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The validity of the flow-mediated dilation test has been questioned due to the lack of normalization to the primary stimulus, shear
stress. Shear stress can be calculated using Poiseuille’s law. However, little attention has been given to the most appropriate blood
velocity parameter(s) for calculating shear stress. The pulsatile nature of blood flow exposes the endothelial cells to two distinct
shear stimuli during the cardiac cycle: a large rate of change in shear at the onset of flow (velocity acceleration), followed by a steady
component. The parameter typically entered into the Poiseuille’s law equation to determine shear stress is time-averaged blood
velocity, with no regard for flow pulsatility. This paper will discuss (1) the limitations of using Posieuille’s law to estimate shear
stress and (2) the importance of the velocity profile—with emphasis on velocity acceleration—to endothelial function and vascular
tone.

1. Introduction

The pathological complications of atherosclerosis, namely,
heart attacks and strokes, remain the leading cause of mor-
tality in the Western world [1]. Preceding atherosclerosis is
endothelial dysfunction [2–4]. The flow-mediated dilation
(FMD) test has emerged as the noninvasive standard for
assessing in vivo endothelial function [5]. Despite its poten-
tial, the validity of the FMD test has been questioned due to
the lack of normalization to the primary stimulus, shear
stress [6–10]. Fortunately, the ultrasound technology used
to conduct the FMD test can also provide estimates of shear
stress [11]. Typically, shear stress is estimated by employing
a simplified mathematical model based on Poiseuille’s law.
More sophisticated approaches using magnetic resonance
imaging are available, but are beyond the reach of most clin-
ical studies since such techniques are not readily available,
are too expensive, and are technically challenging and time
consuming [12–14].

Little attention has been given to the most appropriate
blood velocity parameter(s) for calculating shear stress. The

pulsatile nature of blood flow exposes the endothelial cells to
two distinct shear stimuli during the cardiac cycle: a large rate
of change in shear at the onset of flow (velocity acceleration),
followed by a steady shear component. In vitro studies sug-
gest that these two distinct fluid stimuli regulate short- and
long-term endothelial function via independent biomechan-
ical pathways [15–17]. The parameter typically incorporated
into the Poiseuille’s law equation for shear stress is time-ave-
raged blood velocity, that is, blood velocity averaged across
the cardiac cycle, with no regard to flow pulsatility. This
paper will discuss (1) the limitations of using Posieuille’s law
to estimate shear stress and (2) the importance of the velocity
profile—with emphasis on velocity acceleration—to endo-
thelial function and vascular tone.

2. Flow-Mediated Dilation

The FMD test is a noninvasive method of evaluating endo-
thelial function. A number of authors have developed stan-
dardized guidelines for conducting this test [18–20], includ-
ing a recent article by Thijssen and colleagues [21]. The
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standard FMD test, as first described by Celermajer et al.
[22], places a pneumatic tourniquet forearm just below the
elbow and distal to imaged brachial artery. The tourniquet
is inflated to a suprasystolic blood pressure for 5 minutes.
Rapid deflation of the tourniquet instigates increased blood
flow (reactive hyperemia) to the oxygen starved forearm
muscles, with a subsequent increase in flow through the up-
stream brachial artery. The flow-induced increase in shear
stress results in vasodilation of the brachial artery. The mag-
nitude of FMD, expressed as the percentage increase in dia-
meter above rest, is used to represent endothelial health.

3. Shear Stress

Despite the term flow-mediated dilation, shear stress (see
Figure 1) is the established stimulus for FMD [6, 7, 10, 23–
28]. Shear stress is determined by red blood cells moving
close to the endothelial cells. As the fluid particles “travel”
parallel to the wall, their velocity increases from zero at
the wall to a maximum value at some distance from the
wall. This leads to the establishment of a gradient, which is
defined as shear stress (Figure 2). Shear stress therefore acts at
a tangent to the wall to create a frictional force at the surface
of the endothelium. The endothelial cells are equipped with
mechanosensors to detect this stress [29–38].

To maintain physiological levels of vessel wall shear stress,
vascular tissues respond with acute adjustments in vascular
tone through vasodilatation [39]. Vasodilation reflects alte-
rations in the rate of production of endothelial-derived med-
iators, including nitric oxide (NO), prostacyclin (PGI2), and
endothelial-derived hyperpolarizing factor (EDHF), which
act locally to modulate vascular smooth muscle tone.

