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The survival of naïve T cells is believed to require signals from TCR–pMHC interactions 
and cytokines such as IL-7. In contrast, signals that negatively impact naïve T cell 
survival are less understood. We conducted a forward genetic screening of mice and 
found a mutant mouse line with reduced number of naïve T cells (T-Red mice). T-Red 
mice have a point mutation in the Kdelr1 gene, and their naïve T cells show enhanced 
integrated stress response (ISR), which eventually induces their apoptosis. Therefore, 
naïve T cells require a KDEL receptor-mediated mechanism that efficiently relieves 
cellular stress for their survival in vivo. Interestingly, naïve T cells expressing TCR with 
higher affinity/avidity to self-antigens survive in T-Red mice, suggesting the possible link 
between TCR-mediated survival and ISR-induced apoptosis. In this article, we discuss 
the regulation of naïve T cell homeostasis, keeping special attention on the ISR and TCR 
signal.
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POSiTive SiGNALS FOR T CeLL HOMeOSTASiS: LeSSONS 
FROM PReviOUS STUDieS

T cell numbers in the periphery are almost constant, even though millions of naïve T cells are 
generated from the thymus daily. This homeostasis likely requires strict regulation. Additionally, 
naïve T cells have a relatively long half-life of approximately >50 days, and memory T cells show 
basal turnover to survive longer in the periphery (1–3). Survival signals for naïve T cells include 
TCR–pMHC interactions and cytokines such as IL-7, whereas the homeostasis of memory T cells is 
largely dependent on cytokines such as IL-2 and IL-15 along with IL-7 (4).

When peripheral naïve and memory T cells are decreased due to involution of the thymus by 
aging, infection, or irradiation, the remaining T cells start to proliferate, a phenomenon called 
homeostatic proliferation. At the molecular level, homeostatic proliferation is induced by TCR 
signaling and/or cytokines (5). Homeostatic proliferation sometimes plays a role in the activation of 
autoreactive T cells, causing several autoimmune diseases (6, 7). This homeostatic proliferation can 
be experimentally induced by a sublethal dose of irradiation in mice called lymphopenia-induced 
proliferation (LIP). LIP has greatly contributed to the understanding of the mechanism of T cell 
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homeostasis in vivo, which otherwise takes a long time to study 
due to the slow turnover of these cells. LIP of naïve CD4+ and 
CD8+ T cells does not occur in the absence of TCR–pMHC 
interactions or IL-7 (5, 8), and genetic deficiency of IL-7 in host 
animals abrogates LIP (9). Compared to the involvement of 
cytokines, the contribution of TCR signaling to T cell homeo-
stasis is more complicated. Homeostatic proliferation induced 
by TCR–pMHC interactions involves clonal competition among 
T cells, because LIP of monoclonal TCR transgenic (Tg) T cells 
is inhibited in TCR Tg mice that have the same monoclonal 
TCR (10–13). These observations suggest that not all T cells 
equally proliferate under LIP; those that have higher TCR affin-
ity to self-antigens receive more TCR signaling to outcompete 
T cells expressing TCR with lower self-affinity in the periphery. 
Measurement of TCR avidity to self-peptide–MHC complexes 
under normal polyclonal conditions is challenging. However, it 
is known that CD5 can be a surrogate marker that reports the 
TCR signal strength in T cells. CD5 is a negative regulator of 
TCR signaling and whose expression correlates with the avidity 
of TCR (14, 15). Surface CD5 levels in T cells positively correlate 
with the phosphorylation levels of the CD3ζ chain, which is a 
proximal signal event after TCR ligation (15), and with Nur77 
expression, which is an early target gene of TCR signaling (16). 
Indeed, LIP of CD8+ T cells derived from TCR Tg mice with 
high CD5 expression, such as OT-I cells, is faster than that of 
CD8+ T cells derived from other TCR Tg mice with lower CD5 
expression (17). Thus, TCR affinity to self-pMHC contributes to 
the degree of survival signals that T cells receive. It is known that 
IL-7-mediated cell death is suppressed in CD8+ T cells by TCR 
signaling via self-pMHC. For example, IL-7Rα expression on 
T cells bearing low-affinity TCR requires TGF-β signaling (18). 
Continuous IL-7 signaling triggers cytokine-induced cell death 
in CD8+ T cells, while homeostatic engagement of TCR inter-
rupts IL-7-mediated cell death. Consistent with these properties, 
CD8+ T cells with insufficient TCR affinity via self-pMHC induce 
IL-7-mediated cell death (19). These studies clearly suggest that 
T  cell survival is tightly regulated by the TCR signal via self-
pMHC and cytokines in vivo.

