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In recent years, chimeric antigen receptor T cells (CAR-T cells) have been faced with the
problems of weak proliferation and poor persistence in the treatment of some
malignancies. Researchers have been trying to perfect the function of CAR-T by
genetically modifying its structure. In addition to the participation of T cell receptor
(TCR) and costimulatory signals, immune cytokines also exert a decisive role in the
activation and proliferation of T cells. Therefore, genetic engineering strategies were used
to generate cytokines to enhance tumor killing function of CAR-T cells. When CAR-T cells
are in contact with target tumor tissue, the proliferation ability and persistence of T cells
can be improved by structurally or inductively releasing immunoregulatory molecules to
the tumor region. There are a large number of CAR-T cells studies on gene-edited
cytokines, and the most common cytokines involved are interleukins (IL-7, IL-12, IL-15,
IL-18, IL-21, IL-23). Methods for the construction of gene-edited interleukin CAR-T cells
include co-expression of single interleukin, two interleukin, interleukin combined with other
cytokines, interleukin receptors, interleukin subunits, and fusion inverted cytokine
receptors (ICR). Preclinical and clinical trials have yielded positive results, and many
more are under way. By reading a large number of literatures, we summarized the
functional characteristics of some members of the interleukin family related to tumor
immunotherapy, and described the research status of gene-edited interleukin CAR-T cells
in the treatment of malignant tumors. The objective is to explore the optimized strategy of
gene edited interleukin-CAR-T cell function.
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INTRODUCTION

CAR-T cells technology has achieved gratifying results in the clinical treatment of hematologic
malignancies (1, 2). However, it has hit a bottleneck in treating solid tumors (3–6). Studies have
shown that the inhibitory tumor microenvironment (TME) of solid tumors can inactivate CAR-T
cells (7). The full activation and amplification of normal T cells require not only T cell receptor
signals and costimulatory signals, but also the synergistic action of immune cytokines. Current
theories suggest that the immunosuppressive TME of solid tumors is mainly characterized by the
suppression of immune cell function, So it weakens CAR-T cells tumor immunity (8, 9).
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To overcome this challenge, multiple strategies have been applied
to optimize CAR-T cells technology. Immune cytokines are the
basis of T cells’ immune function, and they have been
demonstrated that they can significantly improve the antitumor
activity of CAR T cells (10). Therefore, the researchers created a
fourth generation of CAR-T cells by gene modifying the structure
of CAR-T cells using immune cytokines (11, 12).

Interleukin is a type of cytokine produced by multiple
immune cells and used by these immune cells. Some members
of the interleukin family exert multifarious roles in the anti-
tumor process as growth factors of T cells. At present, many
gene-edited interleukin CAR-T cells have achieved positive
efficacy in the treatment of malignant tumors in preclinical
studies, and related clinical studies are ongoing. With the
structural optimization of gene-edited interleukin CAR-T cells,
its efficacy in overcoming the immunosuppressive TME is also
increasing. Here, we shown the correlation between the above
families of interleukin and tumor immunotherapy, and
summarize the research progress of their application for CAR-
T cells technology. Finally, the optimization of gene-edited
interleukin-CAR T cells in anti-tumor therapy was discussed.
MEMBERS OF THE INTERLEUKIN FAMILY
AND TUMOR IMMUNITY

Last decade, with the development of tumor immunotherapy, the
function of interleukin in tumor immunotherapy has attracted
more and more attention from researchers. A large number of
Frontiers in Immunology | www.frontiersin.org 2
tumor immunotherapy techniques began to use interleukin to
improve the immune response of tumor. Table 1 shows part of
the interleukin family and their functions related to
tumor immunotherapy.
Correlation Between IL-1 Family Members
and Tumor Immunity
The IL-1 family mainly includes IL-1, IL-18, IL-33, and IL-36.
They initiate a powerful inflammatory and immune response by
binding to specific receptors in the IL-1 receptor family. These
immunomodulatory molecules are generated by immune cells
and regulate the function of these immune cells. Therefore, they
are closely related to tumor immunity.

IL-1 is a pro-inflammatory cytokine,which includes two subtypes
of IL-1a and IL-1b, and regulates adaptive immune responsemainly
through bindingwith its receptor (IL-1R) in the body. IL-1a acts as a
local alarm in the event of cell damage, while IL-1b release can also
occur in the circulation and is strictly controlled. IL-1b is primarily
derived from myeloid cells and is upregulated and associated with
disease progression in many different types of cancer, such as colon
and lung malignancies. Cancer cells also drive tumor-associated
inflammatory macrophages to produce IL-1b, which inhibits
tumor immune response through IL-1b-mediated accumulation of
myeloid derived suppressor cells (MDSCs). Therefore, current
clinical studies have focused on the role of antagonistic IL-1 b
activity in anti-tumor (13). These results indicate that IL-1b acts on
adaptive immunity and may indirectly modulate T cell immune
response to tumor.
TABLE 1 | Summary of cytokines related to tumor immunotherapy in the interleukin family.

Interleukins Tumor immune-related functions Receptors The associated immune
cells

Associated activation
pathway

IL-1 family
IL-1 Proinflammatory, regulating adaptive immune response IL-1R DCs, T cells NF-kB (13)
IL-18 T cell are activated by enhancing endogenous TCR IL-18Ra/IL-

18Rb
CD8 +T cells, NK cells NF-kB (14)

IL-33 Bidirectional regulation of tumor immune response ST2 Th cells, NK cells, Treg cells NF-kB,MAP (15)
IL-36 Promote DCs maturation and indirectly promote T cell proliferation IL-36R DCs,T cells NF-kB,MAP (16)
IL-2 family
IL-2 Regulate the proliferation and apoptosis of activated T cells IL-2Ra/IL-2Rb T cells, NK cells, monocyte

macrophages, B cells
STAT5 (17–19)

