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Abstract: License plate detection (LPD) is the first and key step in license plate recognition.
State-of-the-art object-detection algorithms based on deep learning provide a promising form of LPD.
However, there still exist two main challenges. First, existing methods often enclose objects with
horizontal rectangles. However, horizontal rectangles are not always suitable since license plates
in images are multi-oriented, reflected by rotation and perspective distortion. Second, the scale
of license plates often varies, leading to the difficulty of multi-scale detection. To address the
aforementioned problems, we propose a novel method of multi-oriented and scale-invariant license
plate detection (MOSI-LPD) based on convolutional neural networks. Our MOSI-LPD tightly encloses
the multi-oriented license plates with bounding parallelograms, regardless of the license plate scales.
To obtain bounding parallelograms, we first parameterize the edge points of license plates by relative
positions. Next, we design mapping functions between oriented regions and horizontal proposals.
Then, we enforce the symmetry constraints in the loss function and train the model with a multi-task
loss. Finally, we map region proposals to three edge points of a nearby license plate, and infer
the fourth point to form bounding parallelograms. To achieve scale invariance, we first design
anchor boxes based on inherent shapes of license plates. Next, we search different layers to generate
region proposals with multiple scales. Finally, we up-sample the last layer and combine proposal
features extracted from different layers to recognize true license plates. Experimental results have
demonstrated that the proposed method outperforms existing approaches in terms of detecting
license plates with different orientations and multiple scales.

Keywords: convolutional neural networks; deep learning; license plate detection; multi-orientation;
multi-scale detection.

1. Introduction

License plate recognition is a key technology for intelligent transportation systems. It has been
widely applied in traffic surveillance and road management. Typically, license plate recognition
consists of three procedures: license plate detection (LPD), character segmentation, and text recognition.
Among them, LPD is the first and key step, since it directly affects follow-up tasks and determines
the overall accuracy [1]. As the need for automatic detection of motor vehicles grows, to design an
effective and efficient LPD method is becoming increasingly important.

To detect license plates in images, representative features should be extracted to distinguish
the target license plates from the background. Traditional LPD methods carefully handcraft features
based on inherent attributes of license plates (e.g., texture [2–5], boundary [6–8], color [9–11] and
character [12–15]) or general feature descriptors (e.g., scale-invariant feature transform (SIFT) [16],
speeded-up robust features (SURF) [17], histogram of oriented gradient (HOG) and its various

Sensors 2019, 19, 1175; doi:10.3390/s19051175 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4398-8867
http://dx.doi.org/10.3390/s19051175
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/5/1175?type=check_update&version=2


Sensors 2019, 19, 1175 2 of 19

variants [18–20]). These methods can achieve satisfactory performance under certain conditions.
However, the handcrafting process is labor-intensive, and the extracted features only reveal local and
low-level characteristics [21].

In the practical use, multiple kinds of features are often combined to improve the accuracy.
For example, Yuan et al. [22] proposed an algorithm that hybridized boundary and color features. They
first down-scaled the input images and applied a line density filter to extract candidate regions. Then
they trained a cascaded classifier with color saliency features and used the classifier to detect true
license plates. This model is accurate and achieves state-of-the-art performance among traditional LPD
methods. Therefore, it is chosen as representative of the traditional LPD methods to be compared
with our approach in the experiments.

In recent years, deep learning methods based on convolutional neural networks (CNN) have
achieved remarkable performance in general object-detection tasks. Driven by the great success,
several methods [23–26] have been proposed to adapt the object-detection algorithms for the LPD
task. In CNN, features are automatically learned from data and reveal high-level characteristics of the
inputs. Therefore, LPD methods based on deep learning are less labor-intensive and more accurate
than traditional ones. In [23], character regions were first recognized by a text/non-text CNN classifier,
and license plate regions were further located by a plate/non-plate CNN classifier. To improve the
efficiency, Rafique et al. [26] used the more advanced structure of Faster R-CNN [27] which directly
detected the license plates in an end-to-end manner. Faster R-CNN [27] is the classic algorithm
among region-based deep learning methods [27–30]. It consists of a region proposal network (RPN) to
generate high-quality proposals, and a detection network to recognize and locate true objects. Other
mainstream object-detection methods are proposal-free algorithms such as YOLO [31] and SSD [32].
These proposal-free methods directly estimate object locations without generating region proposals.
Therefore, they are faster but relatively less accurate and robust than the region-based ones. Our work
adopts the region-based mechanism and uses Faster R-CNN [27] as the backbone architecture.

However, directly training the deep models for the LPD task may not achieve good enough
performance. For the practical LPD applications, there still exist two main challenges.

The first challenge is that the detected regions are not accurate enough. Unlike general
object-detection, LPD is often the prerequisite for character recognition. Since the license plates
should be rectified ahead of recognition, the localization needs to be highly accurate. However,
general object-detection algorithms enclose objects by horizontal rectangles. As shown in Figure 1a(1),
horizontal rectangles cannot tightly enclose the multi-oriented license plates.

a(1) a(2) a(3) (b)

Figure 1. Two main challenges for existing methods. (a) Comparison between different bounding
methods (horizontal rectangles, rotated rectangles, and our bounding parallelograms). Existing
methods based on horizontal or rotated rectangles cannot tightly enclose the multi-oriented license
plates. (b) Representative detection results of Faster R-CNN [27] trained for LPD. The detected regions
and actual license plates are presented by red horizontal rectangles and green polygons, respectively. It
is difficult to detect license plates with multiple scales, especially the tiny ones.

