH-H = 10.1, 2H, CHcy), 4.15 and 2.70 (both sept,
JH-H = 6.1, 4H, CHMeIPr), 3.11 (m, 2H, =CHcoe), 2.9-0.8 (32H, CH2), 1.66, 1.48, 1.12, and 1.00
(all d, JH-H = 6.1, 24H, CHMeIPr). 13C{1H}-APT NMR (75.5 MHz, toluene-d8, 243 K): δ 192.8
(d, JC-Rh = 41.2, Rh-CIPr), 188.0 (d, JC-Rh = 45.5, Rh-CICy), 148.0 and 146.0 (both s, Cq-IPr),
138.2 (s, CqN), 129.2 (s, CHp-IPr), 124.9 and 122.5 (both s, CHm-IPr), 124.1 (s, =CHNIPr), 126.1
(s, =CHNICy), 57.8 (s, CHcy), 54.5 (d, JC-Rh = 16.4, =CHcoe), 35.0, 33.4, 32.6, 30.8, 25.9, and
25.7 (all s, CH2), 28.8 and 28.7 (both s, CHMeIPr), 26.8, 26.7, 24.0, and 22.5 (all s, CHMeIPr).
Figure S12. 1H NMR spectrum of 3b in toluene-d8 at 243 K. Figure S13. 13C{1H}-APT NMR
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spectrum of 3b in toluene-d8 at 243 K. Figure S14. 1H-1H COSY NMR spectrum of 3b in
toluene-d8 at 243 K. Figure S15. 1H-13C HSQC NMR spectrum of 3b in toluene-d8 at 243 K.
Figure S16. 1H-13C HMBC NMR spectrum of 3b in toluene-d8 at 243 K.

Preparation of RhCl(CO)(IMe)(IPr) (4a). Carbon monoxide was bubbled through a
yellow solution of 3a (100 mg, 0.14 mmol) in 20 mL of toluene at room temperature for
30 min. After filtration through Celite, the solvent was evaporated to dryness. The addition
of n-hexane induced the precipitation of a yellow solid, which was washed with n-hexane
(3 × 4 mL) and dried in vacuo. Yield: 66 mg (71%). IR (cm−1, pure sample): 1935 ν(CO).
HRMS (ESI) m/z Calcd for RhC33H44N4O (M-Cl): 615.2565. Found: 615.2568. 1H NMR
(400.1 MHz, C6D6, 298 K): δ 7.46 (m, 2H, Hp-IPr), 7.39 (m, 4H, Hm-IPr), 6.90 (s, 2H, =CHNIPr),
5.91 (s, 2H, =CHNIMe), 3.59 (sept, JH-H = 6.8, 4H, CHMeIPr), 3.30 (s, 6H, MeIMe), 1.71 and
1.26 (both d, JH-H = 6.8, 24H, CHMeIPr). 13C{1H}-APT NMR (100.4 MHz, C6D6, 298 K): δ
193.2 (d, JC-Rh = 44.7, Rh-CIPr), 188.5 (d, JC-Rh = 83.0, CO), 185.3 (d, JC-Rh = 42.7, Rh-CIMe),
147.0 (s, Cq-IPr), 137.3 (s, CqN), 129.4 (s, CHp-IPr), 123.6 (s, =CHNIPr), 123.5 (s, CHm-IPr),
120.4 (s, =CHNIMe), 37.2 (s, MeIMe), 28.9 (s, CHMeIPr), 26.3 and 22.9 (both s, CHMeIPr).
Figure S17. 1H NMR spectrum of 4a in C6D6 at 298 K. Figure S18. 13C{1H}-APT NMR
spectrum of 4a in C6D6 at 298 K. Figure S19. 1H-1H COSY NMR spectrum of 4a in C6D6
at 298 K. Figure S20. 1H-13C HSQC NMR spectrum of 4a in C6D6 at 298 K. Figure S21.
1H-13C HMBC NMR spectrum of 4a in C6D6 at 298 K.

Preparation of RhCl(CO)(ICy)(IPr) (4b). Carbon monoxide was bubbled through a
yellow solution of 3b (100 mg, 0.13 mmol) in 20 mL of toluene at room temperature for
30 min. After filtration through Celite, the solvent was evaporated to dryness. The addition
of n-hexane induced the precipitation of a yellow solid, which was washed with n-hexane
(3 × 4 mL) and dried in vacuo. Yield (76 mg, 83%). IR (cm−1, pure sample): 1937 ν(CO).
