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Positron emission tomography (PET) represents a unique molecular tool to get in vivo
access to a wide spectrum of biological and neuropathological processes, of crucial
relevance for neurodegenerative conditions. Although most PET findings are based on
massive univariate approaches, in the last decade the increasing interest in multivariate
methods has paved the way to the assessment of unexplored cerebral features,
spanning from resting state brain networks to whole-brain connectome properties.
Currently, the combination of molecular neuroimaging techniques with multivariate
connectivity methods represents one of the most powerful, yet still emerging,
approach to achieve novel insights into the pathophysiology of neurodegenerative
diseases. In this review, we will summarize the available evidence in the field of PET
molecular connectivity, with the aim to provide an overview of how these studies
may increase the understanding of the pathogenesis of neurodegenerative diseases,
over and above “traditional” structural/functional connectivity studies. Considering the
available evidence, a major focus will be represented by molecular connectivity studies
using [18F]FDG–PET, today applied in the major neuropathological spectra, from
amyloidopathies and tauopathies to synucleinopathies and beyond. Pioneering studies
using PET tracers targeting brain neuropathology and neurotransmission systems for
connectivity studies will be discussed, their strengths and limitations highlighted with
reference to both applied methodology and results interpretation. The most common
methods for molecular connectivity assessment will be reviewed, with particular
emphasis on the available strategies to investigate molecular connectivity at the single-
subject level, of potential relevance for not only research but also diagnostic purposes.
Finally, we will highlight possible future perspectives in the field, with reference in
particular to newly available PET tracers, which will expand the application of molecular
connectivity to new, exciting, unforeseen possibilities.

Keywords: amyloid PET, brain networks, connectivity, FDG–PET, multivariate analysis, neurodegenerative
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INTRODUCTION

During the last decades, positron emission tomography (PET)
has established itself as a relevant tool, in providing in vivo
biomarkers for neurodegenerative diseases associated with
cognitive decline and dementia, and playing a leading role in
the diagnostic work-up of these conditions (Albert et al., 2011;
Gorno-Tempini et al., 2011; McKhann et al., 2011; Rascovsky
et al., 2011; Sperling et al., 2011; Armstrong et al., 2013; Dubois
et al., 2014; McKeith et al., 2017). PET represents a unique
tool to in vivo measure different molecular processes that are
key to the pathophysiology of neurodegenerative conditions (cf.
Iaccarino et al., 2017b). Together with well-established tracers,
such as [18F]FDG, measuring cellular glucose metabolism, new
tracers have and are being developed, providing access to a
widespread set of biological and pathological processes, from
neurotransmission to amyloid and tau pathology.

Recently, the field of neurodegenerative diseases has witnessed
a paradigmatic shift, with the research focus shifting from
evaluating the effect of underlying pathology on local neuronal
function to assessing the long-distance effects of brain pathology
on interconnected neural systems (Fornito and Bullmore, 2015).
Pathophysiological models of neurodegeneration now take into
account brain inter-regional anatomical and functional networks,
considered as relevant targets of pathology, on the one hand
(Palop et al., 2006), and as key players in pathology spreading,
on the other hand (Seeley, 2017).

The knowledge on functional and structural brain networks
and connectivity is increased rapidly, with a plethora of studies
focusing on magnetic resonance imaging (MRI), as a widely
available and cost-effective in vivo tool (see for review Fornito and
Bullmore, 2015; Fornito et al., 2015).

Information on molecular brain networks and connectivity,
as assessed by PET, is still scarce, with the few studies mostly
focusing on [18F]FDG–PET metabolic connectivity. Here we
review the most recent advances in this emerging field. Following
a brief introduction on the available PET tracers and on the
theoretical and methodological framework of brain connectivity,
we will review available molecular connectivity studies using PET,
particularly in combination with [18F]FDG tracer, as a functional
measure of brain metabolism. Pioneering studies assessing
molecular connectivity with tracers for neurotransmission and
brain pathology will also be discussed. Finally, methodological
advances and future directions in the field will be reviewed.