4. Shear Stress Mechanotransduction

The endothelium is a complex mechanical signal-transduc-
tion interface between the vessel wall and the flowing blood.
Mechanotransduction is the interaction between shear
stress-induced biomechanical forces and endothelial cell fun-
ction. Exactly how these biomechanical forces are sensed by
endothelial cells remains unclear. Two models of mechano-
transduction have been demonstrated so far, a localized mo-
del and a decentralized model.

4.1. The Localized Model. The mechanoreceptor, like other
receptors, is considered to be located in the cell membrane
(Figure 3). Channels (i.e., K+, Na+, and Cl−) located in mem-
brane respond to changes in shear stress. Because ion channel
activation is one of the fastest known endothelial responses to
flow, these ion channels are the proposed flow sensors [29–
31, 33, 34, 40]. The flow-sensitive ion channel first identified
in endothelial cells was an inward-rectifying K+ channel,
whose activation leads to hyperpolarization of the cells mem-
brane [35, 36]. The second type of flow-sensitive ion chan-
nel, more recently discovered, is an outward-rectifying Cl−

channel [37, 38]. The change in membrane potential, asso-
ciated with the activation of these ion channels, alters the
electrochemical gradient for Ca2+ transport across the endo-
thelial cell membrane. This has been shown to provide

a mechanism of direct interaction between flow-sensitive ion
channels and Ca2+-dependent pathways [37, 38].

The Cl− and K+ channels are activated independently
[37, 38]. Activation of Cl− channels leads to cell membrane
depolarization; this follows the initial K+ channel-mediated
hyperpolarization. The fact that hyperpolarization precedes
depolarization, in spite of the larger electrochemical driving
force for Cl− than K+, suggests that flow-sensitive Cl− chan-
nels attain maximal activation more slowly than flow-sensi-
tive K+ channels. The notion that K+ channels respond to
shear stress more rapidly than Cl− channels is expected to be
particularly relevant for situations where a time-varying
shear stress may activate one or both channels depending on
the time constant characterizing the changes in shear stress.

There is mounting evidence that flow-sensitive K+ and
Cl− channels play a central role in regulating overall endothe-
lial responsiveness to flow [41–43]. This notion is supported
by data demonstrating that interference with these candidate
mechanosensors affects downstream gene and protein regu-
latory responses. For instance, pharmacological antagonists
of flow sensitive K+ and Cl− channels greatly attenuate or
entirely abolish shear stress-induced release of cyclic guano-
sine monophosphate (cGMP) [41] and NO, downregulate
endothelin-1 [42], and induce Na-K-Cl cotransport protein
[43].

4.2. The Decentralised Model. This model suggests that the
mechanical forces acting on the luminal side of endothelial
cells are transmitted through the cytoskeleton to other sites
within the cell [44]. The endothelial cell can be viewed as a
membrane stretched over a frame composed of intermediate
filaments and actin fibers which transverse the cells and end
in adhesion complexes (Figure 3). Even under nonstimulated
conditions, the entire endothelial cytoskeleton is maintained
under tension, and in response to an externally applied stim-
ulus intracellular tension is redistributed over the cytoskele-
ton network. These forces are especially sensed at the basal
adhesion points, where the endothelial cell is attached to the
extracellular matrix, cell junctions, and the nuclear mem-
brane [30]. So it is conceivable that the application of a stres-
sor activates signal transduction cascades without the need of
a specific shear stress or stretch receptor. Integrins connected
to the cytoskeleton have been related to this mechanism of
mechanoreception [45].

5. Shear Stress Estimation

Clinical studies in humans, including FMD studies, typically
estimate shear stress by employing a simplified mathematical
model based on Poiseuille’s law, where shear rate equals

Shear rate
(
γ
) = 2(2 + n)v

d
, (1)

where d is the internal arterial diameter, v is time averaged
mean blood velocity, and n represents the shape of the veloc-
ity profile. For a fully developed parabolic profile, n is 2.