Works for text detection [33–37] can provide some insights for the multi-oriented detection issue.
In [33,34], fully convolutional network (FCN) [38] was used to predict salient maps, and geometric
approaches were applied to estimate the orientations. These methods partly solve the problem, but
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the prerequisite segmentation is time-consuming. To improve the efficiency, end-to-end systems based
on detection networks have been proposed in [35,36]. These methods adapted the object-detection
networks to directly regress rotated rectangles from inclined proposals or boxes. They are relatively
more efficient than the segmentation-based methods, but the added inclined hypotheses still produce
heavy computation cost. More importantly, the rotated rectangles are still not accurate enough for
practical applications. As shown in Figure 1a(2), rotated rectangles have right angles, while the
skewed license plates have free angles. The mismatch results in inaccurate enclosure around the
corners. Recently, Liao et al. [37] proposed a method that enclosed text regions with the highly
accurate quadrilaterals. Since quadrilaterals have free orientations and angles, they can fit arbitrary
regions. However, the lack of geometric constraints brings difficulty to model training and harms
the recognition performance. Besides, its proposal-free architecture is less accurate and robust than
the region-based ones. Therefore, ref. [37] fails to guarantee the localization precision and detection
accuracy simultaneously.

The second challenge is that the detection of license plates with multiple scales has not been
well solved. A traditional way to improve the scale invariance is to use the scattering operator
as in the works of [39–41]. The scattering descriptor contains high-frequency information of the
wavelet coefficients, and is robust to the scale variance of inputs. In deep learning methods, Faster
R-CNN [27] deals with the scale issue simply by referring to anchor boxes with multiple scales and
aspect ratios. This is effective in some way, but there is still a severe inconsistency between the
objects with various scales, and filter receptive fields with very limited scale ranges [42]. As shown in
Figure 1b, the detection performance is particularly poor for small targets. To improve the performance,
He et al. [43] built image pyramids with multiple scales. This method works well, but it requires
inputs with multiple scales , which brings high computational cost. To improve the efficiency, works
of [32,42,44,45] built feature pyramids instead of image pyramids by exploiting different convolutional
layers. In [32,42], region proposals or default boxes were generated on multiple layers. In [44–46],
features were extracted from different layers. These methods have achieved good performance and
are inspiring to our work. However, they only take advantage of the multiple layers for one task,
while the layers can be further used.

To address the above-mentioned two problems, we propose a novel method of multi-oriented
and scale-invariant license plate detection (MOSI-LPD) based on CNNs. The proposed MOSI-LPD
tightly encloses license plates with bounding parallelograms, and is highly invariant to the scale
discrepancy of license plates. In addition, the proposed MOSI-LPD is robust to challenging conditions
with a comparable detection speed. The main contributions of our work can be summarized as follows.

• We propose novel strategies to tightly enclose the multi-oriented license plates with bounding
parallelograms. Both the network architecture and the loss function are elaborately designed to
directly regress bounding parallelograms from horizontal proposals. Our method significantly
improves the localization precision and guarantees a high detection accuracy simultaneously.

• We design effective strategies to detect license plates with multiple scales. Multiple convolutional
layers are exploited both for proposal generation and feature extraction . The priori knowledge
regarding inherent shapes of license plates is considered for anchor box design. Our method
is highly invariant to the scale discrepancy of license plates, and effectively detects tiny license
plates that are only several pixels.

• We construct a large license plate dataset. The dataset contains more than 7000 images, and all
the license plates are labeled by the exact edge points. The dataset is publicly available for related
research (http://cvrs.whu.edu.cn/projects/LASI-LPL/).

http://cvrs.whu.edu.cn/projects/LASI-LPL/
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2. Materials and Methods

2.1. Overall Structure

The overall structure of our MOSI-LPD is illustrated in Figure 2. Following the basic architecture
of Faster R-CNN [27], our MOSI-LPD consists of two sub-networks: (i) a RPN generating proposals
that probably contain a license plate; (ii) a detection network recognizing positive proposals and
regressing accurate locations. The two sub-networks share the fundamental CNN structure.
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Figure 2. The overall structure of our MOSI-LPD. The backbone framework is Faster R-CNN [27],
the classic region-based deep learning network for object detection. To achieve multi-oriented and
scale-invariant detection, several vital modifications are proposed. For the RPN sub-network, license
plate proposals are generated on both the “Conv5” layer and the “Conv4” layer to combine and produce
stronger proposals. The anchor boxes are set based on the priori knowledge regarding inherent shapes
of license plates. For the detection sub-network, RoI pooling is conducted on the combined layers of the
up-sampled “ Conv5-2x” layer and “Conv4” layer. We estimate three edge points of the license plates
by regressing relative positions from horizontal proposals. The fourth edge point is inferred based on
the symmetry property to form final bounding parallelograms that tightly enclose the multi-oriented
license plates.