IL-4 Regulates the function of Th1 and Th2 cells IL-4R Th cells, STAT6 (20)
IL-7 Promote T cell proliferation and maintain cell homeostasis IL-7Ra Naive and memory T cells STAT5 (21, 22)
IL-9 Promote the proliferation and activation of T cells IL-9R CD8+ T cells, NK T cells STAT1, STAT3, STAT5 (23)
IL-15 Promote T cell proliferation and maintain cell homeostasis IL-15Ra/IL-

2Rb
CD8 +T cells,NK cells STAT5 (24)

IL-21 Modulate effector function of CD8+ T cells and polarization of CD4+ T Th
cells

IL-21R CD8+ T cells, CD4+ T cells,
NK T cells

STAT3 (25, 26)

IL-6/12 family
IL-6 Regulates immune response and inflammation IL-6R T cells STAT3 (27)
IL-12 Enhance the IFN-g secretion function of Th17 cells and cytotoxic effect of

NK cells and T cells, stimulate T cell differentiation
IL-12Rb1/IL-
12Rb2

NK cells, NK T cells, CD8+T
cells

STAT4 (28)

IL-23 Promotes memory T cell proliferation IL-23R T cells STAT3 (29)
IL-27 Affects antigen presentation and regulates the differentiation and activation

of Th cells
gp130/WSX-1 Treg cells STAT1, STAT3 (30)

IL-35 Promotes immunosuppression by inhibiting the differentiation of Th1 and
Th17 cells

IL-12Rb2/
gp130/WSX-1

Treg cells STAT1, STAT3, STAT5 (30)
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IL-18 is also an important pro-inflammatory and
immunomodulatory cytokine (31), which activates T cell
proliferation and IFN-g secretion by enhancing endogenous
TCR. It can also promote more effective tumor killing by
enhancing the expression of Fas ligands in immune cells (32).
Besides, studies have demonstrated that IL-18 improves T cell
function without causing severe dose-limiting toxicity (33, 34).
Therefore, IL-18 is a promising candidate cytokine for gene-
edited CAR-T cells.

As an inflammatory factor, IL-33 plays multiple roles in
tumor immunity. In 2015, a study found that IL-33 was
identified as a ligand for oncogenic inhibitory receptor 2 (ST2)
(35). IL-33 plays an immunomodulatory role by interacting with
ST2. IL-33 can act on multitudinous immune cells, such as Th1,
Th2, NK and regulatory T cells (Tregs) (15). Therefore, IL-33 has
a bidirectional regulatory function of different cancer immune
cells. Three subtypes of IL-36, known as IL-36a, IL-36b, and IL-
36g, have different functions. IL-36 has been shown to promote
upregulation of CD80 and CD86, markers of DCs activation, and
promote DCs maturation (36). The immunoregulatory function
of IL-36a is to directly promote the proliferation of CD4+T cells
(37). IL-36b promotes T cell proliferation by promoting the
production of IL-12 and IL-18 by DCs (38). The function of IL-
36g is to induce CD4+T cells to secrete IFN-g, IL-4 and IL-17
(39).Therefore, IL-36 also exerts a bidirectional regulatory role in
the process of tumor immunity, and has both activation and
inhibition effects.

Correlation Between IL-2 Family Members
and Tumor Immunity
The IL-2 family is part of the receptor gc family, which belongs to
type I cytokines, and they contain many interleukins. Its
members mainly include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-
21,and all of them play immunomodulatory functions through
the JAK-STAT pathway (40, 41). And these cytokines exert vital
functions in the regulation of immune cells.

IL-2 is a T cells growth factor that enhances the cytolytic
activity of NK cells (17). It promotes Tregs differentiation, which
regulates the adaptive immune response (18). At present, IL-2 is
the main cytokine used to culture T cells for immunotherapy.
Nevertheless, T cells cultured by IL-2 showed phenotypic
heterogeneity and were mainly composed of effector memory
cells that had full functional effects but were sensitive to death.
IL-4 is mainly involved in the function regulation of Th2 cells, so
it is known as Th2 cytokine. It can promote tumor progression by
down-regulating Th1 signaling and directly inactivating CD8+T
cells (42). Shuku-ei Ito et al. investigated the effect of neutralizing
IL-4 on tumor immunity (20), the results suggested that an IL-4
antibody can enhance anti-tumor immunity. Therefore, IL-4 can be
used as a target for tumor immunotherapy due to its role in the
tumor microenvironment.

IL-7 is the most important tumor immune-related cytokine in
the gc family, and its function is mainly to regulate naive T cells
and memory T cells homeostasis (21, 22). Studies have
confirmed that IL-7-induced signal transduction defect is the
main reason for affecting T cell development in severe combined
Frontiers in Immunology | www.frontiersin.org 3
immunodeficiency disorder (SCID) patients (43) and in patients
with SCID caused by JAK3 mutation (44, 45). IL-7 is an
indispensable cytokine for T cell growth, therefore, IL-7 has
also become a popular cytokine in gene-edited CAR-T cells
research. IL-9 is also an important tumor immune-related
cytokine, mainly produced by Th9 cells (46, 47). IL-9 derived
from Th9 cells can improve the tumor killing function of CD8+
T cells and NK T cells by promoting secretion of IFN-g (48, 49).
Therefore, Th9 cells have been shown to have an antitumor effect
in most solid tumors (50). However, it has been shown to be
tumorigenic in most hematologic tumors (51).