Poiseuille’s law assumes that (1) the fluid (blood) is New-
tonian; (2) blood flows through a rigid tube; (3) whole
blood viscosity represents viscosity at the vessel wall and is
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Figure 1: Haemodynamic Stress. Shear stress results in parallel deformation, as opposed to normal stress or force, which when applied to an
object induces normal (direct) deformation.
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Figure 2: Determination of Shear Rate (γ). As fluid particles “travel” parallel to the vessel wall, their average velocity increases from a
minimum at the wall to a maximum value at some distance from the wall, resulting in a gradient of velocities. The actual shear rate at
the vessel wall is determined by shape of the velocity profile. Shear stress-induced deformation of the endothelial cells is detected by
mechanoreceptors on the cell membrane.
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Figure 3: Putative Mechanisms of Mechanotransduction. The localized model for shear stress mechanotransduction assumes that shear stress
sensors are located in the cell membrane. Ion channels are the proposed flow sensors. The decentralized model suggests that the mechanical
forces acting on the luminal side of the endothelial cells are transmitted through the cytoskeleton to other sites in the cell. Integrins connected
to the cytoskeleton have been related to this mechanism of mechanoreception.
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linearly proportional to shear rate; (4) the velocity profile
is parabolic; (5) mean blood velocity adequately defines the
shear stimulus.

First, although blood is a non-Newtonian fluid at low
shear rates (smaller than approx. 100 s−1) [46] in vivo, shear
stress in large arteries, particularly at the endothelial surface,
is generally considerably larger than this threshold value so
that the effect of the non-Newtonian behavior does not
appear to be pronounced. Second, blood vessels are disten-
sible, meaning that wall shear rate may be ∼30% less in a
distensible artery as compared with a rigid tube [47].

Third, the magnitude of shear stress, to which the endo-
thelial cell is subjected, is given by the product of the dynamic
viscosity of blood and shear rate. Viscosity is an internal pro-
perty of a fluid that offers resistance to flow. For Newtonian
fluids, shear rate and viscosity are directly related. However,
the relationship between shear rate and viscosity is nonlinear
for non-Newtonian fluids. Human in vivo studies are usually
limited to whole blood measurements of viscosity. These
measurements overestimate the viscosity at the wall of the
vessel. Less red blood cells travel along the artery wall, where,
in addition to a thin layer of plasma, blood platelets are trav-
eling [48]. Red blood cells tend to stream in the center of the
vessel, resulting in higher viscosity in the center and there-
by reducing the shear stress gradients at the vessel wall.

It is worth noting that shear stress assessments do not
seem to result in conclusions different from shear rate asses-
sments alone [49]. This may be explained by two factors: (1)
sources of error from whole blood viscosity estimates and
(2) blood viscosity exhibits low intrasubject variability [50],
particularly among a healthy, homogenous group. Shear rate
has been used as a surrogate measure of shear stress in a num-
ber of previous studies [49–53]. Nonetheless, the relationship
between vascular homeostasis and blood viscosity is complex
[54]. Further study is required to determine the influence
of blood velocity on shear stress estimations, particularly for
populations exhibiting cardiovascular risk factors known to
effect blood viscosity.

Fourth, in arteries, the velocity profile will not develop
to a full parabola as a consequence of flow unsteadiness and
short vessel entrance lengths. In both arteries and arterioles,
the velocity profiles are actually flattened parabolas ([13], see
Figure 2B). In the common carotid artery, mean wall shear
stress is underestimated by a factor of 2 when assuming a
parabolic velocity profile [55]. In the brachial artery, the
underestimation is less pronounced, likely due to a more
parabolic velocity profile in this artery, that is, n (velocity
profile) is closer to 2 ([55], see Figure 2A). However, this may
only be true for resting conditions; occurrence of flow tur-
bulence is possible during reactive hyperemia [56].

Fifth, for a given mean blood velocity, the flow profile can
vary dramatically due to the pulsatile nature of circulation
[57–59]. Blood flow pulsatility results in endothelial cells
being exposed to two distinct shear stimuli during the car-
diac cycle: a large rate of change (velocity acceleration) in
shear at the onset of flow, followed by steady shear. In
vitro studies suggest that these two distinct stimuli regulate
short- and long-term endothelial function via independent
biomechanical pathways [60–67]. Mean blood velocity is
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Figure 4: Acceleration and Steady Shear Components. The normal
brachial arterial signal is triphasic, corresponding to the (1) rapid
blood flow during systole, resulting in velocity acceleration, (2)
initial reversal of blood flow in diastole, and (3) gradual return
of forward flow during late diastole, resulting in steady shear
component.

therefore unlikely to characterize the shear stimulus, partic-
ularly during hyperemic conditions.