In details, the fundamental shared CNN structure has five convolutional layers, each of which is
followed by a Rectified Linear Unit (ReLU) layer. Right after the first four convolutional layers, there
is also a Max-pooling layer. To construct RPN, we slide a 3× 3 filter over the “Conv4” and “Conv5”
layers, respectively. In each sliding window, the 512-dimension convolutional features are extracted,
and we simultaneously refer to 9 anchor boxes. The scales and aspect ratios of the anchor boxes are set
based on the priori knowledge regarding the inherent shapes of license plates. The features are then
fed into two fully connected layers: the first layer classifies the regions as license plate proposals or the
background, and the second layer regresses functions that adjust proposal positions.

The combined license plate proposals raised by RPN act as the inputs of the detection sub-network.
They are projected onto the combined layers of the up-sampled “Conv5-2x” layer and “Conv4” layer.
Similarly, the fused features are fed into two fully connected layers. The first layer classifies the
proposals as license plates or the background, and the second layer regresses functions that map the
proposals to license plates positions. Final outputs of our MOSI-LPD are bounding parallelograms
that tightly enclose the multi-oriented license plates.

Our strategies to achieve multi-oriented and scale-invariant detection are detailed as follows.
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2.2. Multi-Oriented Detection Based on Bounding Parallelograms

Existing methods enclose license plates with horizontal rectangles. However, for practical LPD
applications, the license plates in images are multi-oriented reflected by rotation and perspective
distortions. As illustrated in Figure 1a(1), the horizontal-oriented rectangles cannot tightly enclose the
multi-oriented license plates. An inspiring solution may be predicting rotated rectangles as done in
several text detection methods [35,36]. However, Figure 1a(2) shows that rotated rectangles still fail
to enclose the corners of the license plates well. This is attributed to the inconsistency between the
fixed angles of the rotated rectangles and the varying angles of the license plates. Hence, it is obvious
that both horizontal and rotated rectangles are not suitable for practical LPD applications, and it is of
significant importance to develop more precise bounding techniques. In this paper, we propose a new
method for the LPD task by tightly enclosing license plates with bounding parallelograms (shown in
Figure 1a(3)).

To achieve this goal, we first reformat edge point coordinates of the license plates. For each license
plate, we reformulate the coordinates of the upper left point (xl

U, yl
U), upper right point (xr

U, yr
U) and

lower left point (xl
L, yl

L) into (x + w1, y + h1), (x + w2, y + h2) and (x + w3, y + h3), respectively, where
x, y are the coordinates of the parallelogram central point, and w1, h1, w2, h2, w3, h3 are the relative
positions of (xl

U, yl
U), (xr

U, yr
U), (xl

L, yl
L) to the central point. Considering the symmetry property, the

last lower right point (xr
L, yr

L) can be inferred as follows:{
xr

L = xr
U + xl

L − xl
U

yr
L = yr

U + yl
L − yl

U.
(1)

Please note that there are three key points in the reformulation strategy. (i) The first is that we
enclose license plates with parallelograms rather than quadrilaterals to simplify the task and help
model training. Although quadrilaterals can indicate precise locations, their structures are over-free
without any geometric constraints. To form quadrilaterals, the network must learn all the edge points
and the lack of geometric constraints brings great difficulty to model training. By contrast, to form
parallelograms, the lower right point (xr

L, yr
L) can be easily estimated via Equation (1) based on the

symmetry property. Besides, the geometric constraints are enforced in the loss function to help model
training. In fact, experimental results in Section 3 have shown that “bounding parallelograms” are
precise enough: detection results of our MOSI-LPD achieve an average overlap of over 0.85 with actual
license plates, outperforming the “horizontal rectangles” by more than 15%. (ii) The second is that we
regress three edge points rather than two. Although two edge points and a center point are enough
to determine a parallelogram, we employ three edge points to leverage the symmetry constraints.
Since the upper right point (xr

U, yr
U) and lower left point (xl

L, yl
L) are symmetric around the central

point, w2 and w3 should add up to zero, and the same goes for h2 and h3. The constraints are imposed
in the loss function to facilitate model training. (iii) The last is that we parameterize edge points by
their relative positions to the central point. Absolute coordinates are not used because they contain
no relative information and are very difficult to learn in practice. All these techniques are crucial for
network training, since the model cannot converge if we leave out any of them.

To regress the license plate location parameterized by central point coordinates and relative
positions (p∗x, p∗y , p∗w1

, p∗h1
, p∗w2

, p∗h2
, p∗w3

, p∗h3
) from a proposal parameterized by central point coordinates

and side lengths (px, py, pw, ph), the mapping functions should be learned. Inspired by [28],

we formulate the mapping functions to: dx =
p∗x−px

pw
, dy =

p∗y−py
ph

, dw1 = log(
p∗w1
pw

), dh1 = log(
p∗h1
ph

), dw2 =

log(
p∗w2
pw

), dh2 = log(
p∗h2
ph

), dw3 = log(
p∗w3
pw

), dh3 = log(
p∗h3
ph

), where dx and dy specify scale-invariant
translations between the central points, and dw1 , dh1 , dw2 , dh2 , dw3 , dh3 specify the log-space translations
between the relative positions and the side lengths.