HRMS (ESI) m/z Calcd for RhC43H60N4O (M-Cl): 751.3817. Found: 751.3795. 1H NMR
(400.1 MHz, toluene-d8, 243 K): δ 7.32 (m, 2H, Hp-IPr), 7.24 (m, 4H, Hm-IPr), 6.76 (s, 2H,
=CHNIPr), 6.34 (s, 2H, =CHNICy), 4.84 (m, 2H, CHcy), 3.38 (sept, JH-H = 6.5, 4H, CHMeIPr),
2.0–0.8 (all m, 20H, CH2), 1.52 and 1.13 (both d, JH-H = 6.5, 24H, CHMeIPr). 13C{1H}-APT
NMR (100.4 MHz, toluene-d8, 243 K): δ 193.8 (d, JC-Rh = 41.6, Rh-CIPr), 188.6 (d, JC-Rh = 81.4,
CO), 183.6 (d, JC-Rh = 40.6, Rh-CICy), 147.3 (s, Cq-IPr), 137.7 (s, CqN), 129.5 (s, CHp-IPr), 123.9
(s, CHm-IPr), 123.8 (s, =CHNIPr), 116.2 (s, =CHNICy), 59.4 (s, CHcy), 33.9, 33.4, 25.8, 25.7, and
25.5 (all s, CH2), 28.9 (s, CHMeIPr), 26.5 and 23.1 (both s, CHMeIPr). Figure S22. 1H NMR
spectrum of 4b in toluene-d8 at 243 K. Figure S23. 13C{1H}-APT NMR spectrum of 4b in
toluene-d8 at 243 K. Figure S24. 1H-1H COSY NMR spectrum of 4b in toluene-d8 at 243 K.
Figure S25. 1H-13C HSQC NMR spectrum of 4b in toluene-d8 at 243 K. Figure S26. 1H-13C
HMBC NMR spectrum of 4b in toluene-d8 at 243 K.

Preparation of RhCl(κC,η2-BzICoutol)(κC,η2-ICouBz) (6). (Figure 5) A mixture of
RhCl(BzICoutol)(η2,η2-cod) (5a) (100 mg, 0.15 mmol), the imidazolium precursor [HICouBz]Cl
(60 mg, 0.15 mmol) and NaOCH3 (8 mg, 0.15 mmol) in 20 mL of THF was heated under
reflux for 24 h. After this period, the mixture was cooled to 0 ◦C which resulted in the
formation of a precipitate. The mother liquor was removed and the solid washed with cold
THF (2 × 5 mL). Then, the solid was dissolved in 20 mL of CH2Cl2 and filtered through
Celite. The solution was concentrated to ca. 1 mL, and then n-hexane was added to induce
the precipitation of a white solid which was washed with n-hexane (3 × 5 mL) and dried in
vacuo. Yield: 30 mg (45%). HRMS (ESI) m/z Calcd for RhC49H44N4O4 (M-Cl): 855.2412.
Found: 855.2427. 1H NMR (400.1 MHz, CDCl3, 253 K): δ 7.68 (d, JH-H = 8.0, 1H, H16), 7.54
(d, JH-H = 7.9, 1H, H37), 7.53 (d, JH-H = 7.8, 2H, H43), 7.30 (dd, JH-H = 7.8, 7.4, 2H, H44),
7.29–7.22 (3H, H22,45), 7.14 and 5.20 (both d, JH-H = 14.8, 2H, H20), 7.10–7.03 (6H, H4,5,6,15,23),
6.94 (both d, JH-H = 7.7, 1H, H36), 6.82 (d, JH-H = 7.2, 1H, H3), 6.79 and 4.99 (both d,
JH-H = 13.8, 2H, H41), 6.45 (d, JH-H = 1.7, 1H, H27), 6.40 (d, JH-H = 1.7, 1H, H28), 4.30 (br, 1H,
H10), 4.19 and 3.55 (both d, JH-H = 13.2, 2H, H29), 4.19 and 3.76 (both d, JH-H = 13.2, 2H, H8),
4.15 (br, 1H, H31), 2.24 (s, 3H, H19), 2.23 (s, 3H, H25), 2.10 (s, 3H, H18), 1.80 (s, 3H, H40), 1.34
(s, 3H, H39). 13C{1H}-APT NMR (100.4 MHz, CDCl3, 253 K): δ 184.8 (d, JC-Rh = 32.0, Rh-C1),
172.4 (d, JC-Rh = 34.4, Rh-C26), 169.1 (s, O=C11), 169.0 (s, O=C32), 147.4 (s, C12), 146.7 (s, C33),
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138.2 (s, C35), 138.1 (s, C14), 137.1 (s, C24), 137.0 (s, C42), 134.4 (s, C7), 133.5 (s, C21), 132.0
(s, C2), 129.8 (s, C43), 129.2 (s, C23), 128.6 (s, C22), 128.4 (s, C44), 128.0 (s, C45), 124.9 (s, C13),