T-ReD MiCe: MUTANT ANiMALS wiTH 
eNHANCeD NAÏve T CeLL DeATH

To obtain more insight into T cell survival and death, we conducted 
an N-ethyl-N-nitrosourea (ENU) mutagenesis experiment and 
searched for mutant mice with unusual naïve vs. memory phe-
notype T cell ratios in peripheral blood. After the establishment 
of a mutant line that has excess CD44High memory-phenotype T 
cells in peripheral blood (20, 21), we enumerated T cell numbers 
in the spleen and lymph nodes, revealing that CD44High memory-
phenotype T cells were not increased, but rather CD44Lo naïve T 
cells were significantly decreased. Intriguingly, the phenotype of 
cellular loss was selective to naïve T cells because other immune 
cells, such as γδT cells, neutrophils, and dendritic cells, were not 
significantly reduced. Therefore, we named this mutant T-Red 
(naïve T cell reducing) mice (21). Compared to WT naïve T cells, 
the survival of T-Red naïve T cells is impaired in vitro and in vivo. 

Several T cell-dependent immune responses, such as collagen-
induced arthritis and T cell responses to bacterial infection, are 
severely diminished in T-Red mice (21). Importantly, this mutant 
mouse is suitable for the investigation of naïve T-cell homeostasis 
in vivo.

KDeL ReCePTOR 1 (Kdelr1) iS THe GeNe 
ReSPONSiBLe FOR T-ReD MiCe

To identify the gene responsible for the ENU mutants, T-Red 
mice (C57BL/6 background) were crossed with mice on a differ-
ent genetic background (C3H/He). The resulting F1 hybrids were 
intercrossed, and the CD44High T-Red phenotype was screened 
out in the F2 generation. Positional cloning using SNP markers 
detecting C57BL/6 genomic regions and DNA sequence analysis 
of T-Red mice on the mixed background identified an amino acid 
substituting point mutation (S123P) in the gene encoding KDEL 
receptor 1 (Kdelr1) (21). It is reported that the mutated residue, 
serine 123, of Kdelr1 is involved in the receptor’s conformation 
(22), suggesting that the T-Red mutation causes dysfunction of 
Kdelr1. Because multiple mutations are inevitably induced in 
the ENU mutant, a rescue experiment and generation of Kdelr1-
deficient mice including CD4 T cell-specific Kdelr1 KO mice were 
performed, formally demonstrating that Kdelr1 is the responsible 
gene for the T-Red phenotype (21).

The KDEL receptor was originally identified as a chaperone 
retrieval receptor that recovers soluble endoplasmic reticulum 
(ER)-resident chaperones from the cis-Golgi. This Golgi-to-ER 
retrograde transport requires the binding of KDEL receptors 
with a KDEL motif localized at the C-terminal of the ER 
chaperones (23–25). Examples of actual and potential KDEL 
receptor ligands having the KDEL motif or its variants include 
Bip (Grp78), calreticulin, Hsp90b1, and several FK506-binding 
proteins (26). In mammals, there are three KDEL receptors, 
Kdelr1, Kdelr2, and Kdelr3, all of which are localized around 
ER and Golgi (27). A role for KDEL receptors beyond chap-
erone retrieval was also reported, as chaperone-bound KDEL 
receptors trigger the activation of Src family kinases at the 
Golgi complex to generate intracellular signaling cascades 
that coordinate the secretory pathway (27, 28). Furthermore, 
consistent with their ER-Golgi localization, KDEL receptors 
are involved in ER stress responses (29). Using T-Red mice, 
we found a novel role for Kdelr1 in naïve T cell homeostasis 
(Figure 1).

Kdelr1–PP1 AXiS: A New MeCHANiSM 
THAT ALLeviATeS CeLLULAR STReSSeS 
iN NAÏve T CeLLS

Transcriptome analysis provided a clue about how Kdelr1 regu-
lates the survival of naïve T cells. In T-Red naïve CD4+ and CD8+ 
T cells, gene expressions related to the integrated stress response 
(ISR), including those of Asns (asparagine synthetase), Trib3, 
Chop, and Vegfa, were significantly increased. The expression of 
Bim, which is a proapoptotic factor critically involved in T cell 
death, is controlled by Chop (30), suggesting that stress increases 
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FiGURe 2 | Strong TCR-mediated signals alleviate iSR in T-Red naïve 
T cells. T-Red naïve T cells expressing TCR with relatively high self-affinity 
are resistant to enhanced ISR caused by Kdelr1 dysfunction. Further studies 
are required to reveal the specific TCR signaling that counteracts ISR.

FiGURe 1 | The Kdelr1–PP1 axis is required for naïve T cell survival. In WT naïve T cells, PP1 associated with Kdelr1 exhibits optimal phosphatase activity to 
prevent unwanted persistence of ISR. In T-Red naïve T cells, however, Kdelr1 dysfunction results in reduced PP1 activity, leading to prolonged ISR and apoptosis. 
Endogenous factors that cause ISR in vivo remain unidentified.
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Bim expression in T-Red mice. Consistent with this notion, Bim 
levels are elevated in T-Red mice.

