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Abstract

We computationally determined miRs that are significantly connected to molecular pathways by utilizing gene expression
profiles in different cancer types such as glioblastomas, ovarian and breast cancers. Specifically, we assumed that the
knowledge of physical interactions between miRs and genes indicated subsets of important miRs (IM) that significantly
contributed to the regression of pathway-specific enrichment scores. Despite the different nature of the considered cancer
types, we found strongly overlapping sets of IMs. Furthermore, IMs that were important for many pathways were enriched
with literature-curated cancer and differentially expressed miRs. Such sets of IMs also coincided well with clusters of miRs
that were experimentally indicated in numerous other cancer types. In particular, we focused on an overlapping set of 99
overall important miRs (OIM) that were found in glioblastomas, ovarian and breast cancers simultaneously. Notably, we
observed that interactions between OIMs and leading edge genes of differentially expressed pathways were characterized
by considerable changes in their expression correlations. Such gains/losses of miR and gene expression correlation indicated
miR/gene pairs that may play a causal role in the underlying cancers.
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Introduction

MicroRNAs (miRs) are small non-coding RNAs that interact

with their gene target coding mRNAs. Such small RNAs

putatively inhibit translation by direct and imperfect binding to

the 39- and 59-untranslated regions (UTR) [1] and exert expression

control with other regulatory elements such as transcription factors

[2,3,4].

The elementary role of miRs in gene expression has been

indicated in tissue- and organ-specific development [5]. miRs

also play an important role in tumors [6,7,8], where over-

expressed miRs might diminish the level of expression of

targeted tumor suppressor genes [9]. In turn, miRs may act as

tumor suppressors, when their down-regulation leads to

enhanced expression of targeted oncogenes [10] or are involved

in various steps of the metastatic process [11]. Generally,

aberrant expression of miRs in cancers can arise from the

deletion or mutation as well as methylation of miR coding

regions [12]. Furthermore, miRs may be located in common

breakpoint regions and genomic areas of amplification and loss

of heterozygosity [13]. Such alterations of miR-expression levels

have been implicated in the de-regulation of critical players in

major cellular pathways, modifying the differentiation, prolifer-

ation and survival of tumor cells. For example, miR-7 and miR-

221/222 have been shown to be involved in the activation of the

Akt and epidermal growth factor receptor (EGFR) signaling

pathways in gliomas [14,15] while miR-34a was found to be a

key regulator of p53 [16].

To provide a better understanding of the involvement of miRs

in pathways, we computationally determined miRs that are

significantly associated with molecular pathways. In particular,

we utilized gene expression profiles to determine a pathway

specific enrichment score in diverse cancer types, such as

glioblastomas, ovarian and breast cancers. Using data of physical

interactions between miRs and the 39UTR of mRNAs we counted

the numbers of leading edge genes (LEG) in each pathway that

were targeted by a given miR. We assumed that the topology of

interactions between LEGs of pathways and miRs allows an

assessment of the tumor-specific importance of the given miR for

the expression of the underlying pathways. Therefore, we used a

machine learning approach to fit pathway-specific enrichment

scores as a function of the corresponding number of LEGs that

were targeted by an array of miRs. Despite the diversity of the

underlying cancer types, we obtained a large, overlapping set of

important miRs (IM) that significantly influenced the regression

process in all cancer types considered. Furthermore, IMs that were

important for an increasing number of pathways were enriched

with literature curated cancer miRs and differentially expressed

miRs. Such sets of IMs also coincided well with clusters of miRs

that were experimentally indicated in numerous other cancer

types. Focusing on such an overlapping set of overall important

miRs (OIM) in glioblastomas, ovarian and breast cancers, we

investigated their interactions to LEGs in differentially expressed

pathways. We observed that such interactions were characterized

by considerable changes in their expression correlations. Such

gains or losses of expression correlations indicated OIM/LEG
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pairs that may influence expression changes in the underlying

pathways.

Methods

Matching gene and miR expression data
Using The Cancer Genome Atlas (TCGA, http://cancergenome.

nih.gov/), we utilized 77 glioblastoma samples and 10 non-tumor

control samples that provided matching gene and miR expression

profiles. We also used 77 samples of ovarian cancer and 8 non-

cancer tumor samples, as well as 79 breast cancer and 19 non-cancer

control samples.

Comparing disease and control samples, we determined

differentially expressed miRs by a Student’s t-test if FDR,0.01.

Accordingly, we found 164 differentially expressed miRs in GBMs,

282 in ovarian and 82 in breast cancers.

Literature curated cancer-miRs
We collected overlapping sets of 35 oncomiRs, 42 tumor

suppressor- miRs [6,9,17,18,19,20,21] and 32 miRs that were

involved in metastasis [11,19,20,21,22] (Fig. S1). The HMDD

database [23] collects reports from the literature that experimen-

tally indicated a miRs involvement in different tumor types.