As an immunoregulatory cytokine, IL-15 is an important
homeostasis cytokine of CD8+T cells and NK cells. The main
function of IL-15 is to promote the growth of memory CD8+T
cells (52, 53). Therefore, L-15 has been used in several studies to
optimize the structure of CAR-T cells. However, IL-15 must
form the IL-15/IL-15Ra complex in order to exert its tumor
immune function. IL-15/IL-15Ra complex has poor stability and
can bind to IL-15Rbg to decrease tumor immune efficacy (54).
Therefore, the stability of IL-15/IL-15Ra complex is essential for
IL-15 to perform tumor immune function. The researchers used
several strategies to improve the stability of IL-15 function. One
strategy is to extend the persistence of the IL-15/IL-15Ra
complex by fusion with the IgG Fc domain, resulting in more
persistent induction of CD8+T cells and NK cells (55). Another
strategy is to enhance the capability of IL-15 through a fusion
protein that is conjugated to human IL-15 through the ligosome
in the terminal cytokine binding domain of human IL-15RaNH2

and has similar biological activity to that described above (54).
IL-21 is a multifunctional cytokine, exerts a vital role in

regulating the function of CD8+ T cells (25). IL-21 can
improve the activity of CD8+ T cells, making it potentially
valuable in cancer immunotherapy (56). Besides, a recent study
on pancreatic cancer found that IL-21 also has an anti-tumor
effect by enhancing NK cell function (57). IL-21 has also been
used in studies of CAR-T for its ability to positively regulate
tumor-associated immune cells.

Correlation Between IL-6/12 Family
Members and Tumor Immunity
The family members include typical members IL-6, IL-12, IL-23,
IL-27, and IL-35. Cytokines in the IL-12 family influence the
outcome of cancer, infection, and inflammatory disease. Most of
the members are produced by DCs, macrophages, endothelial
cells, T lymphocytes, and tumor cells (58),which conduct
downstream signal transduction through JAK protein and
STAT. They regulate tumor immunity in both direct and
indirect ways.

IL-6 is a pleiotropic cytokine,affects T cell activation,
amplification, survival, and polarization (59). Studies have
shown that during the inflammatory process, IL-6 signaling
has been found to promote the expression of T cell attractor
chemokines (60). IL-6 can also regulate the surface expression of
Fas receptor through up-regulating anti-apoptotic factors by
STAT3, thereby inhibiting T cell apoptosis (61, 62). IL-6 has
been also demonstrated to participate in the accumulation of
July 2021 | Volume 12 | Article 718686
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MDSCs in tumors (29). In addition, IL-6 exerts vital roles in the
acute immune response. When stimulated by local
inflammation, IL-6 can promotes the production of acute
phase proteins by acting on the liver (63). IL-6 is an important
factor affecting liver cells, hematopoietic progenitor cells,
cardiovascular, endocrine and nervous system homeostasis
(64). Therefore, a large number of CAR T clinical trials have
shown that high serum IL-6 levels are associated with cytokine
release syndrome (CRS), and IL-6 is a monitoring indicator in
the clinical diagnosis and treatment of CRS (65).

As an inflammatory cytokine, IL-12 is mainly generated by
DCs cells and macrophages. Studies have demonstrated that IL-
12 can improve the activation of Th1 and Th17 cells (66) and
enhance the cytolysis ability of CD8+T cells (67). Therefore, IL-
12 is expected to be successful in adoptive immunotherapy of
tumors due to its positive regulation of tumor immune
properties. IL-23 is constituted of IL-23ap19 and IL-12bp40
(29), and facilitates the proliferation of memory T cells, especially
Th17 cells expressing the its receptor (IL-23R) (68–70). IL-23
activates the tumor immune response to inhibit tumor progress,
which has given rise to the application of IL-23 in the treatment
of tumors by gene-edited CAR-T.

IL-27 is an effective immunomodulatory cytokine, which
mainly has anti-inflammatory and inhibitory properties in
immunomodulatory regulation, especially in inhibiting Th2
and Th17 differentiation. However, recent studies comparing
these results have also demonstrated that IL-27 promotes the
growth and survival of Tregs (30). Myeloid and epithelial cells
treated with IL-27 also showed enhanced antigen presentation by
upregulating MHCI and MHCII as well as costimulatory
molecules (71). Therefore, IL-27 is also a major regulator of
TME. IL-35 is an effective regulatory cytokine, mainly secreted
by Tregs. IL-35 can convert T cell into the regulatory cell
population that produces IL-35, which is called the induction
of Tregs-IL-35 (69, 72). IL-35 inhibited function of Th1 and
Th17 cells by promoting the expansion of Tregs (72, 73).
Frontiers in Immunology | www.frontiersin.org 4
Therefore, IL-35 is an immunosuppressive cytokine and exerts
important roles in promoting tumor progression.
CORRELATION STUDY OF GENE-EDITED
INTERLEUKIN CAR-T CELLS IN THE
TREATMENT OF MALIGNANT TUMORS

The researchers genetically engineered these cytokines to
modulate CAR-T activity to better kill tumor cells. At present,
a great number of preclinical studies have confirmed that gene-
edited co-expression of cytokines such as IL 7, IL 12, IL 15, IL 18,
IL21, and IL 23 can enhance the antitumor activity of CAR-T
(Table 2). Simultaneously, clinical trials of gene-edited
interleukin-CAR-T for malignancies are under way at several
medical centers around the world (Table 3), involving
hematological tumors and solid tumors, to evaluate its effective
dose and safety.

IL-7
IL-7 has been widely used in tumor immunotherapy to enhance
the anti-tumor immune response of T cells (91, 92). Studies have
shown that IL7 not only promotes CD8+ T cell proliferation and
reduces T cell apoptosis and depletion by enhancing Bcl-2
expression, but also increases the phenotype of poorly
differentiated CAR-T cells, thus improving the persistence and
viability of CAR-T cells (75, 93). There were also clinical trials
(NCT00586391, NCT00709033) that amplified CAR-T cells with
IL-7 and IL15 in vitro, and then confirmed these findings by
phenotypic analysis of CAR-T cells (94).Cong He et al. (75)
constructed gene-edited IL-7 CAR-T cells targeting NKG2D, and
found that co-expressing IL-7 enhanced the proliferation and
persistence of NKG2D-CAR-T cells in vitro and in vivo. In order
to further optimize the construction of CAR-T cells, researchers
have used IL-7 in combination with other cytokines to modify
TABLE 2 | Summary of preclinical studies on the use of CAR-T cells co-expressing cytokines in the treatment of malignant tumors.

