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Abstract
Background: Homeodomain proteins control fundamental cellular processes in development and
in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs),
TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are
activated by particular chromosomal aberrations. However, their precise function in
leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified
the common expression of MSX2. The subsequent aim of this study was to analyze the role of
MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs.

Methods: Specific gene activity was examined by quantitative real-time PCR, and globally by
expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-
precipitation. For overexpression studies cell lines were transduced by lentiviruses.

Results: Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels
in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells.
Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic
factors confirmed their involvement in regulation. These results indicated that MSX2 represents an
hematopoietic NKL family member which is downregulated during T-cell development and may
functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally
transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These
cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as
analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated
sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to
MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/
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MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally,
elevated expression of NOTCH3 and HEY1 was detected in primary TLX1/3 positive T-ALL cells
corresponding to the cell line data.

Conclusion: Identification and analysis of MSX2 in hematopoietic cells implicates a modulatory
role via NOTCH3-signaling in early T-cell differentiation. Our data suggest that reduction of
NOTCH3-signaling by physiological downregulation of MSX2 expression during T-cell
development is abrogated by ectopic expression of oncogenic NKLs, substituting MSX2 function.

Background
T-cells derive from early progenitor cells which in turn
originate from CD34+ hematopoietic stem cells (HSC).
After emigrating from the bone marrow, T-cells complete
development in the thymus as thymocytes, passing several
differentiation stages distinguished by the expression of
surface proteins (e.g. CD3, CD4, CD8) and rearrange-
ments of the T-cell receptor (TCR) genes [1]. Transcription
factors LEF1, beta-Catenin and PU.1 and cytokines IL7,
TGFbeta and BMP4 regulate thymocyte differentiation
[2,3]. Furthermore, several signaling pathways are crucial
for T-cell developmental processes, comprising TCR-,
WNT- and NOTCH-pathways [4-6]. The last activates tran-
scription factor CBF1/CSL/RBPJ which is associated with a
repressor complex, mediating target gene silencing. This
large complex contains several corepressor proteins,
including SPEN/SHARP/MINT, TLE1/GRG1, CTBP and
SKIP, and is localized in subnuclear aggregates [7-11]. Fol-
lowing ligand binding the transmembrane receptors
NOTCH1 or NOTCH3, are proteolytically cleaved by
gamma-secretase to release their intracellular domains,
subsequently activating CBF1 by displacement of the
repressor complex [6]. HES1/HRY and HEY1/HESR1/
HRT1 are NOTCH activated target genes and members of
the basic helix-loop-helix (bHLH) family of transcription
factors. This family also includes their dimerization part-
ners E12 and E47, representing fundamental regulators of
lymphocyte differentiation [12]. Additional downstream
effects of NOTCH comprise activation of the PI3K-path-
way and of NFkB, enhancing survival of thymocytes
[13,14].

Most oncogenes identified in T-cell acute leukemia (T-
ALL) encode factors either regulating stage-specific thy-
mocyte development, comprising NOTCH1, LMO2 and
HOXA genes, or ectopically activated factors, including
TAL1 and NK-like homeobox genes (NKLs) [15]. This
gene family has been identified in Drosophila, comprising
genes which essentially regulate fundamental steps in
mesodermal and ectodermal differentiation [16-19].
Three NKL family members, TLX1/HOX11, TLX3/
HOX11L2 and NKX2-5/CSX, act as master oncogenes in
T-ALL. These genes are activated via chromosomal rear-

rangements and juxtaposed with either TCR genes or
remote BCL11B enhancers displaying t(5;14)(q35;q32)
[20-25]. Physiologically, TLX1 and NKX2-5 are expressed
in developing spleen and, additionally, NKX2-5 in devel-
oping and adult heart [26,27]. Expression of TLX3 is
restricted to cells of the peripheral nervous system [28].
Therefore, the leukemic actions of these genes might plau-
sibly recapitulate their physiological activities as recently
described for NKX2-5 [29]. Another related issue concerns
whether similarities in oncogenic activity reflect kinship
among homeobox genes.

Here we screened additional NKL leukemogenic candi-
dates, thereby identifying common expression of MSX2 in
T-cell lines. MSX2 is involved in organogenesis and differ-
entiation of several tissues, including heart and the neural
crest derivates teeth, hair follicles and bones [30].
Humans contain two MSX genes, MSX1 and MSX2. Both
genes exhibit similar expression patterns and downstream
effects [31,32]. Additionally, mice contain MSX3 which is
not listed in human genome browsers. MSX2 interacts
with several nuclear proteins, including corepressor pro-
teins SPEN, TLE1, PIAS2/MIZ1 and H1E, and transcrip-
tion factors DLX5 and RUNX2 [7,33-37]. Accordingly,
MSX2 is involved in regulation of differentiation related
genes, including Cyclin D1 (CCND1) and Osteocalcin
[37,38] highlighting this ortholog as a fundamental regu-
lator in development.