6. The Importance of the Velocity Profile to
Shear Stress Mechanotransduction

The earliest studies investigating the effects of shear stress on
endothelial function did so by assessing endothelial cell res-
ponses to high versus low shear stress. This was until Davies
et al. [68], in 1986, provided evidence that the time-averaged
shear stress alone could not explain the pathological behavior
of endothelial cells exposed to complex flow patterns. Sub-
sequent studies [57, 66, 69–75] have shown that vascular
endothelial cells respond not only to the time-averaged shear
stress, but respond differently to different patterns of flow.

The cyclic nature of the beating heart creates pulsatile
flow conditions in all arteries. The heart ejects blood during
systole and fills during diastole. These cyclic conditions cre-
ate relatively simple monophasic flow pulses in the upper re-
gion of the aorta [76]. However, pressure and flow character-
istics are substantially altered as blood circulates through the
arterial tree. Figure 4 shows an example of a typical brachial
artery blood velocity profile. The normal brachial arterial
signal is triphasic, corresponding to (1) rapid blood flow
during systole, (2) initial reversal of blood flow in diastole,
and (3) gradual return of forward flow during late diastole.

The blood flow profile in the aorta is predominately
governed by the force of blood ejected from the heart [77].
However, in the periphery, the blood flow profile becomes
more complex as a result of the energy transfer between
the heart and arteries. The heart generates forward-traveling
wave energy that propagates through the arteries to maintain
tissue and organ perfusion for metabolic homeostasis. An
individual forward-traveling waveform, generated by the
heart at the beginning of systole, initiates flow and increases
pressure in the arteries. Although most of the wave energy
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Figure 5: High versus Low Velocity Acceleration (VA). The horizontal
line denotes identical mean shear stress for both VA rates.

in this initial compression wave travels distally into smaller
arteries, some is reflected back towards the heart at sites of
impedance mismatch. Interactions between forward- and
backward-traveling waves result in complex blood flow pat-
terns. Wave reflections result from arterial geometry, arterial
wall compliance, and downstream resistance created by resis-
tance arteries [57, 59].

Complex flow characteristics have a profound impact on
the shear stress distribution to which vascular endothelial
cells are exposed. While human in vivo studies typically
describe shear stress as a mean construct, numerous sec-
ondary phenomena associated with flow, including pulsatile
flow, retrograde flow, and flow turbulence, can influence the
regulation of endothelial cells [23, 60, 62, 78–80].

6.1. Velocity Acceleration and Endothelial Function. The
pulsatile nature of blood flow exposes the endothelial cells to
two distinct shear stimuli during the cardiac cycle: a large rate
of change in shear at the onset of flow (velocity acceleration),
followed by a steady shear component (Figure 4). In vitro
studies suggest that these two distinct fluid stimuli (velocity
acceleration versus steady velocity) regulate short- and long-
term endothelial function via independent biomechanical
pathways [60–67]. For a given mean blood velocity, or
shear stress, velocity acceleration can vary quite substantially
(Figure 5). Studies have shown that the rate of velocity
acceleration can affect the progression of atherosclerosis
[60–62, 67, 81–85], endothelial cell function [62, 67, 86],
mechanotransduction [63–65, 83, 87], calcium kinetics [88–
91], and vascular tone [15–17, 92–94].

6.2. Velocity Acceleration and Flow-Mediated Dilation. The
endothelium mediates flow-mediated vasodilation by alter-
ing the release of numerous factors, including NO, PGI2

and EDHF factor. The development of sophisticated in vitro
flow models has allowed the effects of velocity acceleration
on cultured endothelial cell function to be studied. Notably,
the release of NO and PGI2, from cultured endothelial cells
has been directly related to the rate of velocity acceleration
[15, 16, 92, 93]. The rate of velocity acceleration has also been
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Figure 6: Velocity Acceleration versus Shear Stress-Dependent Dila-
tion. Velocity acceleration (VA) and mean shear stress appear to
regulate nitric oxide production via distinct pathways. Ca+: calcium;
eNOS: endothelial nitric oxide synthase; PECAM: platelet/endothe-
lial cell adhesion molecule.

directly related to vasodilation of isolated cremaster arteri-
oles [94].