PET: RELEVANT TRACERS FOR
NEURODEGENERATIVE DISEASES

Positron emission tomography studies of neurodegenerative
diseases have greatly contributed to the research in clinical
neuroscience (Jagust, 2018), by providing access to a series
of molecular measures impossible to obtain in vivo with
other neuroimaging techniques (Iaccarino et al., 2017b). PET
is increasingly showing its potential in supporting clinical
diagnosis of neurodegenerative conditions, also in the early,
if not preclinical, disease phases, by allowing the detection

of subtle pathological and functional neural changes even
before clinical symptoms become manifest (Albert et al., 2011;
Sperling et al., 2011).

Traditionally, the focus of brain PET studies has been
on brain metabolism, as accurately measured by [18F]FDG–
PET. It is well-established that [18F]FDG–PET signal, reflecting
both oxidative metabolism in neurons and aerobic glycolysis
in astrocytes, is strictly coupled to synaptic function (Stoessl,
2017) and dysfunction. Since synaptic dysfunction can arise
from several neuropathological events, among which altered
intracellular signaling cascades and mitochondria bioenergetics,
impaired neurotransmitter release, accumulation of neurotoxic
protein species, and long-distance disconnections (Perani, 2014),
[18F]FDG–PET can be considered as a “funnel” biomarker,
able to capture all the different pathological events that
produce a perturbation in glucose metabolism. Decades of
research have shown that specific patterns of hypometabolism
can be consistently detected in the major neurodegenerative
conditions, from Alzheimer’s disease to dementia with Lewy
bodies to the different syndromes of the frontotemporal dementia
spectrum (cf. Perani et al., 2014; Cerami et al., 2015, 2016;
Caminiti et al., 2019).

Positron emission tomography can also be used to measure
receptor density (both at pre- and post-synaptic level) and
transporter binding in neurotransmission systems. PET tracers
have been developed for measuring the integrity of several
brain neurotransmission systems, from the aminenergic to the
µ-opioid systems. Although the major application of tracers
for neurotransmission is in the field of psychiatric disorders,
some of these tracers have been used to measure neurochemical
alterations in neurodegenerative diseases. Among the most used
tracers, [11C]MP4A – and analogous tracers for cholinergic
presynaptic function – have shown reduced acetylcholinesterase
activity in the cortex, hippocampus, and amygdala in Alzheimer’s
disease (Herholz et al., 2004; Marcone et al., 2012), and even
more severe reductions in dementia with Lewy bodies and
Parkinson’s disease with dementia (Klein et al., 2010). In parallel,
PET studies targeting the dopaminergic system have allowed to
consistently show, in vivo, reduced dopaminergic transporter
activity – a transmembrane protein regulating extracellular levels
of dopamine – in Parkinson’s disease and atypical Parkinsonian
conditions (Varrone and Halldin, 2010; Caminiti et al., 2017b).
Still, the use of these tracers, usually carbon-labeled and thus
requiring the presence of a cyclotron, on-site, is limited to
research studies, with more restricted applications in daily
clinical practice.