Here we identified MSX2 as physiological NKL involved
in hematopoietic differentiation via regulation of
NOTCH3-signaling. Our results indicate that this func-
tion of MSX2 might be replaced or modified by ectopic
expression of oncogenic NKL family members in T-ALL.

Methods
Cell lines and treatments
Cell lines were supplied by the DSMZ (Braunschweig,
Germany) except PER-117 provided by Ursula Kees, Perth,
Australia. Cultivation was performed as described by
Drexler [39]. Plasmid-DNA was introduced into cell lines
by electroporation using the EPI-2500 impulse generator
(Fischer, Heidelberg, Germany).
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VSV.G-pseudotyped lentiviral particles were generated by
calcium phosphate co-transfection of 293T cells and viral
supernatants were concentrated as previously described
[40]. Lentiviral transduction of cell lines Jurkat and
MOLT-4 was performed twice with a multiplicity of infec-
tion (MOI) of approximately two. Transduced cells were
sorted for EGFP-expression using Dako Cytomation
MoFlo (Glostrup, Denmark).

For stimulation experiments the following reagents were
used: cytokines IL7, TGFbeta and BMP4 (R&D Systems,
Wiesbaden, Germany); antibodies anti-TGFBR2 (R&D
Systems) and anti-CD3 (BD Biosciences, Heidelberg, Ger-
many); chemical compounds Ionomycin, N-[N-(3,5-Dif-
luorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester
(DAPT), 5-Aza-2'-deoxycytidine (AZA) and Rapamycin
(Sigma-Aldrich, Taufkirchen, Germany), NFkB-inhibitor
and Calphostin C (Calbiochem, Darmstadt, Germany).

Primary cells
Peripheral blood cells (PBC), CD3+ and CD34+ cells were
provided by the Medical School Hannover isolated from
healthy donors, using the MACS system for cell prepara-
tions performed according to the manufacturer (Miltenyi
Biotec, Bergisch Gladbach, Germany).

Twenty T-ALL samples were derived from patients which
are included in the German ALL study group and provided

by the University of Greifswald. The research was
approved by an ethics committee. The samples were ana-
lyzed for TLX1/TLX3 expression by real-time PCR (see
below). Three samples have been tested positive for TLX1
and seven for TLX3. Ten negative tested samples served as
controls.

RNA and cDNA
Total RNA was extracted from cells using TRIzol reagent
(Invitrogen, Karlsruhe, Germany). cDNA was subse-
quently synthesized from 5 μg RNA by random priming,
using Superscript II (Invitrogen).

Polymerase chain reaction (PCR)
Reverse transcriptase (RT)-PCR was performed using
taqpol (Qiagen) and thermocycler TGradient (Biometra,
Göttingen, Germany). Oligonucleotides were obtained
from MWG Eurofins (Martinsried, Germany). Their
sequences are listed in Table 1. Quantitative expression
analysis was performed by real-time PCR using the 7500
Real-time System, commercial buffer and primer sets
(Applied Biosystems, Darmstadt, Germany). For normali-
zation of expression levels we used TBP (Applied Biosys-
tems). Copy number determination was performed using
50 ng genomic DNA per replicate. For normalization we
used MEF2C as described recently [29]. Quantitative anal-
ysis were performed in triplicates and repeated twice.

Table 1: Oligonucleotides used for RT-PCR and ChIP

Gene Acc.No Forward primer
(5'-3')

Reverse primer
(5'-3')

PCR product (bp)

HEX NM_002729 GCAAACCTCTACTCTGGAGC TTCACTGGGCAAATCTTGCC 311

HMX1 NM_018942 AGGCGGCCTCAGTCCTGACA TGCGGGAGAAGACTGTGCGC 263

HMX2 XM_370580 GCTTCACCATCCAGTCCATC TTAAAGTCCGAGTGCGAAGG 295

HMX3 XM_291716 TGGCTTTCCCTCGCTTTGAG TCCTCCAGAATGATCTCGTC 265

MSX1 NM_002448 AGAAGATGCGCTCGTCAAAG ATCTTCAGCTTCTCCAGCTC 339

MSX2 XM_037646 AGATGGAGCGGCGTGGATGC ACTCTGCACGCTCTGCAATGG 194

GAATTCGAAGTCATGGCTTCTCCGTCC TTGAATTCGGTGGTACATGCCATATCCC 811

NKX1-1 XM_926341 AATCTGACAGGAGCGATTGG TGGAACCAGATCTTCACCTG 392

NKX1-2 XM_372331 TGGACCCACAGAAATTCACC AACTTGTTCTCCAAGGCCAC 460

NOTCH3 NM_000435 CCGCACCCAGCCTATTATTG AGAAGTGGGAGGATCGCTTG 219

TAGACTGTCAGCTCCCTGAG GCCCAGGAGTCTGAGGCTGC 156

TEL NM_001987 AGGCCAATTGACAGCAACAC TGCACATTATCCACGGATGG 272
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Protein analysis
Western blot analysis was performed as described previ-
ously [22]. Briefly, proteins obtained from cell lysates
were transferred semi-dry onto nitrocellulose membranes
(Bio-Rad, München, Germany) which were blocked with
5% bovine serum albumin dissolved in phosphate-buff-
ered-saline buffer. Immunoprecipitation and immunocy-
tology were performed as described previously [29]. The
following antibodies were used: MSX2 (Affinity Bio Rea-
gents, Golden, CO, USA); ERK1/2, NKX2-5, PML, TLX1
(Santa Cruz Biotechnology, Heidelberg, Germany);
SPEN/SHARP (Bethyl Laboratories, Montgomery, TX,
USA); TLE1 (Abnova, Taipei, Taiwan).