124.5 (s, C34), 124.4 (s, C15), 124.1 (s, C36), 123.0 (s, C4), 122.9 (s, C5), 121.8 (s, C28), 121.1
(s, C17), 120.8 (s, C38), 119.2 (s, C16), 118.8 (s, C37), 117.9 (s, C27), 112.4 (s, C6), 109.2 (s, C3),
74.0 (d, JC-Rh = 11.7, C30), 72.0 (d, JC-Rh = 12.1, C9), 52.9 (s, C41), 52.5 (d, JC-Rh = 7.6, C31),
51.6 (s, C20), 50.8 (d, JC-Rh = 7.2, C10), 49.3 (s, C29), 46.8 (s, C8), 21.4 (s, C25), 20.4 (s, C19),
19.9 (s, C40), 11.8 (s, C18), 10.8 (s, C39). Figure S27. 1H NMR spectrum of 6 in toluene-d8 at
253 K. Figure S28. 13C{1H}-APT NMR spectrum of 6 in toluene-d8 at 253 K. Figure S29.
1H-13C HSQC NMR spectrum of 6 in toluene-d8 at 253 K. Figure S30. 1H-13C HMBC NMR
spectrum of 6 in toluene-d8 at 253 K.
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Preparation of RhCl(κC,η2-BzICouBu)(IPr) (7). (Figure 6) A mixture of RhCl
(BzICouBu)(η2,η2-cod) (100 mg, 0.15 mmol) (5b) and free IPr (70, 0.18 mmol) in 20 mL
of THF was heated under reflux for 24 h. After this period, THF was removed and
then n-hexane was added to induce the precipitation of a white solid which was washed
with n-hexane (3 × 5 mL) and dried in vacuo. Yield: 40 mg (29%). Anal. Calcd. for
C50H60N4ClO2Rh: C, 67.67; H, 6.81; N, 6.31. Found: C, 67.62; H, 6.79; N, 6.42. 1H NMR
(400.1 MHz, toluene-d8, 253 K): δ 7.37 and 7.24 (both t, JH-H = 7.8, 2H, Hp-IPr), 7.18 and
7.10 (both d, JH-H = 7.8, 4H, Hm-IPr), 6.90 and 6.87 (both dd, JH-H = 7.4, 7.1, 2H, H4,5),
6.70 and 6.64 (both d, JH-H = 7.5, 2H, H3,6), 6.65 (d, JH-H = 8.0, 2H, H15), 6.46 and 6.39
(both d, JH-H = 1.6, 2H, =CHN), 6.00 (d, JH-H = 8.0, 1H, H16), 4.47, 3.26, 2.79, and 1.81 (all
sept, JH-H = 6.7, 4H, CHMeIPr), 4.16 and 2.41 (both d, JH-H = 13.4, 2H, H8), 3.07 and 2.65
(both m, 2H, H20), 2.32 (s, 3H, H18), 2.20 (br, 1H, H10), 2.09 (s, 3H, H19), 1.35 and 1.28 (both
m, 4H, H21,22), 1.01 (t, JH-H = 7.3, 3H, H23), 1.74, 1.06, 0.95, 0.90, 0.87, 0.80, 0.53, and 0.53 (all
d, JH-H = 6.7, 24H, CHMeIPr). 13C{1H}-APT NMR (100.4 MHz, toluene-d8, 253 K): δ 196.1
(d, JC-Rh = 52.2, Rh-CBzICou), 191.1 (d, JC-Rh = 60.8, Rh-CIPr), 168.4 (s, O=C11), 150.6 (s, C12),
148.9, 146.9, 146.4, and 142.4 (all s, Cq-IPr), 138.6 and 137.0 (both s, CqN), 136.5 (s, C17), 134.8
and 134.4 (both s, C2,7), 130.1 and 129.1 (both s, Cp-IPr), 129.0, 128.4, 127.5, and 126.2 (all
s, Cm-IPr), 125.0 and 124.6 (both s, =CHN), 124.7 (s, C15), 124.2 (s, C13), 122.9 (s, C14), 122.1
and 121.7 (both s, C4,5), 121.4 (s, C16), 109.4 and 109.2 (both s, C3,6), 73.6 (d, JC-Rh = 17.9,
C9), 50.1, (s, C8), 46.2 (s, C20), 39.8 (d, JC-Rh = 7.0, C10), 32.6 and 30.4 (both s, C21,22), 28.6,
28.2, 28.1, and 27.9 (all s, CHMeIPr), 26.9, 26.4, 25.8, 25.7, 25.6, 23.0, 22.8, and 20.4 (all s,
CHMeIPr), 20.3 (s, C19), 14.2 (s, C23), 12.3 (s, C18). Figure S31. 1H NMR spectrum of 7 in
toluene-d8 at 253 K. Figure S32. 13C{1H}-APT NMR spectrum of 7 in toluene-d8 at 253 K.