Specifically, we utilized sets of 45 miRs in glioblastomas, 81 in

ovarian and 125 in breast cancer.

Pathway information
As a source of reliable protein pathway information, we used

429 annotated pathways from the Reactome database [24].

miR-mRNA interactions
Utilizing human specific data from PicTar [25], miRanda

[26,27] and TargetScanS [28] we assembled 48,939 interactions

between 386 miRNAs and 6,725 mRNAs, demanding that each

interaction was reported by at least two sources [29]. All

interaction pairs are presented in Table S1.

Determination of important miRs (IM)
Using gene expression data of a cancer type, we applied GSEA

[30] to calculate a normalized enrichment score of each pathway.

We represented each pathway by a profile of miRs that reflected

the number of leading edge genes (LEG) in the underlying

pathway a given miR interacts with. Focusing on a given miR we

normalized such numbers by a Z-score averaging over all

pathways. Finally, we used random forest algorithm [31] to

perform a regression of the pathways normalized enrichment

scores as a function of the miR profiles of Z-scores. In each of

10,000 regression trees, we randomly sampled
ffiffiffi
n
p

of all n miRs

and
ffiffiffi
x
p

of all x pathways [21,29]. As for the assessment of a miR’s

importance for each pathway in the fitting process, we permuted

enrichment scores and the number of targeted LEGs, calculating

randomized local importance values for each miR/pathway pair.

We repeated the randomization process 100 times and constructed

null-distributions of randomized importance scores for each miR/

pathway pair. Fitting such distributions with a Z-test, we

calculated P-values for each miR/pathway pair. We corrected

for multiple testing by calculating the corresponding false

discovery rate (FDR) [32] and defined an important miR (IM)

of a pathway if FDR,0.01.

Enrichment analysis
We grouped important miRs (IM) according to their number of

pathways. Specifically, we represented each group by N§k IMs

that had at least k pathways. In each group we calculated the

number of IMs with a certain feature i (i.e. being differentially

expressed or a cancer miR), Ni,§k. Randomly assigning feature i

to IMs we defined Ei~
Ni,§k

Nr
i,§k

as the enrichment of IMs with

feature i where Nr
i,§k was the corresponding random number of

IMs with feature i among all N§k IMs. After averaging Ei over

10,000 randomizations Ei.1 pointed to an enrichment and vice

versa, while Ei,1 indicated a random process [33]. Analogously,

we determined the enrichment of differentially expressed pathways

as a function of the number of their IMs.

Change of expression correlations
Assuming ND cancer and NC non-tumor control samples, we

calculated Pearson’s correlation coefficient of an interacting miR i

and gene j in the disease (rD
ij ) and control (rC

ij ) samples.

Subsequently, we Fisher transformed correlation coefficients into

a Z-score reflecting the difference of correlation coefficients

defined as DZij~

ln
1zrD

ij

1{rD
ij

{ln
1zrC

ij

1{rC
ij

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND{3ð Þ{1

z NC{3ð Þ{1
q . Therefore, a

positive DZ corresponded to a gain of correlation in the disease

case and vice versa.

Results

Utilizing The Cancer Genome Atlas (TCGA, http://cancergenome.

nih.gov/), we searched for samples in cancer types that provided

matching gene and miR expression profiles of each sample. While we

obtained 77 GBM and 10 non-cancer brain control samples, we

identified 77 samples of ovarian cancer and 8 non-ovarian cancer

samples, as well as 79 breast cancer and 19 non-breast cancer control

samples. As a reliable source of canonical protein pathway information

we used 429 pathways from the Reactome database [24].

Determination of pairs of important miRs (IM) and
pathways

In the first step of our procedure (Fig. 1A), we applied Gene Set

Enrichment Analysis (GSEA) [30] to determine a normalized

enrichment score of each pathway, comparing expression profiles

in cancer cases to their non-cancer controls. Accounting for the

expression characteristics of different cancer types, we represented

Author Summary

We assume that a network of physical interactions
between miRs and genes allows us to determine miRs
that influence the expression of whole pathways in
different tumor types. Specifically, we represented each
pathway by an enrichment score and an array of miRs
counting the number of genes in the pathway a given miR
can bind. Despite the different nature of the considered
tumor types, we obtained a large set of overlapping miRs
using a machine-learning algorithm. Such associated miRs
were enriched with literature-curated cancer and differen-
tially expressed miRs and also coincided well with clusters
of miRs that were experimentally indicated in numerous
other cancer types. Focusing on such sets of miRs we
observed that interactions with genes in differentially
expressed pathways were characterized by massive gains/
losses of expression correlations. Such drastic changes of
miR and gene expression correlation indicate miR/gene
pairs that may play a causal role in the underlying cancers.