Chromatin Immuno-Precipitation (ChIP)
ChIP analysis was performed using the ChIP Assay Kit
obtained from Upstate (Lake Placid, NY). For immuno-
precipitation we used antibody MSX2 (Affinity Bio Rea-
gents), for nested PCR of NOTCH3 upstream sequences
we used oligonucleotides as listed in Table 1. The proce-
dure was performed as described previously [23].

Fluorescence In Situ Hybridization (FISH)
FISH analysis was performed as described recently [41].
The following RP11-clones (obtained from the Sanger
Centre, Cambridge, UK) were used as probes: 91K20,
704L16 (HEX); 117J13, 17I9 (HMX1); 487K11, 137E24
(HMX3); 1197E19, 117J13 (MSX1); 105I4, 54H11,
147G18 (MSX2). Additional fosmid clones, termed here
"fosmid1" (G248P8229B6) and "fosmid2"
(G248P8765G1) were used for detection of NKX2-5 and
TLX3, respectively.

Microscopy
For immunofluorescence microscopy of both chromo-
somes and cells we used an Axioskop 2 plus (Zeiss, Jena,
Germany) and Cytovision 3.93 software (Applied Imag-
ing, Newcastle, UK).

Cloning procedures
MSX2 cDNA was obtained from Origene (Rockville, MD,
USA), adjusted via PCR amplification and cloned in frame
into pEGFP-N1 vector (Clontech, St-Germain-en-Laye,
France). To construct the lentiviral plasmids S-MSX2-IEW,
S-NKX2-5-IEW and S-TLX-1-IEW, the respective cDNA
cassettes were blunt-end cloned into the blunted BamHI
site of the pHR'-SIN-SIEW-SnaBI vector, placing the cDNA
fragment downstream of the SFFV promoter. RNA inter-
ference (i)-constructs directed against PU.1, LEF1 and
beta-Catenin, respectively, have been described recently
[23,42].

Expression profiling
For quantification of gene expression via profiling we
used DNA chips U133A Plus 2.0 obtained from Affyme-

trix, Buckinghamshire, UK. Chip-data analysis was per-
formed as described recently [43]. Analysis of expression
data was performed using online programs. For creation
of heat maps we used CLUSTER version 2.11 and
TREEVIEW version 1.60 http://rana.lbl.gov/EisenSoft
ware.htm. Those genes which displayed a minimal expres-
sion level of -2 and an up- or downregulation of at least 2-
fold were selected for pathway analysis, using DAVID and
KEGG provided by the National Center for Biotechnology
Information (NCBI).

MTT-assay
After diverse treatments for 16 h cell lines were subse-
quently prepared for standardized MTT (3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide; obtained
from Sigma) assays. The absorbance was determined at
570 nm by an ELISA reader (Thermo Electron, Vantaa,
Finland). Each approach was replicated (x6) and repeated
(x2) with similar results.

Results
Screening of NK-like homeobox genes
Recently, we identified NKX2-5 as a novel, ectopically
expressed, oncogenic homeobox gene in T-ALL cell lines
and highlighted its relation to TLX1 and TLX3 for which
an oncogenic role in T-ALL is well established [22]. These
three genes are closely related members of the NKL family.
A subsequent RT-PCR screen for additional family mem-
bers expressed in T-ALL cell lines which included the
human orthologous of Drosophila NK-genes yielded nega-
tive results [16,22].

Here, we extended that screen with respect to a compre-
hensive family definition [17], comprising additional 8
genes: HEX, HMX1/2/3, MSX1/2, NKX1-1/2. Expression
of HMX2, NKX1-1 and NKX1-2 was not detected, relegat-
ing their putative role in T-cells or T-ALL, whereas HEX,
HMX1/3 and MSX1/2 tested positive, albeit with substan-
tial differences in their expression patterns (data not
shown, Table 2). Since oncogenic expressions of TLX1,
TLX3 and NKX2-5 are present in only few cell lines and
coincide with chromosomal aberrations [22], we ana-
lyzed by FISH those NKL loci which showed restricted
expression patterns, including HMX1, HMX3, HEX and
MSX1. But all these genes displayed wild type configura-
tions, lacking chromosomal abnormalities (data not
shown, Table 2) to indicate oncogenic activation.