Figure S33. 1H-13C HSQC NMR spectrum of 7 in toluene-d8 at 253 K. Figure S34. 1H-13C
HMBC NMR spectrum of 7 in toluene-d8 at 253 K.
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Crystal Structure Determination: Single crystals of 3a and 7 for the X-ray diffrac-
tion studies were grown by slow diffusion of hexane into a saturated toluene solution
(3a) or slow evaporation of CDCl3 solution in a NMR tube (7). X-ray diffraction data
were collected at 100(2) K on a Bruker APEX DUO CCD diffractometer with graphite-
monochromated Mo−Kα radiation (λ = 0.71073 Å) usingω rotations. The intensities were
integrated and corrected for absorption effects with SAINT–PLUS [72] and SADABS [73]
programs, both included in the APEX2 package. The structures were solved by the Pat-
terson method with SHELXS-97 [74] and refined by full matrix least-squares on F2 with
SHELXL-2014 [71], under WinGX [75]. CCDC 2204568 (3a) and 2204569 (7) contain the
supplementary crystallographic data for this paper. These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, accessed on 17 October
2022 (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-12-2333-6033;
E-mail: deposit@ccdc.cam.ac.uk).

Crystal data and structure refinement for 3a. C40H58ClN4Rh, 733.26 g·mol−1, mon-
oclinic, P21/n, a = 11.2372(5) Å, b = 17.7258(7) Å, c = 19.8602(8) Å, β = 104.6600(10)◦,
V = 3827.1(3) Å3, Z = 4, Dcalc = 1.273 g·cm−3, µ = 0.548 mm−1, F(000) = 1552, yellow prism,
0.160× 0.080× 0.050 mm3, θmin/θmax 1.563/26.022◦, index ranges –13 ≤ h ≤ 13, –21 ≤ k ≤ 21,
–24 ≤l ≤ 24, reflections collected/independent 46716/7524 [R(int) = 0.0509], Tmin/Tmax
0.9486/0.8307, data/restraints/parameters 7524/0/425, GooF(F2) = 1.015, R1 = 0.0319
[I > 2σ(I)], wR2 = 0.0744 (all data), largest diff. peak/hole 1.098/–0.473 e·Å−3.

Crystal data and structure refinement for 7. C50H60ClN4O2Rh·2.5 CH2Cl2,
1099.69 g·mol−1, monoclinic, P21/n, a = 14.1094(12) Å, b = 20.7235(18) Å, c = 18.0797(16)
Å, β = 96.0110(10)◦, V = 5257.4(8) Å3, Z = 4, Dcalc = 1.389 g·cm–3, µ = 0.673 mm−1,
F(000) = 2284, red prism, 0.170 × 0.160 × 0.145 mm3, θmin/θmax 1.965/26.372◦, −17 ≤ h ≤ 17,
−25 ≤ k ≤ 25, −22 ≤ l ≤ 22, reflections collected/independent 91967/10757 [R(int) = 0.0514],
Tmin/Tmax 0.8596/0.7205, data/restraints/parameters 10757/15/636, GooF(F2) = 1.118,
R1 = 0.0445 [I > 2σ(I)], wR2 = 0.1104 (all data), largest diff. peak/hole 0.720/–1.106 e·Å−3.