Important miRs of Pathways in Cancers
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each pathway by ‘leading edge genes’ (LEG), a subset of genes that

significantly drove the enrichment of a given pathway in the

disease cases [30]. Furthermore, we assembled 48,939 interactions

between 386 miRs and 6,725 mRNAs (Table S1). Pooling such

miR-gene interaction data from PicTar [25], miRanda [26,27]

and TargetScan [28], we demanded that each interaction was

reported by at least two sources [29]. Considering each pathway as

a set of LEGs, we counted the number of such genes that a given

miR interacted with. Consequently, each pathway was further

represented by a miR interaction profile, indicating the number of

LEGs in a pathway a given miR interacted with (Fig. 1B).

Averaging over all pathways, we normalized miR-specific entries

in this matrix by a Z-score. Representing each pathway by its

normalized enrichment score, we applied the random forest

algorithm, allowing the calculation of an importance value for

each miR/pathway pair. Such an importance measure reflects the

impact of the given miR on the fitting process of the underlying

pathway’s enrichment score. To assess the statistical significance of

local importance scores we resorted to permutation tests (Fig. 1C).

Randomizing both pathway enrichment scores and the miRs

numbers of targeted LEGs we generated null-distributions of

importance scores for each miR/pathway pair. Utilizing a Z-test

we determined P-values and observed a pair of an important miR

(IM) and a pathway if FDR,0.01 [32].

In glioblastomas, we found a total of 2,320 significant pairs

between 167 IMs (49.6% out of all miRs that interacted with

LEGs in 429 pathways) and 265 pathways (61.8% out of all 429

pathways). Furthermore, we observed that the set of pathways was

significantly enriched with differentially expressed pathways as

provided by GSEA (FDR,0.01) applying Fisher’s exact test

(P,10212). Similarly, we found 2,564 pairs between 171 IMs

(50.3%) and 322 pathways (75.1%) in ovarian cancer (P,1027)

while 156 IMs (47.3%) were linked to 309 pathways (72.0%)

through 2,041 pairs in breast cancer (P,1029). For a complete list

of all IM/pathway pairs see Tables S2, S3, S4. In Fig. 1D, we

observed that sets of IMs largely overlapped, allowing us to find 99

overall important miRs (OIM), corresponding to 59.2% of IMs in

GBM, 57.9% in ovarian and 63.5% in breast cancer. In turn, we

also found that pathways overlapped strongly (Fig. S2A) with 182

pathways present in all cancer types considered, a value that

translated into 68.7% of pathways in GBMs, 56.5% in ovarian and

58.9% in breast cancers. Furthermore, we observed a small

overlap of 98 IM-pathway pairs that appeared in all cancer types

considered (Fig. S2B, Table S5).

Statistics of important miRs and pathways
Since we determined the impact of each interacting miR on the

fit of each pathway’s enrichment score, an IM may be important

to more than one pathway and vice versa. In Fig. S3A, we observed

a logarithmic decay in the frequency distribution of the number of

pathways an IM targeted in all cancer types. In turn, the frequency

distribution of the number of IMs a given pathway is significantly

linked to decreased exponentially as well (inset, Fig. S3B).

Obtaining auxiliary cancer-related information, we collected 72

cancer-related miRs from the literature, consisting of overlapping

sets of 35 onco-, 42 tumor suppressor- and 32 metastamiRs

[6,9,17,18,19,20,21] (Fig. S1). Furthermore, we utilized the

HMDD database [23] pooling experimental evidence that a

miR was involved in given cancer types. We also determined

differentially expressed miRs with a t-test (FDR,0.01) [32] using

miR expression profiles of glioblastomas, ovarian and breast

cancer. In Table S6 we ordered IMs according to their

corresponding number of pathways in each cancer type. Specif-

ically, IMs that were linked to an increasing number of pathways

seemed to be enriched with literature curated cancer miRs, tend to

be differentially expressed and experimentally indicated in the

given cancer types.

On a more quantitative basis, we grouped IMs according to their

number of pathways in a given cancer type. In groups of IMs that

were linked to at least k pathways we determined the number of

literature-curated miRs. In a null-model, we randomly picked sets of

literature-curated miRs and determined their enrichment in each

group as the ratio of the observed and expected numbers. Fig. S4A

suggests that groups of IMs with increasing numbers of pathways

tend to be enriched with cancer miRs in all given cancer types.

Analogously, we determined the enrichment of differentially

expressed miRs and observed that such groups of IMs were

predominantly enriched with differentially expressed miRs as well

(inset, Fig. S4A). Similarly, we calculated the enrichment of

differentially expressed pathways as a function of the number of

IMs of a given pathway. Distributions in Fig. S4B suggested that

pathways with an increasing number of IMs had a heightened

tendency to be differentially expressed in all tumor types considered.