MSX2 showed the most widespread expression pattern as
detected in 22/24 (92%) of the analyzed cell lines (Figure
1A, Table 2) and, therefore, may represent a promising
candidate physiological NKL in T-cells. The physiological
function of MSX2 might be related to or modified by aber-
rant NKLs and its investigation may contribute to under-
standing their oncogenic role(s) in T-ALL. To address this
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Table 2: RT-PCR and FISH analysis of selected NK-like homeobox genes

MSX1 MSX2 HMX1 HMX2 HMX3 HEX NKX1-1 NKX1-2

ALL-SIL - + F - - - - - -

CCRF-CEM + F + F - - - + - -

CML-T1 - + F - - + - - -

DND-41 - + F - - - - - -

HD-MAR - - F - - - - - -

HPB-ALL + F + F - - + F + - -

H-SB2 + - - - + - - -

HT-1 - + F - - - - - -

JURKAT + F + F - - +F - - -

KARPAS-45 - + F - - - - - -

KE-37 + + - - - - - -

LOUCY + F + F - - - + F - -

MHH-TALL2 + F + F - - - + F - -

MOLT-4 + + - - - + - -

MOLT-14 + F + - - - + - -

MOLT-16 - F + F - - - - - -

P12-ICHIKAWA - + - - - - - -

PEER - + F - - + F + F - -

PER-117 nd F + F nd nd nd - - -

PF-382 - + - - + + - -

RPMI-8402 - + F - - - + F - -

SUP-T1 - + + F - + F - - -

TALL1 - + F - - - - - -

TALL-104 + + F - - - - - -

PBC - + nd nd nd nd nd nd

CD34+ nd + nd nd nd nd nd nd

positive expression (+), no expression (-), FISH analysis (F), not determined (nd)
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Expression of MSX2Figure 1
Expression of MSX2. (A) RT-PCR analysis indicates MSX2 expression in T-ALL cell lines. Expression of TEL serves as posi-
tive control. NTC: no template control. (B) Western blot analysis demonstrates MSX2 protein expression in PEER and JUR-
KAT cells. Expression of ERK1/2 serves as loading control performed on a separate gel. (C) Immunocytological analysis in 
JURKAT cells. DAPI staining (blue) illustrates the nucleus. MSX2 staining (green) demonstrates a speckled distribution within 
the nucleus. The speckled pattern of PML staining (red) differs from that of MSX2. The scale bar represents 10 μm. (D) 
MOLT-4 cells were transfected by electroporation with expression construct pMSX2-EGFP. The fusion protein MSX2-EGFP 
(green) shows a speckled distribution within the nucleus (blue), resembling that of endogenous MSX2. (E) Quantitative 
expression analysis of MSX2 by real-time PCR in primary hematopoietic cells (CD34+, CD3+, PBC) and 23 T-ALL cell lines 
revealed striking differences. MSX2 expression levels are shown in relation to that of CD34+ cells which was set to 1. Expres-
sion of TBP served as endogenous control. Bars show standard deviations. (F) Western blot analysis demonstrates MSX2 pro-
tein expression in primary CD34+ and CD3+ cells. ERK1/2 serves as loading control, indicating higher amounts of MSX2 
protein in CD34+ cells.
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issue we analyzed expression, regulation and function of
MSX2 in T-cells.

Expression of MSX2 in hematopoietic cells
MSX2 protein expression was confirmed by western blot
analysis in two T-ALL cell lines, PEER and JURKAT (Figure
1B). The same antibody used for immunofluorescence
microscopy of JURKAT cells revealed a speckled pattern
within the nucleus distinct from that of PML protein (Fig-
ure 1C). An expression construct, fusing MSX2 and green
fluorescence protein (pMSX2-EGFP) was electroporated
into MOLT-4 cells and yielded a similar nuclear distribu-
tion of the fusion protein (Figure 1D). These results sug-
gest that MSX2 protein possesses an intrinsic capacity for
subcellular localization in T-cells which may be signifi-
cant for regulation of target genes.

For expression analysis of primary cells we quantified
MSX2 mRNA levels in CD34+ HSCs, CD3+ T-cells and
peripheral blood cells (PBCs) by real-time PCR. The data
showed circa 2-fold higher expression levels in CD34+
HSCs compared to CD3+ T-cells and PBCs (Figure 1E).
This quantitative difference in MSX2 expression was also
detected at the protein level as analyzed by western blot
(Figure 1F). These results demonstrate physiological
expression of MSX2 in hematopoietic cells and indicate
transcriptional downregulation during T-cell develop-
ment.

