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1  | INTRODUC TION

Candida albicans is a component of normal human flora and an 
opportunistic pathogen (Akpan & Morgan, 2002; Soll, 2002). 
Compared to other fungal pathogens that exist primarily in either 
yeast or hyphal forms, C. albicans shows phenotypic plasticity be‐
cause it has the ability to switch between different morphological 
forms in response to environmental cues (Whiteway & Bachewich, 
2007). This morphogenic switching from yeast to hyphal form con‐
tributes to the overall virulence of C. albicans (Bastidas, Heitman, & 

Cardenas, 2009). Because of this characteristic associated with its 
virulent character, developing antifungals that target the early phase 
of C. albicans biofilm formation is challenging.

Aptamers are short, single‐stranded oligonucleotides that have 
emerged as a new class of small molecule ligands that can recognize 
and bind specific target molecules with high affinity and specificity 
(Jayasena, 1999). Aptamers bind target molecules with the affinity 
and specificity equal to or greater than those of antibodies (Tang 
et al., 2007). Aptamers are selected by an in vitro selection pro‐
cess called SELEX (systematic evolution of ligands by exponential 
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Abstract
Aptamers that bind live bacterial cells have been widely investigated, but their poten‐
tial to inhibit Candida albicans biofilm formation needs to be further explored. The 
aims of this study were to evaluate the binding of C. albicans to RNA aptamers and to 
examine the potential of aptamers to inhibit C. albicans biofilm formation in vitro. In 
this study, RNA aptamers selected against yeast cells of C. albicans ATCC 10231 were 
developed using the systematic evolution of ligands by exponential enrichment 
(SELEX) technique. The binding affinity of the resulting aptamers was then deter‐
mined by an aptamer‐linked immobilized sorbent assay (ALISA), and a colorimetric 
(MTT) assay was used to measure the metabolic activity of Candida biofilms. After 11 
rounds of SELEX, two candidate aptamers, Ca‐apt‐1 and Ca‐apt‐12, were identified. 
The Ca‐apt‐1 aptamer also recognized C. albicans isolated from clinical specimens but 
did not recognize other oral microorganisms (i.e., Streptococcus mutans and 
Saccharomyces cerevisiae). The ALISA results showed that the binding affinity of these 
aptamers was comparable to that of an anti‐C. albicans monoclonal antibody. In addi‐
tion, Ca‐apt‐1 could inhibit biofilm and hyphal formation of C. albicans in vitro, as 
demonstrated using biofilm assays. This study shows that RNA aptamers could po‐
tentially be used in diagnostic and therapeutic applications for C. albicans‐related 
disease in the future.
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enrichment) (Tuerk & MacDougal‐Waugh, 1993). Although numer‐
ous reports have detailed the selection of aptamers against different 
bacterial species (Cao et al., 2009; Chen, Zhou, Luo, Mohammed, & 
Zhang, 2007; Hamula, Le, & Li, 2011), few studies screening aptam‐
ers for their clinical value and potential use to inhibit the morphology 
switching that occurs during C. albicans‐related infections have been 
reported.

In this study, we used the SELEX technique to select RNA ap‐
tamers with high affinity and specificity for C. albicans yeast cells. 
Furthermore, we used an aptamer‐linked immobilized sorbent assay 
(ALISA) to demonstrate the potential use of high‐affinity aptamers in 
quantitative determination of C. albicans. Finally, we investigated the 
ability of the aptamers to inhibit C. albicans growth in vitro.

2  | MATERIAL S AND METHODS

2.1 | Preparation of cells for aptamer selection

Candida albicans (ATCC 10231) was used as a targeted aptamer li‐
gand, while Saccharomyces cerevisiae (ATCC 9763) was used for coun‐
ter selection. For the binding specificity test, we used Streptococcus 
mutans (Xc), a stock culture of C. albicans that was previously isolated 
in our dental hospital (Universitas Indonesia) using Chromogenic 
Candida Agar (CCA; Oxoid, Basingstoke, UK) (Ghelardi et al., 
2008), and S. cerevisiae. All microorganisms were maintained and 
propagated as described elsewhere (Bachtiar et al., 2014; Shibata, 
Kawada, Nakano, Toyoshima, & Yamashita, 2005; Vazquez‐Reyna, 
Balcazar‐Orozco, & Flores‐Carreon, 1993). To obtain budding yeast 
cells of C. albicans and S. cerevisiae, we used YPD (1% yeast extract, 
2% peptone, 2% glucose) broth shaking at 30°C that was inoculated 
with C. albicans or S. cerevisiae that had been grown overnight on 
a YPD agar plate under aerobic conditions. The resulting budding 
yeasts were washed twice in phosphate‐buffered saline (PBS, Oxoid 
Ltd, Basingstoke, UK) and resuspended in RPMI 1640 supplemented 
with L‐glutamine and buffered with MOPS (Sigma, St Louis, MO, 
USA). The yeast density was measured by using a hemocytometer 
and adjusted for the SELEX procedure, while the bacterial number 
was counted by the plating method.