Comparison of IMs to miRs implicated in other cancer
types

Utilizing data from the HMDD database [23] we collected

information about miRs that were experimentally found to play a

role in more than 90 cancer types. Focusing on 25 cancer types

with at least 25 different, implicated miRs (including glioblastoma,

ovarian and breast cancer) we constructed a bipartite matrix,

indicating if a given miR was experimentally reported in a certain

cancer type. Ward-clustering such a binary matrix, we observed

two large clusters of miRs (Fig. 2). Counting the number of

different cancer types a miR was experimentally found in, we

observed that such clusters consisted of the most frequently

indicated miRs (histogram, Fig. 2). Therefore, we expected that

such clusters may be enriched with IMs. Indeed, our separate sets

of IMs in glioblastoma, ovarian and breast cancer overlapped well

with this general pattern of miR involvement in different tumor

types. Applying a hypergeometric test we further checked if IMs

were enriched among miRs that appeared in at least 3 different

cancer types. Indeed, 106 IMs in GBMs occurred in such a set of

miRs (P,1025), while we found 107 in ovarian (P,1024) and 100

in breast cancers (P,1024). Focusing on our set of 99 overlapping,

overall important miRs (OIM) in GBMs, ovarian and breast

cancers we also observed a significant overlap of 74 miRs

(P,1025). Furthermore, literature curated cancer miRs were

largely placed in previously mentioned clusters as well. In

particular, 38 cancer miRs overlapped with our set of 99 OIMs

(P,10210), suggesting that OIMs may play a central role in

different cancer types.

Analysis of overall important miRs (OIM)
Utilizing such an overlapping set of 99 OIMs, we focused on

connections to differentially expressed pathways and found a total

of 93 pathways in glioblastoma, 55 in ovarian and 87 in breast

cancers. Mapping the corresponding links between OIMs and

these pathways in glioblastoma we constructed a binary matrix.

Ward clustering allowed us to obtain two large clusters of either

up- or down-regulated pathways that strongly corresponded to two

groups of largely down- or up-regulated, differentially expressed

OIMs (Fig. 3A). Down-regulated pathways mostly revolved

around neurotransmitter specific pathways while up-regulated

pathways covered prominent signaling, regulation and transcrip-

tion functions (see Fig. S5 for an enlargement). As for ovarian

(Fig. S6A) and breast cancers (Fig. S7A), we obtained similar

results. Notably, we only observed interactions between OIMs and

Important miRs of Pathways in Cancers
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up-regulated pathways in ovarian cancers that largely revolved

around signaling and regulation functions.

Using such pairs of OIMs and pathways in GBMs, we retrieved

all interactions between OIMs and LEGs in the corresponding

pathways that were placed in the previously found clusters.

Merging gene and miR expression data, we calculated Pearson’s

correlation coefficients using gene and miR expression profiles in

glioblastoma and non-tumor control samples. As a measure of the

Figure 1. Prediction of important miRs. In (A) we utilized gene expression profiles of cancer and non-cancer control samples and determined
normalized GSEA enrichment scores of molecular pathways. In addition, we represented each pathway by the corresponding set of leading edge
genes (LEG). (B) We fitted pathway-specific enrichment scores as a function of the corresponding number of LEGs that are targeted by a given miR.
Using the random forest algorithm we obtained importance scores of each miR. (C) To assess the statistical significance of a miR’s importance we
performed permutation tests, randomizing both enrichment scores and the number of targeted LEGs. Building random distributions of importance
scores, we utilized a Z-test to determine corrected P-values of each miR/pathway pair. (D) While we found 167 important miRs (IM) in GBMs, 171 in
ovarian cancer and 156 in breast cancer (FDR,0.01), we observed large overlaps between these sets of IMs.
doi:10.1371/journal.pcbi.1002883.g001
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PLOS Computational Biology | www.ploscompbiol.org 4 January 2013 | Volume 9 | Issue 1 | e1002883



Important miRs of Pathways in Cancers

PLOS Computational Biology | www.ploscompbiol.org 5 January 2013 | Volume 9 | Issue 1 | e1002883



difference between expression correlation coefficients in the

disease (rD) and non-tumor control cases (rC) we Fisher-transformed

correlation coefficients into Z-scores and calculated the corre-

sponding change in correlation, DZ. A negative/positive value of

DZ indicates a loss/gain of correlation in the disease case.