Regulation of MSX2 expression in T-cells
To examine the regulation of MSX2 transcription in T-cells
we analyzed several factors relevant to thymic T-cell differ-
entiation, including IL7, BMP4, TGFbeta, PU.1, LEF1,
beta-Catenin, CD3, calcium and NOTCH-signaling in the
cell lines JURKAT and MOLT-4. MSX2 mRNA expression
levels rose 7-fold and 3-fold after treatment with IL7 and
TGFbeta, respectively, and decreased 0.5-fold with BMP4
when analyzed by real-time PCR (Figure 2, Table 3). Con-
sistently, inhibition of TGFbeta receptor (TGFBR2) by an
appropriate antibody decreased MSX2 expression 0.6-fold
(Table 3). The effects of transcription factors PU.1, LEF1
and beta-Catenin were analyzed by their RNAi-mediated
knockdown in MOLT-4 cells. Subsequent expression anal-
ysis indicated activation of MSX2 transcription by PU.1
and beta-Catenin, respectively, and inhibition by LEF1
(Table 3). Treatment of cells with the calcium ionophore
Ionomycin or an activating CD3-antibody resulted in
decreased MSX2 expression, indicating inhibition by TCR-
signaling (Table 3). Using gamma-secretase inhibitor
DAPT, we detected a slight inhibition via NOTCH-signal-
ing, showing 1.7-fold activation of MSX2 expression
(Table 3). Taken together, these results demonstrate that
MSX2 transcription is regulated by core thymic factors
which are involved in T-cell differentiation, supporting
the view of MSX2 as a developmentally regulated physio-
logical NKL in thymocytes.

The expression levels of MSX2 mRNA in T-ALL cell lines
varied substantially from very low, (e.g. HPB-ALL), to
high, (e.g. PER-117) (Figure 1E). Therefore, expressions of
core thymic factors and their receptors shown to regulate
MSX2 transcription were analyzed by expression profiling
in 9 T-ALL cell lines in addition to CD34+ primary HSCs
(Figure 3A). These data suggested that high expression lev-
els of TGFbeta receptor (TGFBR3) and low expression lev-
els of LEF1 and CD3 may, respectively, contribute to
elevated MSX2 expression in PER-117. Furthermore, all
cells expressed low levels of IL7 and IL7 receptor except
HPB-ALL which showed high IL7 receptor levels (Figure
3A). This fact was utilized to analyze the effect of IL7-sig-
naling on MSX2 expression in more detail by treating
HPB-ALL and MOLT-4 with very low amounts of IL7. The
level of MSX2 mRNA increased strongly in HPB-ALL but
remained constant in MOLT-4, highlighting the potential
of IL7-signaling for MSX2 expression (Figure 3B). Thus
these results showed that differences in signaling of core
thymic factors contribute to varied expression levels of
MSX2.

The MSX2 locus contains five CpG islands http://
www.genome.ucsc.edu/, suggesting epigenetic regulation
via genomic methylation. Accordingly, treatment of T-ALL

Table 3: Fold expression of MSX2 mRNA after treatment with 
core thymic factors as analyzed by real-time PCR

Factor JURKAT MOLT-4

IL7 ~ +/- 0.3 x7.5 +/- 1.5

BMP4 x0.5 +/- 0.2 x0.4 +/- 0.2

TGFbeta nd x3.0 +/- 0.3

anti-TGFBR2 ~ +/- 0.2 x0.6 +/-0.2

sh-PU.1 nd x0.7 +/- 0.1

sh-LEF1 nd x3.0 +/- 1.5

sh-betaCatenin nd x0.01 +/- 0.1

anti-CD3 x0.5 +/-0.2 nd

Ionomycin x0.5 +/-0.2 x0.1 +/-0.2

DAPT x1.6 +/-0.2

standard deviations (+/-), not determined (nd), nochange in 
expression (~)
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cell lines with demethylating agents resulted in increased
levels of MSX2 expression, ranging from 3 to 8-fold (Fig-
ure 3C), supporting a role for DNA methylation in tran-
scriptional regulation.

To check if the locus of MSX2 at chromosome 5q35 dis-
plays rearrangements which may influence expression we
analyzed several T-ALL cell lines with varying levels of
MSX2 mRNA by FISH (Table 2). While neither transloca-
tions nor amplifications were detected, in 3 out of 17 cell
lines FISH indicated deletion of one MSX2 allele (Figure
4A-C). Subsequent analysis of genomic DNA by quantita-
tive real-time PCR confirmed deletion of MSX2 alleles in
cell lines CCRF-CEM, HPB-ALL and PEER (Figure 4D).
However, the copy number in these cell lines did not cor-
relate with reduced MSX2 mRNA levels as demonstrated
for CCRF-CEM (Figure 1E), indicating that MSX2 is not a
target of this chromosomal aberration. Taken together, we
have identified several factors which may influence tran-
scription of MSX2 in T-cells, including signaling by core
thymic factors and genomic methylation while excluding
gene dosage.