To learn the above-mentioned parameters denoted as W, we train the model on training batches
S = {(Xi, Yi)}N

i=1 consisting of N samples, where Xi represents each image patch and Yi is the
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combination of its class label yi (“1” for license plates and “0” for background) and regression targets
d̂i. Based on stochastic gradient descent (SGD), we minimize a joint multi-task loss function defined as:

L(W) = λ1

N

∑
i=1

Lcls(pi, yi) + λ2

N

∑
i=1

[yi =1]Lreg(di, d̂i)

+ λ3

N

∑
i=1

[yi =1]Lsym(w2
i , w3

i ) + λ4

N

∑
i=1

[yi =1]Lsym(h2
i , h3

i ),

(2)

where Lcls is the classification loss, pi = (p0, p1) is the probability over the background and license
plate class provided by the classifiers, Lreg is the regression loss, di and d̂i are the predicted and
ground-truth regression targets, respectively, Lsym are our symmetry constraints, w2

i , h2
i are the

relative positions of the upper right point, w3
i , h3

i are the relative positions of the lower left point,
and λ1, λ2, λ3, λ4 are the trade-off coefficients. Since negative samples will turn the term of [yi = 1]
to 0, its regression loss and symmetry constraints are dropped, which makes sense that there is no
ground-truth parallelogram for the background class. More detailed designs of the loss function for
the two sub-networks are introduced in the following.

For the RPN sub-network, we define the classification loss Lcls with the cross-entropy loss
formulated as:

Lcls(pi, yi) = − log pyi , (3)

and the regression loss Lreg is defined as:

Lreg(di, d̂i) =
1
4 ∑

k∈{x,y,w,h}
smoothL1(d

k
i − d̂k

i ), (4)

where di = (dx
i , dy

i , dw
i , dh

i ) and d̂i = (d̂x
i , d̂y

i , d̂w
i , d̂h

i ) are the learned and ground-truth regression targets,
respectively. In RPN, its regression targets are the transformations proposed in Fast R-CNN [30] to
map an anchor box to a license plate proposal, and smoothL1 is the robust loss function defined as:

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise.

(5)

Since region proposals do not contain relative positions of the edge points, the symmetry
constraints are dropped by setting λ3 and λ4 to 0, and λ1 and λ2 are set to 1 to balance the classification
and regression loss.

For the detection sub-network, the classification loss Lcls is defined in the same way as RPN,
and we still calculate the regression loss with the smoothL1 loss. However, as the regression targets
have turned to involve eight mapping functions d̂i = (d̂x

i , d̂y
i , d̂w1

i , d̂h1
i , d̂w2

i , d̂h2
i , d̂w3

i , d̂h3
i ), which specify

transformations from a license plate proposal to three edge points of a license plate as introduced
above, the regression loss is formulated as:

Lreg(di, d̂i) =
1
8 ∑

k∈S
smoothL1(d

k
i − d̂k

i ). (6)

where S = (x, y, w1, h1, w2, h2, w3, h3), and di = (dx
i , dy

i , dw1
i , dh1

i , dw2
i , dh2

i , dw3
i , dh3

i ) is the set of learned
mapping functions.

To leverage the symmetry property of parallelograms, the geometric constraints are enforced
through the symmetry loss Lsym. Since the upper right point and lower left point of the license plates
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should be symmetric around the central point, w2
i and w3

i should add up to zero, and the same goes
for h2

i and h3
i . Therefore, we define the symmetry loss as:{

Lsym(w2
i , w3

i ) = w2
i + w3

i

Lsym(h2
i , h3

i ) = h2
i + h3

i .
(7)

Given that the regressing task is more complex and challenging in the detection sub-network,
we enhance effects of the regression loss and the symmetry constraints by setting the weight
parameters λ2, λ3, λ4 to 10 and assign 1 to λ1. The imbalanced weights strengthen the learning
of the regression process.

With the learned transformation functions, license plate proposals raised by RPN are mapped to
three edge points of a nearby license plate parallelogram. The fourth edge point is inferred with (1) to
form final bounding parallelograms that tightly enclose the multi-oriented license plates.

2.3. Scale-Invariant Detection

In practical LPD applications, license plates in images vary greatly in scale and it is difficult to
achieve multi-scale detection. The original Faster R-CNN [27] deals with the scale issue simply by
referring to anchor boxes with different scales and aspect ratios. The scale variance of the anchor boxes
can help multi-scale detection to some extent, but there is still a severe inconsistency between the license
plates with varying scales, and filter receptive fields with limited scale ranges. As shown in Figure 1b,
Faster R-CNN [27] trained for LPD cannot effectively detect license plates with multiple scales.

For a more in-depth investigation, we can observe that the detection performance is particularly
poor on small license plates. The reason is that the receptive fields become larger as the network goes
deeper. For the tiny license plates, the re-projected area into the original image may contain high
proportion of redundant information. The lack of necessary information seriously interferes with the
detection process. To improve the scale invariance of the network, we introduce two strategies in
the following.

Firstly, in the RPN sub-network, we generate proposals for candidate license plate regions on
multiple output layers rather than only on the last convolutional layer. This is motivated by the fact
that different convolutional layers have receptive fields with different resolutions. The lower layers
have smaller receptive fields and extract local features. By contrast, the higher layers have bigger
receptive fields and extract global features. Therefore, the lower layers are more suitable to detect
small license plates, and the higher layers are more appropriate for detecting large license plates.
In order to effectively detect license plates with multiple scales, we take advantage of both the lower
“Conv4” layer and the higher “Conv5” layer when searching for region proposals. The results are
combined to produce stronger proposals with complementary scales.