Focusing on interactions between OIMs and the corresponding

LEGs of pathways in these clusters we observed bimodal

distributions of DZs in glioblastoma (Fig. 3B). Notably, interactions

between OIMs and LEGs that corresponded to down-regulated

pathways and predominantly up-regulated miRs were character-

ized by a peak at DZ = 21.0, pointing to a loss of expression

correlation. Focusing on miR/gene interactions in the cluster of

up-regulated pathways and largely down-regulated miRs we

observed a peak at DZ = +1.0, pointing to a gain of correlation.

Analogously, we obtained such distributions for pairs of OIMs and

LEGs in ovarian (Fig. S6B) and breast cancer (Fig. S7B).

Focusing on GBMs, we mapped all interactions between OIMs

and LEGs we found in the corresponding clusters if their

correlation change was |DZ|.1.0. As for the cluster that revolved

around down-regulated pathways and up-regulated OIMs

(Fig. 3C), we observed many interactions between differentially

expressed OIMs and ITPR1 (inositol 1,4,5-trisphosphate receptor

Figure 2. Comparison to experimentally determined miR involvement in various cancer types. In the heatmap of 25 different cancer
types we showed miRs that were experimentally indicated in the underlying tumor types (peach boxes). We observed two large clusters (dashed
lines), consisting of most frequently indicated miRs (histogram). Important miRs (IM) found in glioblastomas, ovarian and breast cancers separately
corresponded well to such clusters. Such a trend was reinforced by the overlaps of these sets and matched the placement of literature curated cancer
miRs as well.
doi:10.1371/journal.pcbi.1002883.g002

Figure 3. Analysis of correlation change in glioblastomas. (A) Focusing on a set of 99 overlapping overall important miRs (OIM) in GBMs,
ovarian and breast cancers, we indicated OIMs and their corresponding differentially expressed pathways in GBMs (peach boxes). In such a binary
matrix we observed two large clusters that distinguished largely between either up- or down regulated pathways (orange, green boxes). In (B) we
calculated the change of expression correlation, DZ, for all pairs of OIMs in such clusters and their interacting leading edge genes (LEG) in the
corresponding pathways. In particular, we observed multimodal distributions with local peaks around DZ = 61.0 (dashed lines). In (C) and (D) we
mapped all interactions between OIMs and LEGs of pathways that corresponded to the observed clusters. Specifically, we only accounted for
interactions with a correlation change |DZ|.1.0.
doi:10.1371/journal.pcbi.1002883.g003

Important miRs of Pathways in Cancers
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type 1) with losses of expression correlations. Overall important

miRs mapped in this analysis included miR-34a, -27b, -128ab and

-15b. Focusing on the cluster composed by down-regulated

pathways and largely up-regulated OIMs (Fig. 3D), we found

miR-21 and let-7i in interactions with losses of expression

correlation and miR-137 in interactions that gained expression

correlation.

We mapped miRs and associated pathways in ovarian (Fig.

S6C) and breast cancers as well (Fig. S7CD). While we found a

strong presence of signaling, transcription and translation related

pathways in ovarian cancers, we also observed pathways that

revolved around transcription factor E2F and the SFRS1 protein.

Focusing on a cluster of up-regulated pathways in breast cancers

and largely up-regulated miRs (Fig. S7C) we found down-

regulated AKT3 that was interacting with a couple of up-

regulated miRs. These results are discussed below (see Discussion).

Discussion

Although a growing appreciation of the importance of miRs in

cancers is emerging, much remains unknown about their

regulatory impact. Current knowledge appears rather scattered,

focusing on single interactions between miRs and target genes of

interest in a given cancer type. Here, we chose a different

approach by utilizing pairwise interactions between miRs and

target genes to identify combinations of important miRs (IM) and

pathways in a given cancer type.

A major criterion that may influence our results is the accuracy

of computational methods that predict interactions between miRs

and the UTRs of genes. Since such computational approaches

suffer from false positives, we chose results of three different

algorithms and demanded that each interaction was at least

predicted twice, potentially allowing us to limit spurious signals

[34].

We modeled the expression change of pathways comparing sets

of cancer to non-tumor control cases as a function of the number

of interactions between leading edge genes that drive the

expression of a given pathway and miRs. We stress our initial

assumption that the mere number of targeted LEGs in a pathway

is a reasonable proxy to model the expression change of pathways

in a disease, therefore allowing us to capture tumor specific effects.

Although our approach did not account for any expression levels

of miRs in given tumor types, we assume that the expression

change of pathways is not only a matter of leading edge genes but

the binding miRs as well. As such, we modeled expression change

as a skeleton of miR interactions. Since such links strongly

influence the flow of molecular information, we conclude that the

consideration of miRs expression putatively won’t override results

that were largely imposed by the underlying topology of miR

interactions.