Tumor Targeted antigen Gene-edited cytokines Reference

Lung cancer, pancreatic ductal adenocarcinoma hCD20, Mesothelin IL-7 and CCL19 Keishi Adachi et al. (74)
prostatic cancer NKG2D IL-7 Cong He et al. (75)
hepatic carcinoma GPC3 IL-7 and PH20 Xingcheng Xiong et al. (76)
breast carcinoma AXL C7R Zhenhui Zhao et al. (77)
Colorectal cancer, pancreatic cancer, stomach cancer CEA IL‐12 Xiaowei Chi et al. (78)
lymphoma CD19 IL-12 Gray Kueberuwa et al. (79)
hepatic carcinoma glypican-3 (GPC3) IL-12 Ying Liu et al. (80)
ovarian cancer Muc-16 IL-12 Oladapo O.Yeku et al. (81)
leukemia CD19 IL-15 Lenka V. Hurton et al. (82)
Cerebral endothelioma VEGFR-2 IL-15 Evripidis Lanitis et al. (83)
melanoma CD19 IL-18 Biliang Hu et al. (84)
hepatic carcinoma GPC3 IL-21 Yi Wang et al. (85)
chronic lymphocytic leukemia CD19 IL-21 Štach M et al. (86)
hepatic carcinoma GPC3 IL-15 and IL-21 Batra S. A et al. (87)
neuroblastoma GD2 IL-23 Xingcong Ma et al. (88)
prostatic cancer PSMA IL-23 Dawei Wang et al. (89)
hepatic carcinoma GPC3 4/21 ICR Yi Wang et al. (85)
pancreatic cancer PSCA 4/7 ICR Somala Mohammed et al. (90)
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CAR-T cells, and achieved promising results in preclinical study.
For instance, Keishi Adachi et al. (74) constructed CAR-T cells
that co-expressing IL-7 and CCL19, and found that multiple
cytokines significantly improved tumor infiltration and survival
of CAR-T cells. More robust antitumor activity and durability
than conventional CAR-T has been realized in studies targeting
solid malignant tumors. These related clinical trials are ongoing,
such as targeting CD19 CAR-T trial for lymphoma
(NCT04381741); targeting NECTIN4/FAP CAR-T for advanced
malignant solid tumors (NCT03932565). Similarly,Xingcheng
Xiong et al. (76) constructed CAR-T cells co-expressing IL-7
and hyaluronidase(PH20) in the preclinical study of targeting
GPC3 CAR-T cells for liver cancer, and the results showed that the
co-expression of IL-7 and PH20 may obviously improve the
efficacy of CAR-T cells for solid tumors. Other clinical studies
of co-expressing IL-7 and IL-15 CAR-T cells for lymphoma are
also ongoing (NCT02652910, NCT04186520), aiming to test the
hypothesis that co-expressing IL-7 and IL-15 CAR-T cells
persist for longer after infusion in patients with lymphoma. And
whether the persistence of CAR-T cells improves the anti-
lymphoma efficacy.

Furthermore, IL-7 receptor (C7R) was also used for the
construction of gene-edited CAR-T. A recent study confirmed
the significant antitumor activity of co-expressing C7R CAR-T
cells against neuroblastoma and glioblastoma (95). Two clinical
Frontiers in Immunology | www.frontiersin.org 5
trials (NCT03635632, NCT04099797) of CAR-T co-expressing
C7R targeting GD2 in the treatment of neuroblastoma,
osteosarcoma, and glioma are currently under way, the
purpose of the studies was to find the maximum safe dose of
GD2-C7R CAR-T cells and assess how long they can be detected
in the blood and their effect on tumors.

IL-12
Because IL-12 can effectively mobilize the immune system, it has
become one of the cytokines that mediate anti-tumor activity
(96–98). A series of preclinical studies have demonstrated that
IL-12 has antitumor activity by degrading tumors or prolonging
survival in tumor-bearing animals (99). Giulia Agliardi et al.
(100) conducted a preclinical study on the treatment of
glioblastoma multiforme (GBM) by combining CAR-T cells
with local injection of IL-12. The results showed that CAR-T
therapy combined with local injection of IL-12 resulted in a more
durable antitumor response than CAR-T therapy alone. The
study also demonstrated that IL-12 not only enhanced the
cytotoxicity of CAR-T cells, but also remodeled TME,
promoted the infiltration of pro-inflammatory CD4+ T cells,
and reduced the number of Tregs. However, systemic use of IL-
12 can cause serious and unexpected side effects, which greatly
limits its clinical use (101, 102). In the face of this challenge, the
researchers have been trying to construct gene-edited IL-12
TABLE 3 | Clinical trial summary of gene-edited interleukin CAR-T cells.

Targeted antigen Tumor Gene-edited
cytokines

Patients
(n)

Clinical
stage

Identifying code
(ClinicalTrials.gov)

Sponsor Status

EGFR metastatic colorectal
cancer

IL-12 20 I NCT03542799 Shenzhen Second People’s Hospital,
China

Not yet
recruiting

CD19 Diffuse large B cell
lymphoma

IL7 and
CCL19

24 I NCT04381741 The Second Affiliated Hospital of
Zhejiang University, China

Recruiting

Nectin4/FAP Nectin4 positive late
malignant solid tumor

IL7 and
CCL19, or
IL12

30 I NCT03932565 The Sixth Affiliated Hospital of
Wenzhou Medical University, China

Recruiting

CD19 lymphoma IL-7 and IL
-15

20 I/II NCT02652910 Xinqiao Hospital, Chongqing City,
China

Unknown
status

GD2 neuroblastoma IL -15 18 I NCT03721068 Rineberg Comprehensive Cancer
Center, USA