In addition, to generate proposals that better match the license plate shapes, we design the anchor
boxes by considering the inherent shapes of license plates. Specifically, we analyze the scale ranges
of the license plates, and set scales of the anchor boxes as 64× 64, 128× 128 and 256× 256 based
on the most common scales. We further analyze aspect ratios of the multi-oriented license plates.
According to the statistical analysis, 0.4, 0.5 and 0.6 are chosen as the aspect ratios for the anchor boxes.
Owing to the careful design based on prior knowledge, the generated proposals better fit the license
plate regions.

Secondly, in the detection sub-network, different convolutional layers with various resolutions
are also exploited to extract better features. We up-sample the “Conv5” layer to the size of the “Conv4”
layer via the deconvolution operation, and combine the up-sampled layer “Conv5-2x” with the “Conv4”
layer. For the feature extraction of the raised proposals, we perform RoI pooling on the combined
layers, which shows better performance than traditional method that projects the proposals only to the
last “Conv5” layer. We take this step by leveraging the fact that “Conv5” features are more appropriate
for detecting license plates with normal-to-large scales, but less representative for small license plates.
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To obtain more detailed clues about license plates with small scales, we exploit the finer-grained
“Conv4” features to get more local information.

3. Results

We have conducted extensive experiments to evaluate the proposed MOSI-LPD. In this section,
we first introduce our dataset for training and testing. Next, we give implementation details and
evaluation criteria. Finally, we compare and analyze performance between our MOSI-LPD and the
baseline algorithms. The experimental results demonstrate that our MOSI-LPD tightly encloses the
multi-oriented license plates with bounding parallelograms, and effectively detects license plates with
multiple scales. Besides, our MOSI-LPD is highly robust to challenging conditions and achieves a
comparable detection speed.

3.1. Dataset

To the best of our knowledge, existing license plate datasets annotate the license plates with
horizontal rectangles. However, the information is not accurate enough to indicate actual positions
of the multi-oriented license plates. Therefore, we constructed our own dataset. We manually
collected 7284 images with totally 10,279 license plates, which had different orientations and multiple
scales. We manually labeled the license plates with the exact four exact edge points. Since deep
models should be trained with huge amounts of data, we further augmented the dataset by flipping,
rotation (each image was rotated by 5, 10, 15, 20, 25, 30 degrees both in clockwise and counter
clockwise orientations), blurring, brightening, color and contrast enhancement, and noise-adding.
These processes extended the dataset to a total number of 131,112 images with 185,022 license plates.
We also collected some negative samples containing objects similar to license plates (such as traffic
signs, trademarks, and banners). Figure 3 shows some representative sample images of our dataset.

We divided the images into training set and testing set by randomly sampling 75% of them for
training and using the rest for testing. For each experiment, we built test subsets according to its aim.

Figure 3. Sample images of our license plate dataset. First two rows: positive samples containing
license plates with different orientations and multiple scales. All the license plates were manually
labeled by the exact four edge points. Third row: negative samples containing objects similar to
license plates.
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3.2. Implementation

The environment to implement our algorithm was a desktop running Ubuntu with TitanX.
We initialized the fundamental building blocks with the VGG16 model pre-trained on ImageNet [47],
and weights of the modified and added layers were initialized by the Xavier method [48].
The parameters were fine-tuned or learned from scratch via SGD. We followed the 4-step training
scheme of Faster R-CNN [27] to train the net. Each of the four training stages contained 10k iterations,
and the basic learning rate was set to 0.005 and decreased by 0.2 after each 3k iterations. The momentum
and weight decay were configured as 0.9 and 0.0005, respectively.

3.3. Evaluation Criteria

Since there are no uniform criteria for LPD evaluation, we follow the text detection measurements
and further include the intersection over union (IoU) metric to set comprehensive evaluation criteria
for LPD.

The text detection measurements consist of precision, recall and f-measure, which are defined as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F−measure =
2× Precision× Recall

Precision + Recall
,

(8)

where TP and FP are the numbers of correctly and falsely detected results, respectively, and FN is the
number of missed targets. Generally, recall reflects the ability to detect the objects while precision
indicates the probability of detection results to be true. It is highly desirable to obtain both high recall
and high precision, but they are negatively correlated. For an overall evaluation, f-measure combines
precision and recall by calculating the harmonic mean of them.

Since a major goal of our work is to enclose the multi-oriented license plates in a tighter way, we
further take the IoU metric to measure the overlaps between the detected regions and the ground-truth
license plate regions. IoU is defined as:

IoU =
Sintersection

Sunion
, (9)

where Sintersection is the shared area between the detected regions and the ground-truth regions, and
Sunion is the total area of the two. Higher IoU indicates tighter enclosure.

3.4. Experimental Results

In this section, we conducted a series of experiments to evaluate the proposed MOSI-LPD.
The same experiments were also performed on corresponding baseline models for comparison.
In the first experiment, we randomly sampled 10,000 images containing license plates with different
orientations and multiple scales. Our MOSI-LPD was tested on the test subset for a brief overview on
its performance. In the second experiment, we constructed three test subsets based on the skew degrees
of license plates. These subsets were applied to evaluate the proposed strategy for multi-oriented
detection based on bounding parallelograms. In the third experiment, we built three test subsets
according to the scales of license plates. These subsets were used to evaluate the proposed strategy
for scale-invariant detection. In the fourth experiment, we measured robustness of our MOSI-LPD
to challenging data with blurs and noises. In the last experiment, we evaluated the detection speed
of our MOSI-LPD. Implementation details and experimental results are presented and discussed in
the following.
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3.4.1. Overall Performance

We randomly sampled 10,000 images from all test data to construct the test subset “Dataset10000”
for this experiment. License plates in “Dataset10000” had different orientations and multiple scales.
We tested the proposed MOSI-LPD on this subset.