Furthermore, such an approach allows us to determine

combinations of important miRs that potentially influence such

expression changes through their targeted LEGs in the given

pathways. Utilizing data of diverse cancer types, such as

glioblastomas, ovarian and breast cancers, we clearly observed

largely overlapping sets of IMs that were predominantly linked to

differentially expressed pathways. Confirming our initial hypoth-

eses, IMs with many pathways were predominately enriched with

literature-curated cancer miRs and differentially expressed miRs.

Besides, such pathway specific connections may be harnessed to

predict meaningful sets of miRs that play a role in the underlying

cancers. Notably, overall important miRs (OIM) in all cancer

types coincided well with the most frequently indicated cancer –

related miRs in different cancer types, indicating the relevance of

our predictions. While the consideration of miR expression levels

may change the number of IMs, such observations strongly suggest

that a diminished set of OIMs will continue to show similar

characteristics.

Focusing on specific details of glioblastomas, ovarian and breast

cancers, such cancer types are typically stratified by certain

subtypes as indicated by subtle changes in gene expression profiles.

While we acknowledge that pairs of pathways and important miRs

may vary, we don’t expect that the sets of IMs will dramatically

change: considering that completely different cancer types with

significant differences in their gene expression profiles provided

largely overlapping sets of IMs, we expect that results that account

for subtype information will be largely robust.

Focusing on our set of 99 OIMs, we identified all interactions to

LEGs in differentially expressed pathways. Comparing non-tumor

control to disease cases, such interactions suffered partially from a

massive loss of (anti-) correlation that were indicated by

multimodal distributions of expression correlation changes.

Dramatic changes of the expression correlation of interactions

may therefore be considered to significantly influence the

expression of LEGs, contributing to the perturbation of pathways

in the underlying cancer types.

As for qualitative observations of such OIM-LEG pairs we

found that many differentially expressed miRs appeared interact-

ing with ITPR1 in GBMs (Fig. 3C). This receptor1 is central to

many signaling GBM-relevant pathways, including NGF and Plc-

c1 signaling pathways as well as insulin regulation and diabetes

related pathways. miR-34a has been found to play an important

role in glioblastoma as a tumor suppressor [16,35] while being a

mediator of p53 [14,36,37,38,39] in an interaction with a loss of

expression correlation. Important targets of miR-34a included

members of the Notch family and the oncogene c-met [40].

Specifically, we found an association of miR-34a with phospho-

lipase C (PLCB1), which has recently been identified as a regulator

of glioma cell migration [41].

The result of miR-27b was rather unexpected, since this miR

has been reported up-regulated in gliomas [42]. However, the

observed discrepancy may result from the experimental setup

where the up-regulated miR-27b might have resulted from an

inflammatory reaction [43] and originated from other than the

glioma cells. Moreover, miR-27b has been identified as a pro-

angiogenic miR in endothelial cells [44] and found to be

involved in tumor angiogenesis [45]. Regarding the up-regula-

tion of miR-27b in glioma cells, cell culture conditions used in

[42] promote cell differentiation (medium containing fetal bovine

serum) that may artificially affect the miRs expression profile.

Therefore, we believe that the down-regulation of miR27b and

its effects on calcium metabolism (CALM3, CACNB2) and

exocytosis-related (SNAP25) genes reflect the actual situation in

GBMs.

The down-regulation of miR-128ab in human glioma and

glioblastoma cell lines has previously been reported [46] to

increase the expression of ARP5, Bmi-1 and E2F-3a, promoting

neural stem cells renewal and regulate cell-cycle progression [46].

Beside miR-128ab being important regulators of brain cell

proliferation, we indicated that miR128ab may also affect

expression of genes involved in energy metabolism (PFKM) and

transmembrane signal transduction (SYT1, EPB41, ADCY3).

miR-15b has been identified as an inhibitor of glioma growth

while cyclin E1 has been found as a target of miR-15b,

suggesting its role in cell cycle regulation [47]. Here, we

observed that serotonin receptor 4 (HTR4) was down-regulated

in glioblastoma samples, a process that is associated with up-

regulation of miR-15b.
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The cluster composed of down-regulated pathways and largely

up-regulated OIMs (Fig. 3D) revealed miR-21, let-7i, and miR-

137 to be involved in interactions with losses and gains of

expression correlation, respectively. Putatively, miR-21 works as

an ‘oncomiR’, decreasing apoptosis in malignant cells while down-

regulated miR-137 is involved in the differentiation of glioma stem

cells [48]. Implicated in the development of glioblastomas [49,50],

knockdown of miR-21 leads to reduced cell proliferation,

invasiveness, tumorigenicity and increased apoptosis [49,50,51].

Furthermore, miR-21 was reported to be involved in at least three

tumor-suppressive pathways including mitochondrial apoptosis,

p53 and TGF-b [50,52,53,54] pathways. Our results revealed

further cancer-relevant target genes including STAG2, CNOT6,

SOX2, CDC25A and SFRS3 (Fig. 3D). Specifically, STAG2

encodes a subunit of cohesion, a multimeric protein complex

required for cohesion of sister chromatids after DNA replication.