Recruiting

CD19/CD20 lymphoma IL-7 and IL-
15

32 I/II NCT04186520 Medical College of Wisconsin, USA Recruiting

GD2 Neuroblastoma,
osteosarcoma

C7R 94 I NCT03635632 Baylor College of Medicine, USA Recruiting

GD2 neuroglioma C7R 34 I NCT04099797 Baylor College of Medicine, USA Recruiting
GPC3 Multiple solid tumors (liver

cancer, sarcoma, etc.)
IL -15 24 I NCT04377932 Baylor College of Medicine, USA Not yet

recruiting
GPC3 Multiple solid tumors (liver

cancer, sarcoma, etc.)
IL -15 and IL-
21

24 I NCT04715191 Baylor College of Medicine, USA Not yet
recruiting

CD138, integrin b7,
CS1, CD38 and BCMA

multiple myeloma IL7 and
CCL19

30 I NCT03778346 The Sixth Affiliated Hospital of
Wenzhou Medical University, China

Recruiting

CD19 lymphoma IL -18 30 I NCT04684563 University of Pennsylvania, USA Not yet
recruiting

CD5 T-cell Acute Lymphoblastic
Leukemia
T-cell Non-Hodgkin
Lymphoma

IL15/IL15
sushi

20 I NCT04594135 Peking University Shenzhen Hospital
Shenzhen, Guangdong, China

Recruiting

MUC16 Multiple solid tumors IL-12 18 I NCT02498912 Kettering Cancer Center, USA Active, not
recruiting
July 2021 | Volume 12 | Ar
All clinical trials were download at www.clinicaltrials.gov (access date: March 04, 2021).
ticle 718686

http://www.clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Gene-Edited Interleukin CAR-T Cells Therapy
CAR-T cells in an effort to enhance anti-tumor activity while
mitigating its side effects (103, 104). Ying Liu et al. (80) designed
targeting GPC3 CAR-T cells and IL12-GPC3-CAR-T cells. This
study demonstrated that IL12-GPC3-CAR-T cells were more
capable of lysis of GPC3+ tumor cells and secreted more
cytokines than GPC3-CAR-T cells. IL-12-GPC3- CAR-T cells
showed a stronger antitumor effect in tumor-bearing mice due to
increased infiltration and persistence of T cells by IL-12.
Similarly, Gray Kueberuwa et al. (79) used CAR-T cells
expressing murine IL-12 (IL12-CD19-CAR-T cells) to show
eradication of B-cell lymphoma with a long-term survival rate.
They also demonstrated that IL12-CD19-CAR-T cells not only
kill CD19+ tumor cells directly, but also recruit host immune
cells for an anticancer immune response. This finding may
enable gene-edited IL-12 CAR-T cells to be used in the
treatment of malignancy without the need for lymphatic
clearance, so that these cells can be better used for anti-
tumor immunity.

Fengtao You et al. (105) constructed CAR T cells targeting
MUC1 co-expressing IL-12 (MUC1-IL-12-CAR T cells) and
targeted CAR T cells modified with MUC1 (MUC1-CAR T
cells) for use in seminal vesicle carcinoma in Phase I clinical
trials (NCT02587689). MUC1-IL-12-CAR-T cells using MUC1
normal SCFV sequence SM3; MUC1-CAR T cells use the
mutated SM3 scFv sequence. Two CAR T cells were injected
locally into two separate metastatic lesions of the same seminal
vesicle carcinoma patient. The results showed that MUC1-CAR
T cells effectively induced tumor necrosis, while MUC1-IL-12
CAR T cells treated lesions showed no tumor necrosis. Of course,
the purpose of this clinical study was to demonstrate the
importance of SCFV in CAR T cell therapy. But it also
demonstrated the safety of gene-edited IL-12 CAR T cells for
clinical use. Two clinical trials (NCT03542799 and
NCT02498912) are currently evaluating the safety and
feasibility of co-expressing IL-12 CAR-T cells in patients with
solid tumors, as well as evaluating the maximum tolerated dose.

IL-15
The tumor immune function of IL-15 is mainly to maintain
CD8+ memory T cell homeostasis and inhibit activation-induced
cell death (106). Therefore, gene-edited IL-15 CAR-T cells have
been demonstrated to be superior in the treatment of malignant
tumors. Evripidis Lanitis et al. (83) used retroviral vectors to
encode co-expressed mouse interleuk-15 CAR-T cells (IL-15-
CAR-T) targeting tumor blood vessels. Results showed that co-
expression of IL-15 not only enhanced the tumor infiltration and
control of tumor growth, but also enhanced the effect of IL-15 on
tumor growth. Furthermore, TME was optimized (activation of
NK cells and reduction of M2 macrophages). Further studies
showed that the expression of Bcl-2 in CAR-T cells expressing
IL-15 was up-regulated, while the expression of PD-1 was down-
regulated. Analogously, Lenka V. Hurton et al. (82)designed co-
expressing IL-15 CAR-T cells using gene-edited technology,
which demonstrated a strong killing effect against CD19+
leukemia in preclinical experiments. The study analyzed the
phenotype of proliferating T cells and found that the most
persistent T cell phenotype was consistent with that of T
Frontiers in Immunology | www.frontiersin.org 6
memory stem cells. The results demonstrated that IL15
signaling could maintain T memory stem cells persistence.
Which lays a theoretical foundation for the further application
of IL-15 in optimizing CAR-T cells construction.

Gene-edited IL-15 has also shown enhanced antitumor
activity of CAR T cells in clinical trials. Jia Feng et al. (107)
modified CD5-targeted CAR-T cells by means of genetic
engineering to secrete IL-15/IL-15 Sushi(IL-15 protein linked
to the IL-15Ra sushi domain of the IL-15 receptor) Complex. In
a phase I clinical trial (NCT04594135), these CAR-T cells were
tested for safety and efficacy in a patient with refractory
lymphoblastic lymphoma with central nervous system
infiltration. In the trial, symptoms of central nervous system
compression were significantly reduced after 3 weeks of
treatment with IL-15-CD5-CAR-T cells, and soft tissue mass
shadow was significantly reduced after 8 weeks of treatment.
These results suggest that gene-engineered IL-15 CAR-T cells are
an effective treatment for T cell malignancies, especially in
patients with central nervous system involvement. At present,
clinical trials (NCT03721068, NCT04377932) are under way
to treat multiple solid tumors (liver cancer, sarcoma,
fibroblastoma). The goal of these studies is to determine the
maximum safe dose of CAR-T cells and how long they last in the
body. To understand the side effects and evaluate its efficacy in
solid tumors.