2.2 | In vitro selection of RNA aptamers for C. 
albicans ATCC 10231

A library of RNAs containing 40‐nt randomized central se‐
quences flanked by defined primer binding sites with the 
sequence of 5′‐GGGAGUCGACCGACCAGAA [N40] 
UAUGUGCGUCUACAUCUAGACUCAU‐3′ (84 nt) was generated as 
previously described (Srisawat & Engelke, 2001) with a calculated 
library complexity of 1 × 1013 different RNA sequences. The selec‐
tion conditions of the SELEX process are shown in Table 1. The speci‐
fied amounts of RNA and yeast were mixed in a 0.45‐μm spin column 
(Millipore), and the binding reaction was performed in a total volume 
of 50 μl in the binding buffer (50 mmol/L HEPES pH 7.4, 10 mmol/L 
MgCl2, 100 mmol/L NaCl) with 5 μg of baker's yeast tRNA. The 

reaction was incubated at room temperature for 45 min in rounds 1–5 
and for 30 min from round 6 onwards with gentle rotation. The cells 
were then washed with the binding buffer, and the bound RNAs were 
eluted with 500 μl of the elution buffer (8 mol/L urea, 5 mmol/L EDTA, 
pH 8.0). The eluted RNAs were then recovered by ethanol precipita‐
tion, amplified by quantitative real time‐PCR (q‐PCR), and transcribed 
in vitro to generate RNAs for the next round of selection (Srisawat & 
Engelke, 2001). To enrich the aptamers specific to C. albicans, a coun‐
terselection step was included at rounds 3, 5, and 10 using 5 × 107 
S. cerevisiae cells. The RNAs unbound after S. cerevisiae binding were 
used in the binding reaction with C. albicans as described above.

After 11 rounds of selection, the RNAs were cloned into a plas‐
mid using a TOPO TA Cloning Kit, and the ligated plasmids were 
transformed into One Shot® Top 10 Escherichia coli (Invitrogen, 
Carlsbad, CA). The plasmids containing the aptamers were purified 
using a QIAprep Miniprep Kit (Qiagen, Hilden, Germany), and the ap‐
tamer sequences were determined by First BASE Laboratories Sdn 
Bhd (Malaysia). The obtained RNA sequences were further evalu‐
ated for binding affinity and specificity as follows: approximately 106 
tested cells were mixed with 100 pmol of either the control or C. albi-
cans‐specific aptamers in the presence of baker's yeast tRNA. After 
the binding reaction, washing, and elution steps described above, 
the amount of input and bound RNAs were quantified using q‐PCR, 
and the binding percentage was calculated as bound RNAs × 100/
input RNAs. Predicted secondary structures were generated using 
RNAstructure 5.3 (Reuter & Mathews, 2010).

TA B L E  1   Candida albicans‐specific aptamer selection protocol*

Round
Input RNA 
(pmol)

C. albicans 
(cells) Washing

1 100 5 × 109 100 μl 5 times, 
1 min each

2 25 5 × 108 100 μl 5 times, 
3 min each

3 25 5 × 108 100 μl 5 times, 
3 min each

4 12.5 5 × 107 100 μl 5 times, 
5 min each

5 12.5 5 × 107 100 μl 5 times, 
5 min each

6 6.25 5 × 106 100 μl 5 times, 
10 min each

7 6.25 5 × 106 100 μl 5 times, 
10 min each

8 3.13 5 × 105 100 μl 5 times, 
15 min each

9 3.13 5 × 105 100 μl 5 times, 
15 min each

10 1.56 5 × 104 100 μl 5 times, 
15 min each

11 1.56 5 × 104 100 μl 5 times, 
20 min each

*Saccharomyces cerevisiae was used in a subtraction step at rounds 3, 5, 
and 10. 
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2.3 | Aptamer‐linked immobilized sorbent assay