The production rate of NO and PGI2 following flow
onset exhibits a biphasic response, an initial transient burst
followed by a slower release to a constant rate [15, 16, 92].
Separate studies from the same group [15, 16] demonstrated
that the initial burst of NO is dependent on velocity accelera-
tion but not the shear stress magnitude; the subsequent con-
stant NO production is dependent on shear stress magnitude
(Figure 6). The initial burst of NO was found to be Ca2+ and
G-protein dependent (i.e., “localized” mechanotransduc-
tion). In contrast, the subsequent constant NO production
was found to be Ca2+ and G-protein independent (i.e., “dec-
entralized” mechanotransduction). A more recent study
found that the initial velocity acceleration-dependent signal
for NO release requires platelet/endothelial cell adhesion
molecule-1 (PECAM-1) [17]. PECAM-1, which acts as an
intracellular bridge between the two plasma membranes of
neighboring cells, is complexed with endothelial nitric oxide
synthase (eNOS) at the cell-cell junction. Velocity accelera-
tion is thought to deform the endothelial cell plasma mem-
brane and activate PCAM-1 [95]. The velocity acceleration-
dependent burst is consistent with previous in vitro observa-
tions [96, 97] for flow-mediated release of PGI2 and for the
stimulation of NO release by Ca2+ mobilizing agonists [98].
Similar findings have been observed in isolated perfused
vessels exposed to acute changes in flow [41, 94, 99].

Recently, we studied the effect of velocity acceleration on
FMD in a group of 14 healthy, young, male subjects [100].
FMD was measured prior to, and following, increases in
velocity acceleration. Velocity acceleration was increased by
inflating a tourniquet to 40 mmHg around the forearm. We
found a 14% increase in velocity acceleration-attenuated
FMD by 11%. This finding suggests that mean blood velocity
alone may not adequately characterize the shear stimulus.
Attention to secondary flow phenomena may be particularly
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important when comparing groups with known secondary
flow abnormalities.

6.3. Potential Limitations of In Vitro Studies. The relevance of
findings garnered from in vitro studies bear two important
limitations. Firstly, endothelial cells from different tissue
beds have been shown to exhibit different responses for a
given flow paradigm [101]. For instance, it has been shown
that different tissue beds exhibit different optimal flow fre-
quencies for proliferation, eNOS activity, and PGI2 secretion
[101]. Secondly, most culture studies have investigated endo-
thelial gene regulation in response to a single type of stimulus
(continuous laminar shear stress). Therefore, although these
simple in vitro models have yielded valuable information,
they fail to mimic the complexities of the in vivo environ-
ment. The applicability of these findings to humans remains
to be determined.

7. Velocity Acceleration and Vascular Health

The effects of velocity acceleration on the development of
atherosclerosis have produced conflicting findings. Bao et al.
[60] found that velocity acceleration upregulated the expres-
sion of putative atherogenic genes (monocyte chemoattrac-
tant protein-1 and platelet-derived growth factor-A) which
are believed to participate in the early events of atheroscle-
rosis [102, 103]. The same group found that velocity acce-
leration upregulates endothelial cell proliferation [62]. How-
ever, a more recent study by Hsiai et al. [81] found that pul-
satile flow actually downregulated the expression of mono-
cyte chemoattractant protein-1 and reduced monocyte bind-
ing to lipid-oxidized endothelial cells. Furthermore, they
found that the effects were more exaggerated for pulsatile
flow with high velocity acceleration versus pulsatile flow with
low velocity acceleration, even though mean shear stress was
equivalent (50 dyne/cm2).

Apart from the use of different endothelial cell cultures
(bovine aortic [60] versus human umbilical [81]), a funda-
mental difference between the two aforementioned studies
lies in the flow paradigms utilized. Bao et al. [60] evoked a
single flow impulse (abrupt 0 to 16 dyne/cm2 sustained for
3 seconds), whereas Hsiai et al. [81] evoked pulsatile flow
with a mean shear stress of 50 dyne/cm2. Notably, the Hsiai
et al. [81] flow model did not permit shear stress to return
to zero between flow impulses, thereby, inducing a steady
flow component. However, when Hsiai et al. [81] produced
an oscillating flow profile (0 ± 5 dyne/cm2), which induced
high velocity acceleration but had a mean shear stress of
0 dyne/cm2 and was devoid of a steady flow component,
monocyte chemoattractant protein-1 expression was upreg-
ulated and monocyte binding was increased. This is con-
sistent with the notion that, while endothelial cells derive
directional cues from the flow direction or velocity, a certain
persistence of the stimulus is required [86, 89]. Taken toge-
ther, these findings suggest that endothelial cells are regulated
by a complex interplay between steady flow/shear stress and
velocity acceleration.