IL-18
Previous studies have shown that the structural expression of IL-
18 by CAR-T cells significantly enhances the antitumor activity
of CAR-T cells (84). Biliang Hu et al. (84) constructed CD19-IL-
18 CAR-T cells using transgenic technology to conduct in vivo
anti-tumor studies. CD19-IL-18 CAR-T cells significantly
enhanced the proliferation of CAR-T cells. And effectively
enhance the anti-tumor effect of melanoma mice. The study
confirmed that the proliferation of IL-18-secreting CAR- T cells
in the transplanted model was significantly enhanced, which was
dependent on the IL-18R signaling pathways. This finding
provides a strategy for the use of CAR-T cells in solid tumors.
Since, Yong Huang et al. (14) also found that exogenous IL-18
could improve the anti-tumor function of HER2-specific CAR-T
cells in vitro and in vivo, not only in immunodeficient mice, but
also in immunotolerant mice. In addition, Markus Chmielewski
et al. (108) found that the anti-tumor process of CAR-T cells co-
expressing IL-18 was accompanied by the overall change of
tumor immune microenvironment. Specifically, the number
of M1 macrophages and NK cells increased, while the number
of Tregs, inhibitory DC and M2 macrophages decreased,
indicating that IL-18 has the function of recruiting peripheral
immune cells to participate in anti-tumor combat. University of
Pennsylvania team is currently conducting a clinical trial
(NCT04684563) of co-expressing IL-18 CAR-T cells targeting
CD-19 in the treatment of lymphoma. The primary objective of
this study is to evaluate the maximum safe dose.

IL-21
IL-21 can enhance tumor immune response mediated by T cells.
Li Du et al. (109) found that the addition of IL-21 in the
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preparation of CAR-T cells could improve the T cell transfection
efficiency by reducing the expression of IFN-g in activated T
cells. They also shown that exogenous IL-21 improved the
cytotoxicity of CAR-T cells by enhancing the enrichment and
amplification of poorly differentiated CAR-T cells. This finding
lays a foundation for the application of IL-21 to optimize the
structure of CAR-T cells. ŠTach, M et al. (86) constructed gene-
edited IL-21 CAR-T cells targeting CD19, and studied the effect
of IL-21 on its function. The results showed that IL-21 enhanced
the expansion of CAR-T cells, and prevented the differentiation
of CAR-T cells into late memory phenotype. Besides, gene-edited
IL-21 promoted tumor infiltrating of CD19 CAR-T cells, leading
to tumor growth retarded. Yi Wang et al. (85) constructed 4/21
ICR-CAR-T cells and reversed the efficacy of IL-4 against CAR-T
cells in the environment of hepatocellular carcinoma(HCC)
through the IL-21 pathway. The 4/21 ICR has been shown to
activate the STAT3 pathway, thereby promoting Th17-like
polarization of CAR-T cells in vitro and enhancing the toxicity
of targeted HCC cells. IL-21 is the one that ultimately plays a
direct role in promoting the anti-tumor function of CAR-T cells.
A clinical trial of co-expressing IL-15 and IL-21 targeting GPC3
in multiple solid tumors (NCT04715191) is ongoing at Baylor
College of Medicine. The objective of this study was to determine
the maximum safe dose of CAR-T cells and to determine their
survival time and side effects in vivo. At the same time, the
efficacy was evaluated.

IL-23
Gene-edited IL-23 CAR-T cells have been relatively infrequently
studied, but have yielded significant results. Dawei Wang et al.
(89) designed co-expressing IL-23 targeting prostate specific
membrane antigen(PSMA) CAR-T cells and studied their
Frontiers in Immunology | www.frontiersin.org 7
antitumor functions. This study confirmed that in vitro
proliferation and cytokine secretion of co-expressing IL-23
CAR-T cells were significantly higher than that of
conventional CAR-T cells. Co-expressing IL-23 CAR-T cells
also showed higher tumor clearance and faster weight recovery
in vivo. Furthermore, it has been demonstrated that T cells
upregulate IL-23a p19 subunit but not p40 subunit under TCR
stimulation. Therefore, some researchers constructed CAR-T
cells co-expressing the p40 subunit, and found that T cells
obtained selective proliferative activity through the IL-23
signaling pathway. Compared with conventional CAR-T cells,
P40-CAR-T cells showed superior antitumor activity (88). The
therapeutic efficacy of p40-CAR-T cells in xenotransplantation
of tumor-bearing mice was superior to that of conventional
CAR-T cells.
STRUCTURE DEVELOPMENT AND
OPTIMIZATION OF GENE-EDITED
INTERLEUKIN CAR-T CELLS

At present, the construction of gene-edited interleukin-CAR-T
cell structure is diversified in the process of gradual optimization.
The main construction methods for studying gene-edited
interleukin-associated CAR-T include: co-expression of a single
interleukin, two interleukin, interleukin combined with other
cytokines, interleukin receptor, co-expression of interleukin
subunit, and fusion ICR. The specific construction method is
shown in Figure 1.