Figure 4 shows some representative detection results. From visual inspection, we find that our
MOSI-LPD effectively detects license plates with different orientations (Figure 4a) and multiple scales
(Figure 4b). More importantly, the bounding parallelograms tightly enclose the multi-oriented license
plates. Besides, our MOSI-LPD also successfully detects and tightly encloses special or low-resolution
license plates, which are exemplified in the first row of Figure 4c. Nevertheless, there still exist very
few cases in which we mistake other objects for license plates or miss the desired targets. As shown in
the second row of Figure 4c: the mistakes are mostly caused by disturbance of objects similar to license
plates; the miss of targets is mainly caused by the very limited information, since the license plates are
so vague in the images that even human eyes can hardly figure them out.

For in-depth statistical analysis, we calculate precision, recall, f-measure and average IoU
(cf. Section 3.3) of the detection results. The performance of our MOSI-LPD is compared with those of
state-of-the-art LPD methods:

• Traditional method based on boundary features and color features [22], which is denoted as
BOCO-LPD;

• Backbone region-based deep learning method of Faster R-CNN [27].

Table 1 reports the statistical analysis of the overall performance. We can find that our MOSI-LPD
significantly outperforms BOCO-LPD and Faster R-CNN on all the evaluation metrics. Considering
the enclosure performance, the average overlap between detection results and ground-truth regions
achieved by our MOSI-LPD is about 89%, which is around 15% higher than BOCO-LPD and Faster
R-CNN. This proves that our MOSI-LPD encloses the multi-oriented license plates in a much tighter
way. Besides, considering the recognition performance, our MOSI-LPD obtains the highest precision
and recall among these methods with the f-measure as high as 0.98. This proves that our MOSI-LPD
achieves state-of-the-art detection performance in LPD.

Table 1. Performance comparison between BOCO-LPD [22], Faster R-CNN [27] and our MOSI-LPD
on overall performance.

Method IoU Precision Recall F-Measure

BOCO-LPD [22] 0.72 0.86 0.84 0.85
Faster R-CNN [27] 0.76 0.92 0.88 0.90
MOSI-LPD (ours) 0.89 0.98 0.98 0.98

Overall, the experimental results prove that our MOSI-LPD tightly encloses the multi-oriented
license plates with bounding parallelograms, and is highly invariant to the scale discrepancy of
license plates.
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(a)

(b)

(c)

Figure 4. Some representative detection results of our MOSI-LPD: (a) results on license plates with
different orientations (skewing violently, modestly and slightly for each row); (b) results on license
plates with multiple scales (tiny, medium, and large in scale for each row); (c) results on special or
low-resolution license plates in the first row, and scarce cases of mistaking or missing of license plates
(indicated by yellow ellipses) in the second row.

3.4.2. Multi-Oriented Detection Based on Bounding Parallelograms

In this section, we evaluated our strategy for multi-oriented detection which aimed at tightly
enclosing license plates with bounding parallelograms (cf. Section 2.2). The proposed strategy, namely
MO-LPD, is compared with the original Faster R-CNN [27], and state-of-the-art multi-oriented text
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detection algorithms of RRPN [35] and TextBoxes++ [37]. For this experiment, we constructed three
test subsets based on skew degrees of the license plates: “Slight”, “Modest” and “Severe”. Each of
the subsets was comprised of 3500 images. The first “Slight” subset contained license plates that were
skewed within 5 degrees. The second “Modest” subset had license plates skewed between 5 and 25
degrees while license plates in the last “Severe” subset were skewed over 25 degrees. We evaluated
MO-LPD, Faster R-CNN, RRPN and TextBoxes++ on these three test subsets with visual inspection
and statistical analysis.

For visual inspection, Figure 5 shows some representative detection results. We find that MO-LPD
tightly encloses the multi-oriented license plates with bounding parallelograms. As the skew degree of
license plates increases, the horizontal rectangles predicted by Faster R-CNN contain much redundant
information (shown in Figure 5b), and the rotated rectangles predicted by RRPN fail to enclose the
corners of the license plates well (shown in Figure 5c). In contrast, the parallelograms predicted by
MO-LPD still tightly enclose the multi-oriented license plates (shown in Figure 5a). Please note that
TextBoxes++ can also predict precise locations with quadrilaterals (shown in Figure 5d). However,
according to the statistical analysis reported in Table 2, TextBoxes++ fails to guarantee the enclosure
precision and detection accuracy simultaneously .

(a) (b) (c) (d)

Figure 5. Some representative detection results: (a) MO-LPD; (b) Faster R-CNN [27]; (c) RRPN [35];
(d) TextBoxes++ [37]. In each subfigure, license plates in the first to the last row were severely, modestly,
and slightly skewed, respectively. The parallelograms predicted by MO-LPD contain less redundant
information than the horizontal rectangles predicted by Faster R-CNN and rotated rectangles predicted
by RRPN.