Furthermore, STAG2 is cleaved at the metaphase-to-anaphase

transition to enable chromosome segregation [55,56,57]. Chro-

mosomal instability, which leads to aneuploidy, loss of heterozy-

gosity, translocations and other chromosomal aberrations is one of

the hallmarks of cancer [57]. Robust STAG2 expression has been

shown in non-neoplastic tissues while significant fractions of

glioblastomas had completely lost expression of STAG2 [58],

suggesting that miR-21 may have both oncogenic and tumor-

suppressive effects. A link between miR-21 and the p53 pathway

could be CNOT6 (Ccr4a), a deadenylase subunit of the Ccr4-Not

complex that is involved in mRNA degradation [59]. Ccr4a,

together with Ccr4b, has been identified as a key regulator of

insulin-like growth factor-binding protein 5, mediating cell cycle

arrest and senescence through the p53-dependent pathway

[60,61]. Moreover, CNOT6 plays an important role in chemo-

therapy resistance to cisplatin through down-regulation of DNA-

damage response by targeting Chk2 [62]. miR-21 expression was

shown up-regulated in response to ionizing radiation while the

inhibition of miR-21 enhanced the radiation-induced glioblastoma

cell growth arrest and increased the level of apoptosis. While this

effect may be mediated by CDC25A [63], our results suggested

that CDC25A was targeted by miR-21 (Fig. 3D). Additionally,

Cdc25A appears to be a promising therapeutic target in

glioblastomas as its levels were reported to correlate with Ki-67

labeling index [64]. Another target gene that we identified to be

controlled by miR-21, SFRS3, is a pro-oncogene involved in

mRNA and rRNA processing. Furthermore, SFRS3 has been

reported as a critical factor for tumor induction, progression and

maintenance [65,66]. Lastly, the association of miR-21 with

SOX2, a marker for undifferentiated and proliferating cells with

up-regulated expression in glioblastomas [67] further underlined

the importance of miR-21 for the pathogenesis of these tumors.

Let-7 appears to be a tumor suppressor while inhibiting K-ras

and C-myc [68,69]. In glioblastomas, overexpression of let-7 has

been shown to decrease cell proliferation [70]. We found a link

between let-7i and integrin b3 (ITGB3) whose pro-apoptotic role

has been reported in glioma cells [71].

miR-137 is also a putative tumor suppressor and is down-

regulated in gliomas through a DNA hypermethylation mecha-

nism [48]. Cooperating with miR-124, miR-137 may suppress

expression of phosphorylated Rb and CDK6 while inducing cell

cycle arrest at G0/G1 in glioma cells [48]. Our results further

suggested glioma relevant targets that are involved in AKT-

mTOR signaling (MAPKAPK2 and YBX1) (Fig. 3D). The

significance of other associated partners such as genes that encode

ribosomal proteins RPL28 and RPS13 remains to be established.

Mapping OIMs and their pathways in ovarian cancer revealed

interactions between several miRs and transcription factor E2F

and particularly between E2F3 and miRs-148b, -124 and -34a (Fig.

S6C). Indeed, miR-34a was shown to epigenetically govern the

expression of E2F3 through methylation of its promoter [72]. In our

analysis, miR-132 and miR-212 gain expression correlation in

interactions with SFRS1, a proto-oncogene that is involved in pre-

mRNA splicing with the ability to change the splicing patterns of

crucial cell cycle regulators and suppressor genes. Of particular

interest is the observation that SFRS1 is up-regulated in many

cancer types and therefore a potential target for cancer therapy

[73]. Importantly, the role of these miRs and their interactions with

target genes in ovarian cancers is not well understood. However,

indications exist that both miRs that share a seed sequence may play

a role since both miRs were found to be down-regulated by

promoter methylation that contributes to pancreatic cancers [74].

The down-regulation of AKT3 upon interaction with several

up-regulated miRs was the highlight observation in the cluster of

up-regulated pathways in breast cancers (Fig. S7D). AKT kinases

are regulators of cell signaling in response to insulin and growth

factors and are involved in a wide variety of biological processes

including cell proliferation, differentiation, apoptosis, tumorigen-

esis as well as glycogen synthesis and glucose uptake. In our

analysis, we found that AKT3 interacted with miRs-181ac,

gaining expression correlation, while miR15a, -16 and -20a lost

expression correlations with their target genes. In particular, miR-

15a and -16 were already indicated as relevant in different cancers

[75]. Furthermore, members of the miR-181 family were shown to

induce sphere formation in breast cancer cells [76].