To enhance the tumor killing ability of CAR-T, researchers
constructed CAR-T by gene-edited an interleukin that positively
FIGURE 1 | In this figure, different methods of constructing gene-edited interleukin-CAR T cells are shown. (A) Co-expression of a single interleukin. (B) Co-expression
of two interleukins. (C) Co-expression of interleukin combined with other cytokines. (D) Co-expression of interleukin receptor. (E) Co-expression of interleukin subunit.
(F) Co-expression of fusion interleukin ICR.
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regulates T cell function, initially primarily for hematological
tumors, and later for solid tumors. There are many relevant
preclinical and clinical studies, as shown in Tables 2 and 3. For
example, in 2018, Gray Kueberuwa et al. (79) constructed
targeting CD19 IL-12-CAR-T cells in a preclinical study on the
treatment of lymphoma, and the CAR-T cells expressing IL-12 in
the trial not only killed CD19+ tumor cells directly, but also
recruited other immune cells of the host for anti-tumor immune
response. In 2020, Cong He et al. (75) constructed a CAR-T
targeting NKG2D co-expressing IL-7, and in the treatment of
prostate cancer, it was found that IL-7 production enhanced the
expansion of CAR-T cells and inhibited their apoptosis. Later,
researchers attempted to construct bileukin and interleukin
combined with other cytokine CAR-T to enhance its tumor
killing function. Andreas A. Hombach et al. (110) constructed
co-expressing IL-7 and IL12 CAR-T cells, and the constructional
production of IL-7 and IL-12 has been shown to enhance the
expansion and persistence of CAR-T cells in preclinical studies of
colorectal cancer. In 2018, Keishi Adachi team (74) constructed
co-expressing IL-7 and CCL19 CAR-T cells, and demonstrated
excellent tumor-killing activity in multiple solid tumors.
Interestingly, researchers constructed both the co-expressing of
IL-7 (IL-17-CAR) and the co-expressing of CCL19 (CCL19-
CAR) T cells, and found in vivo that these two types of CAR-T
cells were comparable to conventional CAR-T cells in killing
tumors. This study demonstrates the limited ability of gene-
edited individual interleukin CAR-T cells to enhance anti-tumor
function. Furthermore, this suggests the importance of cytokine
collaboration in enhancing CAR-T function. In 2020, Xingcheng
Xiong and his team (76) constructed co-expressing IL-7 and
PH20 CAR-T cells. Because the co-expressing PH20 can
effectively degrade extracellular matrix, and enhance the tumor
infiltration function of CAR-T cells. The study has demonstrated
that co-expressing IL-7 and PH20 CAR-T cells can significantly
improve their antitumor activity in multiple solid tumors.
Therefore, the construction of multiple interleukin and
interleukin combined with other cytokines gene-edited CAR-T
cells is an important direction to conquer solid tumors in
the future.

Side reaction should be considered while CAR-T cells improve
immune function, after all, interleukin hypersaturation activation
as cytokines is harmful to the body. Researchers constructed
CAR-T cells that co-expressing interleukin receptors and applied
the limited interleukin ligand in the tumor microenvironment to
brake their functional release. Zhenhui Zhao et al. (77) constructed
co-expressing IL-7 receptor(C7R) CAR-T cells, which shown good
tumor killing effect in vitro in the preclinical experiment of treating
triple-negative breast cancer. However, in vivo, C7R-CAR-T cells
have not demonstrated any advantage over conventional CAR-T
cells. Which may be influenced by the density of IL-7 ligand in
tumor tissues. Xingcong Ma et al. (88) Constructed co-expressing
IL-23 subunit (p40) CAR-T cells (p40-CAR-T) that in order to
avoid the body damage caused by overactivation of cytokines. The
results showed that p40-CAR-T cells had stronger antitumor
activity compared to conventional CAR-T cells, and more
importantly, showed fewer side effects compared to CAR-T cells
Frontiers in Immunology | www.frontiersin.org 8
co-expressing other interleukin in vivo trials. This study tells us that
on the way to improve CAR-T function, we should not blindly
increase the secretion of cytokines, but should achieve accurate co-
expression and reduce meaningless harmful expression.

In the face of tumor inhibition microenvironment, most of
the current studies are aimed at improving tumor killing
functions by increasing the secretion of cytokines that
positively regulate CAR-T function. However, this structural
design ignores the value of immunosuppressive cytokines in
the tumor immune microenvironment. Ann M Leen et al. (111)
constructed CAR-T cells co-expressing the fusion ICR, and IL-4/
IL-7 ICR (4/7 ICR) contained the IL-4 receptor ectodomain and
the IL7 receptor endodomain. The study demonstrated that 4/7
ICR can be used to protect CAR-T cells from IL-4 inhibition. The
4/7 ICR accepts immunosuppressive IL-4 but converts its
downstream signals into immune-stimulating IL-7 receptors.
In contact with IL-4, CAR-T cells can maintain Th1 phenotype
a strong antitumor activity in vivo. Then, Somala Mohammed
et al. (90) generated CAR-T cells targeting prostate stem cell
antigen (PSCA) 4/7 ICR-CAR-T cells, which demonstrated that
4/7 ICR-CAR-T cells grew normally in an IL-4-rich
microenvironment, thereby enhancing their antitumor activity.
Subsequently, Yi Wang et al. (85) reported a novel IL-4/IL-21
ICR (4/21 ICR) that improved the tumor killing efficacy of CAR-
T cells through a mechanism different from that of the 4/7 ICR.
This study demonstrated that 4/21 ICR activates the STAT3
pathway in response to IL-4 stimulation, promoting Th17-like
polarization and tumor-targeted cytotoxicity of CAR-T cells in
vitro. In addition, 4/21 ICR-CAR-T cells also showed strong
antitumor activity against IL-4 positive tumors in vivo.
Therefore, gene-edited ICR CAR-T cells are a promising
clinical practice for the treatment of solid tumors.
POTENTIAL TOXICITY OF GENE-EDITED
INTERLEUKIN CAR-T CELLS