For statistical analysis, Table 2 reports the performance comparison between the methods. We find
that on all of the three test subsets, MO-LPD obtains higher average IoU than Faster R-CNN and
RRPN: the average IoU of Faster R-CNN is less than 80% on the “Modest” test subset, and further
drops to less than 60% on the “Severe” test subset. Similarly, the average IoU of RRPN is less than
85% on the “Modest” test subset, and further drops to less than 75% on the “Severe” test subset.
However, MO-LPD retains the high IoU of over 85% on all the three test subsets. For the “Severe”
subset, MO-LPD improves the average IoU of Faster R-CNN and RRPN by around 25% and 15%,
respectively. The tighter enclosure is attributed to the fact that the structures of parallelograms are
more flexible than those of rectangles. As shown in Figure 5, the orientations of horizontal rectangles
are fixed as 0 degree, while license plates in natural scene images are multi-oriented with various
rotation degrees. The inconsistency in orientations brings redundant regions into the skewed locations.
Although rotated rectangles can be freely oriented, their angles are fixed as 90 degrees. The restricted
angle still results in deviations around the corners. By contrast, we regress relative positions of edge
points to form bounding parallelograms. Without any restriction on either the orientation or the angle,
the bounding parallelograms fit the multi-oriented regions more flexibly, and the superiority is most
significant on the severely skewed license plates.
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Table 2. Performance comparison between MO-LPD, Faster R-CNN [27], RRPN [35] and TextBoxes++ [37] on the “Slight”, “Modest” and “Severe” test subsets.

Dataset

Method MO-LPD Faster R-CNN [27] RRPN [35] TextBoxes++ [37]

IoU Precision Recall F-Measure IoU Precision Recall F-Measure IoU Precision Recall F-Measure IoU Precision Recall F-Measure
Slight 0.93 0.94 0.95 0.94 0.90 0.94 0.93 0.93 0.91 0.91 0.95 0.93 0.93 0.93 0.91 0.92

Modest 0.89 0.92 0.92 0.92 0.78 0.87 0.92 0.90 0.83 0.93 0.91 0.92 0.91 0.84 0.87 0.85
Severe 0.87 0.89 0.87 0.88 0.59 0.91 0.86 0.88 0.72 0.88 0.84 0.86 0.89 0.83 0.83 0.83
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Please note that the IoU of MO-LPD is slightly lower than that of TextBoxes++, while the
f-measure is much higher. The slight under-performance in IoU is attributed to the fact that the shapes
of parallelograms are less free than those of quadrilaterals. As shown in Figure 5, the edge points of
parallelograms should be symmetric, while the edge points of quadrilaterals can be freely located.
Therefore, parallelograms are relatively less accurate than quadrilaterals in dealing with distortions.
However, the inferiority is nearly negligible in most cases since the average decrease in IoU is less
than 2%. By contrast, the superiority of MO-LPD over TextBoxes++ in recognition performance is
significant, which is indicated by an about 5% increase in f-measure. The out-performance is attributed
to the less complicated task and the benefit of geometric constraints. By estimating parallelograms
via predicting three edge points, the last point is easily inferred based on the symmetry property. The
task becomes simpler and the prediction difficulty is reduced. In addition, the geometric constraints
between diagonal points are enforced in the loss to help model training. With the robust region-based
architecture, the well-trained MO-LPD achieves accurate enclosure precision and high detection
accuracy simultaneously.

Overall, the experimental results demonstrate that MO-LPD encloses the multi-oriented license
plates in an accurate way, and achieves high detection accuracy. The improved enclosure performance
proves that our strategy for multi-oriented detection based on bounding parallelograms is effective.

3.4.3. Scale-Invariant Detection

In this section, we evaluated our strategy for scale-invariant detection which aimed at detecting
license plates with multiple scales (cf. Section 2.3). We compared our MOSI-LPD with MO-LPD
introduced in Section 3.4.2. The difference in their performance arose from the proposed strategy for
scale-invariant detection. For this experiment, we constructed three test subsets based on the scales of
license plates: “Tiny”, “Medium” and “Large”. There were 3500 images in each of the subsets. The first
“Tiny” subset contained license plates smaller than 300 pixels and the second “Medium” subset had
license plates between 300 to 1200 pixels, while license plates in the last “Large” subset were bigger
than 1200 pixels. We evaluated our MOSI-LPD and MO-LPD on these three test subsets with visual
inspection and statistical analysis.

For visual inspection, Figure 6 shows some representative detection results. We find that our
MOSI-LPD manages the problem of multi-scale detection better than MO-LPD. As the scale of license
plates decreases, MO-LPD fails to detect some license plates, especially the tiny ones. In contrast, our
MOSI-LPD successfully detects license plates with multiple scales. For the tiny license plates that are
hardly recognizable even by human eyes, our MOSI-LPD still figures them out.

(a) (b)

Figure 6. Some representative detection results: (a) our MOSI-LPD; (b) MO-LPD. In each subfigure,
license plates in the first to the last row were tiny, medium, and large, respectively. Our MOSI-LPD is
more invariant to the scale discrepancy of license plates.