Functional analysis of MSX2
Combined data on expression and regulation analysis
attest that MSX2 is a physiological NKL in hematopoietic
cells downregulated in T-lymphocytes. To examine the
function of MSX2 in T-cells we lentivirally transduced cell
line JURKAT for overexpression. For identification of
genes regulated downstream of MSX2 we performed
expression profiling of JURKAT-MSX2 in comparison to
JURKAT-vector cells. Using the online DAVID/KEGG soft-

ware, we identified upregulation of NOTCH- and TCR-
pathway genes and downregulation of WNT-pathway
genes (Figure 5A). Furthermore, among the top 100
upregulated genes expression of S100A9 was striking.
S100A9 belongs to a family of clustered genes, including
S100A11 preferentially expressed in T-cells. Next we
quantified expression of 16 potential target genes by real-
time PCR: NOTCH1, HES1, PTCRA, CD28, PLCG1, JUN,
NFkB2, PRKCA, PRKCQ, TCF7, S100A9 and S100A11 in
addition to reported targets of MSX1, including NOTCH3,
HEY1 and CCND1/2 (Figure 5B) [38,44]. These data con-
firmed a significant activatory role for MSX2 in the expres-
sion of NOTCH-pathway genes and S100A9 whereas the
influence on TCR- and WNT-signaling genes was not con-
clusive. MSX2 activated expression of NOTCH-target
genes HES1 and HEY1 in addition to NOTCH3, while
excluding NOTCH1 indicated stimulation of the
NOTCH3-pathway. Sequence analysis of the NOTCH3
promoter region identified a consensus sequence for
MSX2 binding located far upstream at about -28 kbp [45].
But subsequent ChIP analysis in JURKAT-vector/MSX2
cells failed to detect direct binding of MSX2 protein at this
particular site (data not shown). In contrast to previous
reports [38], MSX2 mediated downregulation of cyclin D
genes (CCND1 and CCND2), which suggested repressive
involvement in proliferation. However, subsequent pro-
liferation analysis of JURKAT-MSX2 and JURKAT-TLX1
showed no differences in growth after 7 days of cultiva-
tion (Figure 6).

These results indicate a role of MSX2 in early T-cell differ-
entiation and mark the NOTCH3-pathway as a potential
target of oncogenic NKLs. To check their (dys)regulating
effects we transduced JURKAT with TLX1 and NKX2-5 and
subsequently determined expression levels of candidate
target genes (Figure 5B). Both proteins, TLX1 and NKX2-
5, resemble MSX2 in activating NOTCH3 and HEY1 when
overexpressed in JURKAT cells. HES1 was activated by
MSX2 and TLX1 and repressed by NKX2-5. S100A9 was
activated by MSX2 and NKX2-5 and S100A11 by TLX1
and NKX2-5. Therefore, we identified NOTCH3-pathway
and S100A genes as targets of both physiological and
oncogenic NK-like homeodomain proteins in T-cells.

Consistent with involvement in NOTCH3-pathway acti-
vation, MSX2 has been reported to interact with SPEN and
TLE1 in two other cell types, namely fibroblasts and kid-
ney, respectively [33,37]. Both are corepressors implicated
in regulation of NOTCH-signaling. We confirmed these
interactions in T-cells by immunoprecipitation (Figure
7A) and by immunofluorescence microscopy (Figure 7B),
showing colocalization of MSX2 and SPEN in subnuclear
aggregates. These results suggest that MSX2 might modu-
late the activity of the CBF1 repressor complex, containing
corepressors SPEN and TLE1, in T-cells. Moreover, both
corepressor proteins interacted with TLX1 and NKX2-5

Regulation of MSX2 expressionFigure 2
Regulation of MSX2 expression. MOLT-4 cells were 
treated for 16 h with 20 ng/ml IL7, TGFbeta, or BMP4, 
respectively. Subsequent expression of MSX2 was quantified 
by real-time PCR. In comparison to untreated control cells 
(set to 1) the level of MSX2 changed about 7-, 3- or 0.5-fold, 
indicating regulation by these thymic factors. Standard devia-
tions are indicated by bars.
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Differential regulation of MSX2Figure 3
Differential regulation of MSX2. (A) Nine cell lines in addition to CD34+ primary HSCs were analyzed by expression pro-
filing. The heat map shows expression levels of genes involved in regulation of MSX2 in T-cell lines. Red indicates high, green 
low and black intermediate expression levels. Of note, HPB-ALL expresses high levels of IL7R; PER-117 expresses high levels of 
TGFBR3 and low levels of LEF1, CD3D, CD3E and CD3G. (B) HPB-ALL and MOLT-4 cells were treated for 16 h with low 
amounts of IL7. Subsequent analysis of MSX2 expression by real-time PCR indicates increasing levels in HPB-ALL (expresses 
high IL7R levels) but no change in MOLT-4 (expresses low IL7R levels). Bars show standard deviations. (C) T-cell lines JUR-
KAT, MOLT-4 and PEER were treated with 500 nM 5-Aza-2'-deoxycytidine for 24 h. Subsequent real-time PCR analysis indi-
cates about 8-, 3-, and 4-fold increased levels of MSX2 expression, respectively.
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(Figure 7A). Therefore, these protein interactions may rep-
resent a potential oncogenic mechanism, resulting in dys-
regulation of CBF1.