As mentioned above, gene-edited interleukin-CAR-T cell
technology is optimized not only to enhance the function of
CAR-T cells, but also to consider the cytotoxic effects of
interleukin-over release. A phase 1 clinical trial of CD5-IL15/
IL15 sushi CAR-T cells in refractory lymphoblastic lymphoma
(NCT04594135) has been published (107). The patient was
found to be well tolerated by infused CAR-T cells, causing
only grade I CRS toxicity. Levels of ferritin and high-sensitivity
C-reactive protein were briefly elevated. By detecting the
cytokine level of patients in the first month, it was found that
the expression of cytokines remained relatively stable. IL-15
levels also did not rise significantly after the infusion. CD5-
IL15/IL15 sushi CAR-T cells secreted IL15/IL15 sushi complex in
the body, which may lead to excessive IL-15 levels throughout
the body. However, this was not observed in patients. This study
demonstrates that gene-edited IL-15 CAR-T in the treatment of
refractory lymphoblastic lymphoma causes mild CRS and is fully
tolerated by the body. Besides, in the phase I clinical trial
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(NCT02587689) of MUC1-IL-12-CAR T cells constructed by
Fengtao You for the treatment of seminal vesicle carcinoma,
patients only started to experience mild headache, fever, muscle
pain, nasal congestion and abdominal distention discomfort.
From 6 to 12 days after the intratumoral injection, all
discomfort disappeared and the body temperature returned to
normal. Transient CRS was detected after intratumor injection,
with a 10-fold increase in IL-6 and an approximately 60%
increase in TNF-a (105). This study also confirmed that the
side effects produced by MUC1-IL-12-CAR-T cells can be
tolerated by the body. More clinical trials are needed to test
the potential cytotoxicity of gene-edited interleukin-CAR-T cells
before they can be widely used in the clinic.
DISCUSSION

Adoptive immunotherapy based onCAR-T cells has proved to be a
promising strategy for the treatment of hematological malignant
tumor. However, this clinical success has not been fully realized in
solid tumors largely because of the hostile TME of solid tumors.
Tumor immunosuppressive microenvironments limit the
proliferation and persistence of CAR-T cells, and often impair the
anti-tumor efficacy of CAR-T cells. Immunoregulatory cytokines,
whichare critical componentsofTcell activation, proliferation (10).
Interleukin plays different roles in tumor immunity. They regulate
the activation, proliferation and apoptosis of T cells, but also recruit
peripheral immune cells to participate in tumor immunity. In the
absence of these factors, even if the selected target is very good,
CAR-T cells will not produce a complete and lasting killing effect on
the tumor. Therefore, the above cytokines are used as cytokines for
gene modification of CAR structures, and preclinical studies have
also demonstrated that modified CAR-T cells can further enhance
the efficacy of CAR-T cells by secreting cytokines.

In addition, the present study demonstrated that partial
interleukin not only improves the function of CAR-T cells, but
also engages the host peripheral immune cells to participate in the
anti-tumor battle (79, 83, 100). This finding is critical because the
current clinical use of CAR-T cell technology requires that host
lymphatic clearance protocols provide adequate space for CAR-T.
The current preclinical trial demonstrates that gene-edited
interleukin-CAR-T cells can eliminate this step (79). This leads to
the possibility that, on the one hand, the clinical treatment of the
patient alleviates the pain of chemotherapy, and on the other hand,
the anticancer activity of these immune cells can be utilized by
genetically modifying IL secreted by CAR-T.

The CAR-T immunotherapy of genetically modified cytokines
also faces the problem of dose limiting toxicity.When cytokines are
produced in large quantities and corresponding receptors are
reduced in the tumor microenvironment, peripheral tolerance is
increased. Studies have demonstrated that genetically modified T
cells lead to overexpression of the IL-7 receptor, thereby enhancing
the antitumor activity of genetically modified IL-7 CAR-T and
reducing the dose limiting toxicity (112). This may be one of the
reasons why there aremany studies onCAR-T co-expression of IL-
7 at present. In response to this challenge, researchers developed
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CAR-T cells that genetically edited the interleukin-cell receptor and
interleukin-subunit, which can effectively limit the over release of
cytokines and prevent the development of CRS. However, the
treatment of malignancies with gene-edited single interleukin
CAR-T cells may also present problems of immune tolerance or
cytokine inactivation. Therefore, the researchers began to gene-
edited multiple cytokines to construct CAR-T cells, enabling the
cytokines to enhance the synergistic action of CAR-T cells to kill
tumor cells.

Gene-edited ICR CAR-T cells were developed to further
enhance their antitumor activity while overcoming tumor
immunosuppressor factors. The 4/7 ICR and 4/21 ICR CAR-T
cell technologies rely on inhibitory regulatory cytokines to activate
positive regulatory cytokines to perform immune regulatory
functions. It can effectively reverse the inhibitory cytokine signal
to the positive regulatory signal. Thus, CAR-T can better adapt to
the tumor immunosuppressive microenvironment. However, the
activation of ICR is limited by the expression of inhibitory factors in
tumor tissues, and it is difficult to activate ICRonce tumor tissues do
not express targeted inhibitory cytokines. If combined with gene-
edited interleukin and ICR to construct CAR-T cells, it may achieve
the purpose of reversing the inhibitory signal and enhancing the
positive signal. This may be an effective strategy for gene-edited
interleukin-CAR T cells to conquer solid tumors. At present, there
are a few studies in this area, andmorepreclinical studies areneeded
to verify its efficacy.

Currently, studies related to gene-edited interleukin CAR-T
have achieved some results, but there is still a long way to go
before it can be fully used in clinical trials. First, cytokines such as
interleukin not only act on CAR-T cells, but also act on other
immune cells, such as recruiting peripheral immune cells to
participate in tumor immunity. However, it is difficult to achieve
in immunocompromised mice, as part of the current pre-clinical
trials are in vivo studies using immunocompromised mice.
Secondly, the clinical treatment of gene-edited interleukin CAR-T
has the possibility of CRS, because overstimulation of interleukin
release, when tumor tissue receptor density cannot be satisfied, will
inevitably increase the load of peripheral circulation. All the above
need to be verifiedby further clinical studies. At present,most of the
relevant clinical trials are in recruitment, and someof themhavenot
been started yet. It is hoped that the relevant clinical research will
achieve gratifying results.
CONCLUSIONS

In summary, as immune regulatory factors, interleukin family
members exert important functions in the activation and
functional regulation of immune cells. In published preclinical
and clinical studies, gene-edited interleukin CAR-T has been
shown to enhance tumor killing in the treatment of malignancies
with tolerable side effects. With the development of gene-edited
technology and the development of researches on the interleukin
family, gene-edited interleukin CAR-T technology in the
treatment of malignant tumors will be able to achieve
encouraging results.
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