The binding affinity of the selected aptamers was measured using 
an ALISA. To do this, 96‐well microtiter plates (Iwaki, Tokyo, Japan) 
were coated with 50 μl of mouse anti‐human C. albicans monoclo‐
nal antibody (U.S. Biological, Swampscott, Mass) diluted to 1 μg/ml 
in coating buffer (50 mmol/L Na2CO3, pH 9.6) and incubated over‐
night at 4°C. The plates were washed twice with PBST (50 mmol/L 
phosphate‐buffered saline, pH 7.2 containing 0.05% Tween 20) 
and blocked with 100 ml of 1% BSA (Sigma, MA, USA) in PBST for 
90 min at room temperature (RT). After washing, various concen‐
trations of the C. albicans preparation in PBST (100 μl, triplicate), 
ranging from 50 to 5,000 cells/ml, were incubated for 1 hr at RT 
by gentle shaking in 100 μl of binding buffer. After the designated 
time, the unbound target was removed, and the plates were washed 
twice with PBST containing 0.1% Tween 20. Subsequently, 100 μl 
(100 μg/ml) of the biotinylated aptamer that was prepared as de‐
scribed elsewhere (Tsuji et al., 2009) was added into each well, and 
binding was allowed to proceed protected from light for 1 hr at RT.

The unbound materials were removed by washing with washing 
buffer (three times). Finally, 100 μl of a 1:1,000 dilution of a solution of 
streptavidin conjugated to horseradish peroxidase (HRP) was added to 
the individual wells. Following a 30‐min incubation on a shaking platform 
at RT, wells were washed twice with PBST and developed using ABTS as 
a substrate (Sigma, MA, USA). The reaction was stopped with 100 ml of 
0.25 M H2SO4, absorbance was measured at 450 nm using a microplate 
reader (BioRad, USA), and washing buffer was used as a background con‐
trol. The same procedure was used for enzyme‐linked immunosorbent 
assays (ELISA). However, the biotinylated aptamer used in the ALISA was 
replaced by biotinylated polyclonal anti‐C. albicans antibodies in the ELISA.

2.4 | The effect of RNA aptamers on 
biofilm formation

Biofilm formation assays were performed as previously described 
(Bachtiar et al., 2014). Briefly, 100 μl containing 1.8 × 105 yeast cells 
of C. albicans from overnight culture at 35°C was aliquoted into mi‐
crotiter plates. Three different concentrations of each tested aptamer 
in buffer (1 ng/μl, 10 ng/μl, and 10 ng/μl) were then added into sepa‐
rate wells, and the plates were incubated at 37°C in 5% CO2 in air for 
90 min with gentle shaking. To promote biofilm formation, the wells 
were treated with 150 μl of fresh yeast nitrogen base (Sigma‐Aldrich) 
medium without aptamer, and the culture period was lengthened to 
24 hr. Candida albicans growth was determined by evaluating the met‐
abolic activity of growing C. albicans using MTT (3‐(4,5‐dimethylthi‐
azol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) reagent (Sigma‐Aldrich). 
Candida albicans biofilms with PBS (pH 7.2) added instead of aptamer 
were included to serve as negative controls. Statistical significance 
for all experiments was determined by pairwise comparison by t test 
using GraphPad Prism 7.0 software. p < 0.05 was considered statisti‐
cally significant.

3  | RESULTS

3.1 | In vitro selection of RNA aptamers against 
yeast cells of C. albicans

In this study, q‐PCR was used to monitor the enrichment pro‐
gress of RNA aptamers. To decrease nonspecific binding of RNA, 
the experimental conditions in each selection round (Table 1) in‐
cluded 5 μg of baker's yeast tRNA as a binding competitor in a 

F I G U R E  1   The sequences and 
predicted secondary structure of the 
Candida albicans‐specific aptamers 
(Ca‐apt). (a) The randomized region of 
the aptamers is shown. The number in 
parentheses represents the number of 
clones identified during the aptamer 
screening. (b) The predicted secondary 
structures of Ca‐apt‐1 and Ca‐apt‐12 with 
the lowest folding energy are shown. The 
nucleotides in the shaded area correspond 
to the randomized region of the aptamer
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volume of 50 μl. The obtained RNA pool was further utilized to 
select for aptamers that specifically bind to live C. albicans yeast 
cells.

From the first to fifth rounds of the SELEX process, the compo‐
nents of the library that were enriched included specific and non‐
specific binders. However, when the counterselection step was 
performed at the fifth round, the retention rate decreased gradually 
from the sixth to 10th rounds. We found that at the 11th round, the 
enrichment of the RNAs capable of binding to the target C. albicans 
increased significantly compared with the fifth round RNAs and the 
original library RNAs (data not shown). Therefore, the PCR products 
from round 11 were cloned to characterize each aptamer, and the 
randomized regions of the aptamers are shown in Figure 1a. They do 
not exhibit any consensus sequences and are unique except for Ca‐
apt‐1 and Ca‐apt‐12, which were identified four and two times during 
the screening, respectively. Their preferential retention during se‐
lection suggests that they might have high affinity toward the tar‐
get cells. The predicted secondary structures of both aptamers are 
shown in Figure 1b. Interestingly, the length of the randomized re‐
gion of Ca‐apt‐1 [41 nucleotide (nt)] was longer than that of the orig‐
inal 40‐nt pool RNAs. Such changes may occur either during reverse 
transcription or PCR steps in multiple rounds of SELEX (Doudna, 
Cech, & Sullenger, 1995; Takemura et al., 2006; Ye et al., 2014).