To check the impact of physiological MSX2 and oncogenic
TLX1 on cell survival we treated transduced JURKAT cells

with gamma-secretase-inhibitor DAPT, NFkB-inhibitor,
PI3K-pathway-inhibitor Rapamycin as well as Calphostin
C, which triggers calcium-dependent apoptosis in ALL
cells [46]. Subsequent analysis of cell viability by MTT
assay indicated for both MSX2 and TLX1 transduced cells
reduced sensitivities to DAPT, NFkB-inhibitor and

Copy number analysis of MSX2Figure 4
Copy number analysis of MSX2. (A) FISH analysis of tetraploid CCRF-CEM cells, using a painting probe for chromosome 
5 (green) and RP11-54H11 probe for MSX2 (red). Of note, one allele of MSX2 (located at 5q35) is deleted on der(5). FISH 
analysis of PEER (B) and HPB-ALL (C), using probes for MSX2 (54H11, green), NKX2-5 (fosmid1, red) and TLX3 (fosmid2, 
orange). Data indicate deletion of MSX2 with concomitant rearrangement of NKX2-5 (PEER) or TLX3 (HPB-ALL). (D) Quan-
titative analysis of MSX2 copy numbers was performed by genomic real-time PCR in 12 selected T-cell lines. The MEF2C locus 
was used as endogenous control as described previously [29]. Of note, cell lines CCRF-CEM, HPB-ALL and PEER demonstrate 
bisected quantities, indicating deletion of one allele of MSX2.
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Functional analysis of MSX2Figure 5
Functional analysis of MSX2. (A) Heat-map of selected pathway-genes. Expression data obtained by profiling of JURKAT 
cells transduced with empty vector and MSX2, respectively, were transformed into a heat-map, demonstrating differential gene 
activities. (B) Quantitative real-time PCR expression analysis of 16 candidate target genes was performed in JURKAT cells 
transduced with MSX2, TLX1 or NKX2-5, respectively, in comparison to vector controls. Expression of TBP served as endog-
enous control.
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Rapamycin, but enhanced sensitivity to Calphostin C
(Figure 8).

Finally, expression analysis of primary T-ALL cells demon-
strated elevated levels of both NOTCH3 and HEY1 in
TLX1 and TLX3 positive samples (Figure 9), confirming
the stimulation of NOTCH3-signaling by oncogenic NKLs
in corresponding patients.

Discussion
We have identified expression of NKL MSX2 in T-ALL cell
lines as well as in primary HSCs and T-cells. MSX2 expres-
sion in cell lines was regulated by core thymic factors, sug-
gesting that MSX2 is a physiological NKL in
hematopoietic cells, notably in T-cells/thymocytes. Analy-
sis of transduced JURKAT cells overexpressing either
MSX2 or oncogenic TLX1 and NKX2-5 identified activa-
tion of NOTCH3-signaling, including bHLH target gene
HEY1. Expression levels of NOTCH3 and HEY1 were ele-
vated in primary TLX1/3 positive T-ALL cells, underpin-
ning the cell line data.

MSX2 expression has been described in stem cells, pro-
genitor cells and derivates of neural crest cells, indicating
a role in cell differentiation [47]. Core stem cell transcrip-
tion factors directly regulate expression of MSX2, demon-
strating a prominent function of this homeobox gene in
the regulatory network of undifferentiated cells [48].
MSX2 knockout mice exhibit several abnormalities in tis-
sues derived from neural crest cells but none in the hemat-
opoietic system [49-51]. However, homeostatic
compensations among MSX genes as described for some
tissues may explain the absence of any hematopoietic
phenotype hitherto [51]. Of note, expression of onco-
genic NKLs have also been reported in neural crest deri-
vates, including TLX1 in teeth, TLX3 in dorsal root ganglia
and NKX2-5 in heart and teeth which may suggest corre-

lations in the regulation of differentiation processes
[28,52,53].

In T-cell lines we analyzed several core thymic factors
which differently influenced MSX2 expression. The activ-
ity of these factors correlates with particular stages of thy-
mocyte development, showing IL7 and TGFbeta activity
in early stages, and BMP4, LEF1 and TCR-signaling in later
stages of thymocyte differentiation [2,3]. Combined data,
concerning both higher MSX2 expression levels in pri-
mary HSCs as compared to CD3+ T-cells and particular
MSX2 regulation, activating by early and suppressing by
late core thymic factors, indicate physiological downregu-

MSX2 and T-cell proliferationFigure 6
MSX2 and T-cell proliferation. Proliferation analysis of 
modified T-cell line. JURKAT cells tranduced with empty vec-
tor, MSX2 or TLX1, respectively, were counted during a 
period of one week. Cell counts indicated no significant dif-
ferences in proliferation.
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lation of MSX2 during T-cell development. Accordingly,
PER-117 which expresses high MSX2 levels represents a
very immature T-cell line corresponding to stage I thymo-
cytes [54]. Additionally, our data indicated an impact of
DNA methylation on MSX2 expression. However,
whether this mechanism represents the physiological sit-
uation is unclear.