4. Conclusions

Mixed bis-NHC rhodium(I) complexes of type RhCl(η2-olefin)(NHC)(NHC’) have
been synthesized following a stepwise procedure. It has been revealed that the steric
hindrance imparted by the wingtips of the carbene ligands as well as that of the η2-olefin is
critical. Thus, bis-NHC derivatives containing both bulky IPr or IMes could be accessed
only for smaller η2-ethylene, whereas the steric relief in IMe or ICy allows for the prepa-
ration of mixed bis-NHC complexes containing a η2-coe ligand. Regarding the use of
RhCl(NHC)(η2,η2-cod) precursors, in contrast to the stability observed for IPr derivative,
the coumarin-functionalized NHC ligands facilitates decoordination of the diolefin, en-
abling the straightforward introduction of a second NHC. Thus, the pentacoordinated
mixed bis-NHC complexes bearing coumarin functionalities adopt a trans-NHC dispo-
sition, whereas the square planar IPr-BzIcou species presents an uncommon cis-NHC
configuration, exhibiting an anagostic interaction between the metal atom and one IPr
methyl group.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27207002/s1, Miscellaneous information. Figure S1.
Variable-temperature 1H NMR spectra of 3a in toluene-d8. Figure S2. 1H NMR spectrum of 2 in C6D6
at 298 K. Figure S3. 13C{1H}-APT NMR spectrum of 2 in C6D6 at 298 K. Figure S4. 1H-1H COSY
NMR spectrum of 2 in C6D6 at 298 K. Figure S5. 1H-13C HSQC NMR spectrum of 2 in C6D6 at 298 K.
Figure S6. 1H-13C HMBC NMR spectrum of 2 in C6D6 at 298 K. Figure S7. 1H NMR spectrum of 3a
in toluene-d8 at 243 K. Figure S8. 13C{1H}-APT NMR spectrum of 3a in toluene-d8 at 243 K. Figure S9.
1H-1H COSY NMR spectrum of 3a in toluene-d8 at 243 K. Figure S10. 1H-13C HSQC NMR spectrum
of 3a in toluene-d8 at 243 K. Figure S11. 1H-13C HSQC NMR spectrum of 3a in toluene-d8 at 243 K.
Figure S12. 1H NMR spectrum of 3b in toluene-d8 at 243 K. Figure S13. 13C{1H}-APT NMR spectrum
of 3b in toluene-d8 at 243 K. Figure S14. 1H-1H COSY NMR spectrum of 3b in toluene-d8 at 243 K.
Figure S15. 1H-13C HSQC NMR spectrum of 3b in toluene-d8 at 243 K. Figure S16. 1H-13C HMBC
NMR spectrum of 3b in toluene-d8 at 243 K. Figure S17. 1H NMR spectrum of 4a in C6D6 at 298 K.
Figure S18. 13C{1H}-APT NMR spectrum of 4a in C6D6 at 298 K. Figure S19. 1H-1H COSY NMR
spectrum of 4a in C6D6 at 298 K. Figure S20. 1H-13C HSQC NMR spectrum of 4a in C6D6 at 298 K.
Figure S21. 1H-13C HMBC NMR spectrum of 4a in C6D6 at 298 K. Figure S22. 1H NMR spectrum
of 4b in toluene-d8 at 243 K. Figure S23. 13C{1H}-APT NMR spectrum of 4b in toluene-d8 at 243 K.
Figure S24. 1H-1H COSY NMR spectrum of 4b in toluene-d8 at 243 K. Figure S25. 1H-13C HSQC
NMR spectrum of 4b in toluene-d8 at 243 K. Figure S26. 1H-13C HMBC NMR spectrum of 4b in
toluene-d8 at 243 K. Figure S27. 1H NMR spectrum of 6 in toluene-d8 at 253 K. Figure S27. 1H NMR
spectrum of 6 in toluene-d8 at 253 K. Figure S29. 1H-13C HSQC NMR spectrum of 6 in toluene-d8 at
253 K. Figure S30. 1H-13C HMBC NMR spectrum of 6 in toluene-d8 at 253 K. Figure S31. 1H NMR
spectrum of 7 in toluene-d8 at 253 K. Figure S32. 13C{1H}-APT NMR spectrum of 7 in toluene-d8 at
253 K. Figure S33. 1H-13C HSQC NMR spectrum of 7 in toluene-d8 at 253 K. Figure S34. 1H-13C
HSQC NMR spectrum of 7 in toluene-d8 at 253 K.
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