Next, the aptamers were screened for their binding to the target 
C. albicans. As expected, only the Ca‐apt‐1 and Ca‐apt‐12 aptamers 
demonstrated significantly higher binding percentages than the neg‐
ative control RNA, which is a clone randomly chosen from the origi‐
nal RNA library (Figure 2a). Therefore, these aptamers were chosen 
for subsequent characterization.

3.2 | Binding specificity test

To test the specificity of the aptamers and their binding to vari‐
ous targets, that is, C. albicans strains, either from the ATCC or a 
clinical specimen, S. cerevisiae, and S. mutans, was evaluated. As 
shown in Figure 2b, Ca‐apt‐1 and Ca‐apt‐12 aptamers show sig‐
nificantly higher binding affinities to C. albicans ATCC strain com‐
pared with those of the nonbinding RNAs, which are the aptamer 
clones showing no target binding. Moreover, both aptamers can 
also recognize C. albicans from a clinical specimen albeit at some‐
what lower binding percentages (Figure 2b).

To confirm the results and to test whether the aptamers can be 
used in diagnostics for C. albicans, we evaluated the aptamers ability 
to detect C. albicans using the ALISA method. The results showed 
that both Ca‐apt‐1 and Ca‐apt‐12 can detect C. albicans at concentra‐
tions ranging from 50 to 5,000 cells/ml, and the ALISA performance 
is comparable to that of the ELISA method using C. albicans‐specific 
antibodies (Figure 2c).

3.3 | Biofilm inhibition assay

The RNAs from the original library, round 11 RNAs, nonbinding RNAs, 
Ca‐apt‐1, and Ca‐apt‐12 were preincubated with C. albicans yeast 

F I G U R E  2   The binding properties of the Candida albicans‐
specific aptamers. (a) The aptamers were screened for their binding 
to the C. albicans ATCC 10231 strain, which was used as the 
selection target. The plot shows the binding percentage (bound 
RNA × 100/input RNA). Only Ca‐apt‐1 and Ca‐apt‐12 demonstrated 
significantly higher binding than the negative control RNA. (b) 
The specificity of Ca‐apt‐1 and Ca‐apt‐12 was tested using either 
the target C. albicans strain or a clinical strain isolated from the 
oral cavity, a related yeast strain Saccharomyces cerevisiae, and 
Streptococcus mutans. The aptamer‐linked immobilized sorbent assay 
(ALISA) using both aptamers is shown and compared with an ELISA 
using antibodies against C. albicans. The plots show the mean values, 
and an error bar represents the standard error of the mean (SEM). 
An asterisk indicates a statistically significant difference compared 
with the nonbinding RNAs using an unpaired t test (p < 0.05)
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cells before the biofilm was allowed to form. As shown in Figure 3a, 
the MTT assay results after 24 hr of biofilm growth demonstrate 
that the presence of the round 11 RNA and the Ca‐apt‐1 aptamer 
can cause a significant reduction in cell viability compared with that 
of the untreated group (p < 0.05). Moreover, there was a decrease 
in hyphal formation from yeast cells treated with the Ca‐apt‐1 ap‐
tamer compared with the untreated or library RNA‐treated group, as 
observed under a light microscope (Figure 3b). Interestingly, the Ca‐
apt‐12 aptamer did not seem to affect biofilm formation, although 
it demonstrates binding affinity to C. albicans, as shown by ALISA 
(Figure 2c). Moreover, incubation of C. albicans during the early stage 
of biofilm formation with Ca‐apt‐1 at concentrations as low as 1 ng/
μl was sufficient to inhibit viability and hyphal formation.