Supporting Information

Figure S1 Overlaps of sets of onco-, tumorsuppressor-
and metastamiRs. Venn diagram of the overlaps of 35 onco-,

42 tumorsuppressor- and 32 metastamiRs, totaling 72 cancer-

related miRs.

(PDF)

Figure S2 Overlaps of pathways and pairs of important
miRs/pathways. (A) While we found 365 pathways in GBMs,

322 miRs in ovarian cancer and 309 in breast cancer (FDR,0.01),

we observed large overlaps between these sets. (B) Focusing on

overlapping pairs of important miRs and pathways that appeared

in all cancer types considered, we observed a small overlap.

(PDF)

Figure S3 Statistics of important miRs and their
pathways. In (A) we counted the number of pathways of each

important miRs (IM), allowing us to find a logarithmic decay in

such a frequency distribution. (B) In turn, we determined the

number of IMs of each pathway, indicating an exponential decay

in the corresponding frequency distribution.

(PDF)

Figure S4 Enrichment analyses. In (A) we determined the

enrichment of cancer miRs and differentially expressed miRs in

groups of important miRs (IM) that have a certain number of

pathways. Specifically, we observed that IMs with increasing

number of pathways were enriched with literature curated cancer

miRs as well as differentially expressed miRs (inset) in all cancer

types considered. (B) In turn, we grouped pathways in sets that

have at least a certain number of IMs. Determining the

enrichment of differentially expressed pathways in such groups,

we found that pathways with an increasing number of IMs tend to

be differentially expressed.

(PDF)

Figure S5 Enlargement of Fig. 3A in the main paper.
(PDF)
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Figure S6 Analysis of correlation change in ovarian
cancer. (A) Focusing on our set of 99 overall important miRs

(OIM), we indicated if such miRs were linked to differentially

expressed pathways in ovarian cancer (peach boxes). We observed

a large cluster that corresponded to down regulated pathways

(orange box). In (B) we calculated the change of expression

correlation, DZ, for all pairs of OIMs in this cluster and the

interacting leading edge genes in the corresponding pathways,

indicating local peaks around DZ = 61.0 (dashed lines). In (C) we

mapped all such interactions between OIMs and leading edge

genes if they had a correlation change |DZ|.1.0.

(PDF)

Figure S7 Analysis of correlation change in breast
cancer. (A) Focusing on our set of 99 OIMs, we indicated if

such miRs were linked to differentially expressed pathways in

breast cancer (peach boxes). Specifically, we observed two large

clusters that corresponded to either up- or down regulated

pathways (orange, green boxes). In (B) we calculated the change

of expression correlation, DZ, for all pairs of OIMs in such clusters

and their interacting leading edge genes in the corresponding

pathways. Specifically, we observed multimodal distributions with

local peaks around DZ = 61.0 (dashed lines). In (C) and (D) we

mapped all such interactions between OIMs and leading edge

genes in these clusters if they had a correlation change |DZ|.1.0.

(PDF)

Table S1 Utilized miR-mRNA interactions. List of all

48,393 interactions between miRs and genes, that have been

confirmed by two different sources (M: miRanda, P: PicTar, T:

TargetScan).

(XLS)

Table S2 Pairs of significantly associated miRs and
pathways in glioblastomas. 265 pathways that were signifi-

cantly associated to miRs in glioblastoma. Each pathway is

annotated with its leading edge genes and important miRs. P-

Values are indicated in parentheses. Furthermore, we indicate if a

pathway is differentially expressed (DE) with FDR,0.01.

(XLS)

Table S3 Pairs of significantly associated miRs and
pathways in ovarian cancer. 322 pathways that were

significantly associated to miRs in ovarian cancer. Each pathway

is annotated with its leading edge genes and important miRs. P-

Values are indicated in parentheses Furthermore, we indicate if a

pathway is differentially expressed (DE) with FDR,0.01).

(XLS)

Table S4 Pairs of significantly associated miRs and
pathways in breast cancer. 309 pathways that were

significantly associated to miRs in breast cancer. Each pathway

is annotated with its leading edge genes and important miRs. P-

Values are indicated in parentheses. Furthermore, we indicate if a

pathway is differentially expressed (DE) with FDR,0.01.

(XLS)

Table S5 Pairs of miR/pathways that appear in all
cancer types. We show 98 pairs between 59 pathways and 27

miRs that appeared in GBMs, ovarian and breast cancers.

(XLS)

Table S6 Significantly associated miRs in glioblastoma,
ovarian and breast cancers. In particular, we sorted miRs

according to the number of significatly associated pathways (Npw)

and annotaed each miR if they appear in a set of literature-curated

cancer miRs (C), are differentially expressed (E) and implicated in

the corresponding cancer type (I).

(XLS)
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