Interestingly, we detected chromosomal deletions of
MSX2 loci at 5q35 in three T-ALL cell lines which contain

t(5;14)(q35;q32) rearrangements, targeting TLX3 or
NKX2-5 (also located at 5q35 centromeric of MSX2),
respectively [22]. Cooperation of genetic defects
t(5;14)(q35;q32) and del(5)(q35) has been reported in
primary T-ALL samples [55], suggesting that MSX2 may be
a target of del(5)(q35) in this entity. But the poor correla-
tion with expression data indicated that MSX2 is not a
plausible target of this chromosomal aberration. We sug-
gest that TLX3 and NKX2-5 are main targets and deletion
of MSX2 is incidental because of its physiological down-
regulation and functional substitution by those oncogenic
NKLs.

NOTCH3 has a major impact on T-cell development, by
regulating differentiation and survival of thymocytes
[56,57]. Here we identified MSX2 mediated activation of
the NOTCH3-pathway in T-cells reminiscent of MSX1 in
neuroblastoma [44]. We failed in detecting direct binding
of MSX2 protein to a far upstream located potential bind-
ing site [45]. However, other studies demonstrate indirect
impacts of MSX2 in target gene activities [37,58,59]. Fur-
thermore, MSX2 colocalized with SPEN in JURKAT cells
but not with PML and interacted with SPEN and TLE1,
both components of the CBF1 associated repressor com-
plex. This complex has been localized to subnuclear aggre-
gates which differ from those containing PML protein and
which comprise CBF1, SPEN, TLE1, SKIP and activated
NOTCH [7-11,60]. Therefore, our results reveal the
impact of MSX2 on CBF1 target gene regulation. Since
bHLH genes HES1 and HEY1 are regulated by CBF1 and
NOTCH3 [13,61], we conclude that MSX2 regulates HES1
and HEY1 via both CBF1 repressor complex modulation
and activation of NOTCH3 expression. The subnuclear
distribution of these aggregates seems to be important for
their activity. Noteworthy in this context, MSX2 has been
described to interact with SUMO-ligase PIAS2 [62]. PIAS
proteins may regulate distribution and activity of NK-like
homeodomain proteins via SUMOylation as recently
described for MSX1 and NKX2-5 [63,64].

Additional downstream effects of NOTCH1/3-signaling
comprise activation of NFkB and of PI3K-pathway,
enhancing survival of thymocytes [13,65-67]. Accord-
ingly, both activities were elevated in JURKAT cells overex-
pressing MSX2 or TLX1, as demonstrated by reduced
sensitivities to inhibitors of gamma-secretase, NFkB and
PI3K-signaling.

Oncogenic NKLs TLX1 and NKX2-5 resemble MSX2 in
interacting with SPEN and TLE1. Accordingly, a direct
interaction between TLX1 and TLE1 has been shown
recently [68]. In addition, both TLX1 and NKX2-5 activate
the NOTCH3 target gene HEY1. These results suggest that
both proteins substitute MSX2 in modulating the CBF1
associated repressor complex. In JURKAT cells overex-

Survival of NKL expressing T-ALL cellsFigure 8
Survival of NKL expressing T-ALL cells. JURKAT cells 
transduced with MSX2, TLX1 or vector control, respec-
tively, were treated for 16 h with pharmacological inhibitors 
of NOTCH signaling, NFkB activity, PI3K-signaling or PKC. 
Subsequent analysis of cell viability by MTT assay indicates 
differences in sensitivities. Values of JURKAT-vector cells 
were used as control. Bars show standard deviations.
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pressing oncogenic NKLs we observed a shift in target
gene activity from HES1 to HEY1, suggesting differences
in their mode of interaction with SPEN. However, both
HES1 and HEY1 are bHLH proteins and involved in inhi-
bition of differentiation via interaction with E2A proteins
E12 and E47 [12]. Therefore, our results imply that NK-
like homeodomain proteins activate CBF1 target genes,
thereby inhibiting T-cell differentiation.

Furthermore, we have identified S100A genes as targets of
NKLs. S100A9/11 are calcium-binding proteins which
inhibit PKC-mediated phosphorylation of bHLH proteins
and activate apoptosis in ALL cells [69,70]. Our data sug-
gest a correlation between S100A expression and sensitiv-
ity for Calphostin C. Mechanistically, Calphostin C may
enhance apoptosis either via elevation of intracellular cal-
cium levels or via inhibition of PKC, modulating activities
of bHLH proteins [46,69,71]. However, this promising
apoptotic effect merits further examination.

Recently, we have identified MEF2C as specific oncogenic
target of NKX2-5 in T-ALL cells, reflecting the physiologi-
cal function of NKX2-5 in the heart [29]. Here, we identi-
fied NOTCH3-signaling activated by both physiological
MSX2 and oncogenic TLX/NKX2-5 in T-ALL cells. Thus,
both modes of leukemic action may be displayed by NKLs
in T-ALL, ectopic activations related to their physiological
origin and dysregulations due to structural similarities to
physiological members of this homeobox gene family.

Conclusion
The identification of MSX2 as a physiological NKL in
hematopoietic cells and its involvement in NOTCH3-sig-
naling further implicates this pathway in crosstalk
between physiological and oncogenic homeobox signal-
ing in T-ALL.
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