For statistical analysis, Table 3 reports the performance comparison between our MOSI-LPD and
MO-LPD. We find that on all the three test subsets, our MOSI-LPD outperforms MO-LPD, and the
improvement is particularly significant on small license plates. Specifically, the f-measure of MO-LPD
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is only 0.93 on the “Medium” test subset, and drops to 0.9 on the “Tiny” test subset. However, the
f-measure of our MOSI-LPD always retains higher than 0.95. On the especially challenging “Tiny”
test subset, MOSI-LPD improves the recall and precision of MO-LPD by around 10%.

Table 3. Performance comparison between our MOSI-LPD and MO-LPD on the “Tiny”, “Medium”
and “Large” test subsets.

Dataset

Method MOSI-LPD (ours) MO-LPD

Precision Recall F-Measure IoU Precision Recall F-Measure IoU
Tiny 0.98 0.96 0.97 0.92 0.87 0.86 0.86 0.91

Medium 0.99 0.98 0.98 0.91 0.96 0.91 0.93 0.88
Large 0.95 0.99 0.97 0.88 0.83 0.98 0.90 0.85

Overall, the experimental results demonstrate that our MOSI-LPD attains higher invariance
to license plate scale discrepancy. The improved performance proves that our strategy to achieve
multi-scale detection is effective.

3.4.4. Robustness

In this section, we evaluated robustness of our MOSI-LPD to challenging conditions. We
manually blurred and added noise to 1821 unprocessed test images. Detection performance on
the disturbed images and original ones were compared and analyzed with visual inspection and
statistical analysis.

For visual inspection, Figure 7 shows some representative detection results. We can find that our
MOSI-LPD is notably robust to tough environments. Although the license plates are quite indistinct
in the disturbed images, our MOSI-LPD still successfully detects and tightly encloses them.

(a) (b)

Figure 7. Some representative detection results of our MOSI-LPD on challenging data: (a) performance
on blurred images; (b) performance on images with noise.

For statistical analysis, Table 4 reports the performance comparison on different conditions.
We find that our MOSI-LPD is almost not influenced by degradation of image quality: the f-measure
on the blurred data decreases by as low as around 1% and the average IoU decreases by less than 2%.
In addition, on images with noises, both the f-measure and the average IoU retain as high as those on
the original images.

Table 4. Comparison between performance on original data and challenging data.

Testdata Precision Recall F-Measure IoU

Original Images 0.99 0.98 0.98 0.93
Blurred Images 0.97 0.97 0.97 0.91

Images with Noises 0.97 0.99 0.98 0.93

Overall, the experimental results demonstrate that our MOSI-LPD is highly robust to challenging
conditions. Despite the poor image quality, our MOSI-LPD still successfully detects and tightly
encloses the license plates with bounding parallelograms.
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3.4.5. Detection Speed

In this section, we evaluated the detection speed of our MOSI-LPD. For this experiment, our
MOSI-LPD and the backbone framework Faster R-CNN [27] were assessed on various test subsets:
(i) “Dataset10000” (cf. Section 3.4.1); (ii) “Slight”, “Modest” and “Severe” (cf. Section 3.4.2); (iii) “Tiny”,
“Medium” and “Large” (cf. Section 3.4.3). The implementation environment was introduced in
Section 3.2. We recorded the average time costs of the shared fundamental convolution neural network
(Conv), unshared structure of the RPN (Proposal) and unshared structure of the detection sub-network
(Detection), respectively. Based on these statistics, we further reported the average detection time of
the overall system.

Table 5 shows the experimental results. We find that the detection speed of our MOSI-LPD is
remarkable. For an input image of about 1000 × 600 pixels, the total detection time of our MOSI-LPD
is about 0.217s. Compared with Faster R-CNN, the well-known towards real-time detection network,
our MOSI-LPD is just slightly slower. The nearly negligible decrease results from the modifications
on the network architecture. However, since the extra time cost is as little as 0.041s, it almost does not
affect the overall detection speed.

Table 5. The average time costs of our MOSI-LPD and backbone framework Faster R-CNN [27] on
various test subsets (unit: second).

Test Subset MOSI-LPD (ours) Faster R-CNN [27]

Conv Proposal Detection Total Conv Proposal Detection Total

Dataset10000 0.133 0.022 0.061 0.216 0.126 0.009 0.043 0.178
Slight 0.143 0.018 0.059 0.220 0.132 0.014 0.040 0.186

Modest 0.126 0.013 0.074 0.213 0.121 0.009 0.039 0.169
Severe 0.136 0.016 0.068 0.220 0.123 0.012 0.036 0.171
Tiny 0.137 0.014 0.057 0.208 0.127 0.007 0.041 0.175

Medium 0.142 0.018 0.063 0.223 0.119 0.011 0.038 0.168
Large 0.128 0.024 0.065 0.217 0.134 0.016 0.034 0.184

Overall, the experimental results demonstrate that our MOSI-LPD almost retains the high
detection speed of the original Faster R-CNN, and is very fast and promising for practical LPD tasks.

4. Conclusions

In this paper, we proposed a MOSI-LPD based on CNNs. The proposed MOSI-LPD tightly
encloses license plates with bounding parallelograms, which is much more accurate than traditional
methods based on horizontal rectangles. In addition, our MOSI-LPD is highly invariant to the scale
discrepancy of license plates. It can even detect tiny license plates that are only several pixels. Besides,
our MOSI-LPD is robust to challenging conditions with a comparable detection speed.
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