4  | DISCUSSION

Candida albicans is the most common fungus causing oral candidi‐
asis and is involved in the pathogenesis of early childhood caries 
(Falsetta et al., 2014). However, no vaccine against this oral op‐
portunistic pathogen is currently available. Thus, effective strat‐
egies for detecting and inhibiting Candida infection are needed. 
Aptamers have been reviewed in detail as highly sensitive and 
specific ligands to detect pathogens (Torres‐Chavolla & Alocilja, 
2009). In this study, whole yeast cells of C. albicans strain ATCC 
10231 were used as the target of RNA aptamer selection, as this 
may generate multiple targets in parallel (Shangguan et al., 2008) 
toward C. albicans cell surface molecules. Using whole‐cell targets 
in the SELEX process can be faster, easier, and more reproducible 

than using other targets (Guo, Lin, Zhang, Simon, & Kushner, 2009). 
In addition, when using the whole‐cell SELEX method, it is not nec‐
essary to isolate and purify a single target protein, which might 
change the presentation of the target molecule compared to an in‐
tact, live, bacterial cell (Dwivedi, Smiley, & Jaykus, 2010). Thus, this 
study showed that using the whole cell as a targeted ligand in the 
SELEX procedure has the potential to result in aptamers with bind‐
ing affinity for targets on the cell in their native conformations.

In the current study, we used q‐PCR to monitor library enrichment 
after each selection cycle, showing relatively increasing amounts of 
RNA binding that reached a maximum in the 11th round. To increase 
aptamer binding, we used a relatively low number of C. albicans cells, 
as studies have shown that compared with using a large amount of tar‐
get, using small amounts of target increases the success of the selec‐
tion and often results in higher‐affinity aptamers (Chen et al., 2007).

When the specificities of our samples were compared, our 
data showed that the Ca‐apt‐1 aptamer bound to only C. albicans, 
whereas the Ca‐apt‐12 aptamer can also bind to the related yeast 
species S. cerevisiae and the oral bacterium S. mutans, which has a 
symbiotic relationship with C. albicans (Falsetta et al., 2014). As 
this study cannot determine the target molecule of the aptamer, 
we speculated that some of the potential targets of Ca‐apt‐12 are 
mannoproteins, immunodominant outer cell wall components of C. 
albicans (Lopez‐Ribot, Casanova, Murgui, & Martinez, 2004). These 
glycoproteins mediate C. albicans–S. mutans interplay in plaque bio‐
film (Bachtiar & Bachtiar, 2018; Hwang et al., 2017), and they have a 
critical role in the pathogenesis of early childhood caries (Kim et al., 
2017). However, additional studies are required to identify the pos‐
sible targets of both aptamers.

F I G U R E  3   The effect of the Candida albicans‐specific aptamers on C. albicans biofilm formation. (a) C. albicans viability was determined 
after 24 hr of growth using the MTT assay in the presence of the RNAs from the original library, round 11, nonbinding RNAs, Ca‐apt‐1, and 
Ca‐apt‐12 at a concentration of 1 ng/μl. The plots show the mean values of the relative viability compared to the untreated control, and an 
error bar represents the standard error of the mean. An asterisk indicates a statistically significant difference compared with the untreated 
control using an unpaired t test (p < 0.05). (b) Representative light microscopy images of C. albicans in the untreated control (top) or the 
cells treated with either the original library RNA (middle) or Ca‐apt‐1 (bottom) are shown. The images from the light microscope (400× 
magnification) were edited for brightness and contrast, and the bars represent 20 μm for all images. Decreased hyphal formation is observed 
in the presence of the aptamer

(a) (b)

a

b

c



6 of 7  |     BACHTIAR et al.

The aptamers were further tested for their effects on C. albi-
cans biofilm formation, which is considered to contribute to the vir‐
ulence characteristics of C. albicans (Chandra et al., 2001).We found 
that the Ca‐apt‐1 has the ability to interfere with C. albicans biofilm 
formation at the intermediate stage (24 hr) (Bachtiar, Dewiyani, 
Akbar, & Bachtiar, 2016) because the aptamer must act at the earli‐
est stage of biofilm formation, which was set at 90 min in our exper‐
iment. We hypothesized that the effects of the Ca‐apt‐1 aptamer 
on biofilm formation might be physicochemical in nature or due to 
direct contact between the aptamer and the fungus, as shown in 
this study by a binding affinity test using an ALISA. However, in this 
study, we cannot explain the mechanisms by which the aptamer in‐
terferes with biofilm formation. Thus, further studies are necessary.

In conclusion, in this study, two candidate RNA aptamers, Ca‐
apt‐1 and Ca‐apt‐12, were obtained through the SELEX method. 
The Ca‐apt‐1 aptamer binds specifically to C. albicans and possesses 
the ability to inhibit the fungus as it develops as a biofilm, whereas 
Ca‐apt‐12 shows cross‐binding with S. cerevisiae and S. mutans and 
does not affect biofilm formation. Additional studies are necessary 
to identify the aptamer targets and to explore the potential applica‐
tions of these aptamers in clinical settings.
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