Integrated stress response is a cellular response that is 
induced by various types of stress signals, including ER stress, 
amino acid deprivation, infection with double-stranded RNA 
viruses, heme deficiency, and oxidative stress. All these stress-
ors increase the phosphorylation at serine 51 of the α subunit 
of eukaryotic initiation factor 2 (eIF2α). Thus, eIF2α phos-
phorylation is a key event to triggering ISR (31–34). Indeed, 
T-Red naïve T cells have excess phosphorylation of eIF2α (21). 
We therefore considered how the excessive phosphorylation of 
eIF2α is regulated. It has been reported that phosphorylation 
of eIF2α is mediated by four kinases: double-stranded RNA-
dependent protein kinase R (PKR), RNA-dependent protein 
kinase-like ER kinase (PERK), general control non-repressed 
2 (GCN2), and heme-regulated eIF2α kinase (HRI) (35). 
However, the activation status of these four kinases was not 
enhanced in T-Red naïve T cells, suggesting that Kdelr1 is not 
involved in their regulation. The phosphorylated form of eIF2α 
is efficiently dephosphorylated by protein phosphatase 1 (PP1) 
to complete ISR. Importantly, PP1 activity in T-Red naïve T cells 
was reduced compared with WT naïve T cells. Additionally, 
the phosphorylation of eIF2α is evident in freshly isolated WT 
naïve T cells, suggesting the existence of certain stressor(s) for 
naïve T cells in vivo (21). Moreover, Kdelr1 associated with PP1, 
whereas mutant Kdelr1 did not. These results suggested that 
Kdelr1 is required for optimal PP1 activity to dephosphorylate 
eIF2α in naïve T cells under stress. Thus, the Kdelr1–PP1 axis 
regulates naïve T cell death, which is induced by ISR in  vivo 
(Figure 2) (21).

STRONG TCR-MeDiATeD SiGNALS 
ALLeviATe iSR IN VIVO

As described above, T-Red mice show the increased CD44High 
phenotype in T cells due to a reduction of naïve T cell numbers. 
Interestingly, the CD44High phenotype became normal when 
T-Red mice were bred with TCR Tg mice such as OT-I and P14 
mice. Absolute cell numbers of TCR Tg T cells were also the same 
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between T-Red/TCR Tg and control TCR Tg mice (21). OT-I 
TCR Tg mice have TCR, which recognizes an ovalbumin (OVA) 
peptide on MHC class I-restricted TCR, and P14 TCR Tg mice 
express TCR, which recognize a lymphocytic choriomeningitis 
virus peptide on MHC class I, although specific endogenous anti-
gen peptides are not known in either TCR Tg cases. However, it is 
known that both transgenic TCRs have relatively high self-peptide 
affinity (16, 17). Therefore, we hypothesized that naïve T cells that 
receive relatively stronger TCR signals due to higher self-affinity 
might be resistant to enhanced ISR. Consistent with this idea, 
the surviving naïve T cells in T-Red mice express significantly 
higher levels of CD5 (14, 15). In addition, a tetramer dissociation 
assay using peptides derived from self-antigens confirmed higher 
TCR affinity/avidity in T-Red naïve T cells. These results suggest 
a novel link between TCR signal strength and ISR-mediated 
apoptosis during steady state in naïve T cells.

These findings prompted us to examine the possibility of 
whether TCR stimulations with a panel of peptide ligands hav-
ing various affinities to TCR may result in different responses 
between WT and T-Red naïve T cells in  vivo and in  vitro. We 
used ovalbumin (OVA)-altered peptide ligands (APL) as a model 
antigen (36–38) to stimulate control OT-I and T-Red/OT-I T 
cells and assessed the survival response in vitro and proliferation 
response in vivo. We found that weak TCR stimulation decreases 
the survival and proliferation of T-Red naïve T cells, whereas 
stimulation with ligands having higher affinity has no such effect 
(39). These results suggest that a strong physiological TCR signal 
suppresses IRS, whereas a weak one does not (Figure 2).

FUTURe DiReCTiONS

Even in steady state, in  vivo T cells have a certain level of 
eIF2α phosphorylation, suggesting that they receive a certain 

level of stress. However, the endogenous stressors for T cells 
particularly in  vivo are unknown. Because the thymus from 
mice deficient in PERK has reduced levels of eIF2α phospho-
rylation, at least in the pancreas (40), it might be possible that 
some activators of eIF2α kinases are stressors in naïve T cells. 
In summary, we identified that the Kdelr1–PP1 axis plays a 
beneficial role for naïve T cells to resolve cellular stress in vivo. 
Our study also revealed that TCR signaling can counteract ISR 
in naïve T cells. A molecular mechanism behind TCR signal-
ing and the resistance to ISR should be elucidated in the near 
future.
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