In vivo, flow is pulsatile everywhere in the arterial system,
but in most places there is a large steady component. How-
ever, at sites where flow oscillates with a low steady compo-
nent, atherosclerotic lesions are known to occur. Again, this is
consistent with the notion that while endothelial cells derive
directional cues from the flow direction or velocity accelera-
tion, a certain persistence of the stimulus is required [86, 89].
Steady shear stress results in the continuous upregulation of
antiatherogenic genes (manganese superoxide dismutase,
cyclooxygenase-2, eNOS) [104]. Steady shear also promotes
endothelial cell release of various bioactive substances that
may be involved in the regulation of atherogenic genes, such
as NO [105, 106]. These findings suggest that the production
of atherogenic genes by endothelial cells is regulated by the
complex interaction between velocity acceleration and steady
flow components.

7.1. Determinants of Velocity Acceleration. Velocity accelera-
tion is altered by diseased states. Decreased velocity accelera-
tion is seen with ventricular ischemia [107], acute myocardial
infarction [108], and stenoses [109]; increased velocity accel-
eration occurs with hypertension [110], hyperthyroidism
[111], bypass grafts [112], and obstruction of the lumen
[113]. Velocity acceleration is also decreased by aging [110]
and increased with physical activity [114–116] and vascular
resistance [110, 117, 118]. Inadequate definition of the shear
stimulus may hinder comparisons between the aforemen-
tioned patient groups, who exhibit differing rates of velocity
acceleration even though mean blood velocities may be com-
parable. Therapies that affect velocity acceleration may also
complicate longitudinal observations on patient groups.

8. Calculating Shear Stress

Future studies using the FMD test should consider both time-
averaged mean blood velocity and secondary flow parame-
ters, particularly when making between-group comparisons.
Emphasis is placed on the word consider since the FMD test
should not be normalized to shear stress using conventional
approaches. A number of studies have normalized the FMD
response through dividing FMD by the shear stimulus or
using an analysis of covariance (ANCOVA) approach [49,
119–123]. However, when using a General Linear Model
(GLM), the following assumptions must hold true: (1) there
must be at least a moderate correlation between the two
variables (i.e., shear and FMD); (2) the relationship between
shear and diameter must be linear; (3) the intercept for the
regression slope must be zero; (4) variance must be similar
between groups; (5) data must be normally distributed [121,
124]. A recent study found that that all assumptions for
reliable use of shear-diameter ratios were violated [122].

The FMD response (i.e., change in diameter) can be nor-
malized to the shear stimuli using hierarchical linear mod-
eling (HLM) [125]. The advantage of HLM is that it allows
the researcher to look at hierarchically structured data and
interpret results without ignoring these structures. This is
accomplished in HLM by including a complex random sub-
ject effect which can appropriately account for correlations
among the data. This approach models different patterns of
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growth trajectories by allowing for the intercepts (initial dia-
meter) and slopes (shear rate diameter) to randomly vary. A
third level may also be specified: the specification of groups
(e.g., to delineate differences in endothelial function) and/or
the specification of an intervention or a modifiable risk fac-
tor such as smoking. This approach has previously been used
to compare upper versus lower extremity arterial health
in persons with spinal cord injury (SCI) [126], to assess
improvements in arterial health following electrical stimu-
lation-evoked resistance exercise therapy in persons with
SCI [127], and to assess the effects of occasional cigarette
smoking on arterial health [28]. The disadvantage of this
approach is that multiple stimuli (preferably ranging from
minimal to maximal shear stimuli) are required to generate a
reliable shear-diameter slope; this results in lengthened test-
ing time and potentially makes it more difficult to ascertain
the mechanism(s) resulting in dilation.

9. Conclusions

Pulsatile flow, present throughout the arterial tree, results in
endothelial cells being exposed to two distinct shear stimuli
during the cardiac cycle: a large rate of change (velocity acce-
leration) in shear at the onset of flow, followed by relati-
vely steady shear. In vitro studies suggest that these two dis-
tinct fluid stimuli (velocity acceleration versus steady shear)
regulate short- and long-term endothelial function via in-
dependent biomechanical pathways. Studies have shown that
the rate of velocity acceleration can affect mechanotransduc-
tion, vascular tone, and atherosclerosis. Velocity acceleration
may be altered in a number of diseased states, as well as by
aging and physical activity. Velocity acceleration may be an
important independent variable governing the shear stimu-
lus and should be considered when comparing groups with
known secondary flow abnormalities.
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