More recently, efforts in tracer development have focused on
targeting brain aggregates of pathological proteins, with successful
validation of tracers for amyloid and (partially) tau pathology,
representing the key pathological aggregates of Alzheimer’s
disease (Jack et al., 2018). The binding properties of currently
available amyloid tracers have been well-characterized, with
tracers binding selectively and with high affinity to the β-sheet
structure of fibrillary amyloid plaques, with low affinity to diffuse
plaques and showing no affinity for other amyloid isoforms, such
as protofibrils or oligomers (Fodero-Tavoletti et al., 2012; Ni
et al., 2013; Sabri et al., 2015). The availability of these in vivo
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markers for amyloid pathology has greatly improved the design
of clinical trials for Alzheimer’s disease, advancing strategies
for patients’ selection and allowing in vivo evaluation of target
engagement (Vandenberghe et al., 2013). As for tau tracers,
available data derive mainly from first-generation tau tracers,
binding with high affinity to tau neurofibrillary tangles (Fodero-
Tavoletti et al., 2011; Xia C.F. et al., 2013; Hashimoto et al.,
2014). Preliminary studies have shown that tau PET imaging
could be a valuable tool for the in vivo staging of Alzheimer’s
disease pathology progression (Schöll et al., 2016; Schwarz et al.,
2016). Still, major areas of concern remain, regarding the type
of tau pathology being targeted, i.e., 3-repeat vs. 4-repeat tau
isoforms, and presence of non-specific binding in the striatum
and choroid plexus, and the off-target binding to neuromelanin
and monoamine oxidase (MAO-A/B) (Saint-Aubert et al., 2017;
Lemoine et al., 2018).

THE BRAIN AS A NETWORK

Although most imaging findings are based on massive univariate
approaches, the increasing interest in multivariate methods has
paved the way to the assessment of unexplored cerebral features,
spanning from resting state brain networks to whole-brain
connectome properties. The advantage of using multivariate
methods is that they allow to assess variations in the relationship
between brain regions, over and above local regional changes,
measureable with univariate methods (Clark and Stoessl, 1986).
The great majority of multivariate findings derive from structural
and functional MRI (fMRI) studies, respectively, providing
information on brain axonal pathways, and on the correlation
of blood-oxygen-level-dependent (BOLD)-signal time course
across brain regions. Still, the first seminal studies assessing
covariations in brain function were performed, already in the
1980s, using brain metabolic data derived from [18F]FDG–PET
(Horwitz et al., 1984, 1987). From the 1990s, the popularity
of multivariate approaches steeply increased, following the
development of fMRI, and the observation that spontaneous
activity in the primary motor cortex correlates with the activity
of a widespread, spatially distributed, network of brain regions
(Biswal et al., 1995). Later, based on [18F]FDG–PET evidence of
coherent metabolic decreases during cognitive tasks vs. resting
condition, it was hypothesized that different sets of brain
regions organize into different brain networks (Raichle et al.,
2001). Subsequent fMRI studies confirmed that other large-scale
networks, whose regions show coherent patterns of dynamic
activity, exist in the “resting brain” (Greicius et al., 2003) and
that brain spontaneous activity can essentially be decomposed
in a series of internally coherent large-scale functional brain
networks (Beckmann et al., 2005). From the 2000s, building
on this evidence, and borrowing methodological tools from
the field of graph theory, a new theoretical framework was
proposed, under the name of “connectomics” (Sporns et al.,
2005). This framework, also known as the new “systems biology
of the brain,” uses graph theory indices to investigate the
properties of the brain functional and structural architecture,
on the assumption that a comprehensive characterization of the

brain as a network is necessary to understand brain function
(and dysfunction) (Sporns et al., 2005). In recent years, these
methodological advances have been further extended to PET
data. An excellent review of the analysis methods cited in this
paragraph, and their adaptation to PET imaging data, is also
available (Yakushev et al., 2017).

In the study of neurodegenerative diseases, the relevance of
modeling the brain as a system of interconnected regions spans
from two foundational hypotheses, one conceptualizing brain
networks as passive targets of brain pathology (Palop et al., 2006)
and the other as active players in the spreading of pathology
(Seeley, 2017).

In the first “passive” conceptualization, brain networks
are deemed relevant targets of brain pathology, dynamically
altered by plasticity mechanisms that arise from pathological
processes (Palop et al., 2006). It is assumed that pathological
processes not only alter activity of isolated regions, but also
produce distributed effects on brain networks, by prompting a
reorganization of regional interconnections through induction
of dedifferentiation and compensation processes (Fornito et al.,
2015). A decade of evidence indeed suggests that the effects of
molecular pathological alterations underlying neurodegeneration
invariantly pass through large-scale brain networks, as a
class-wide phenomena affecting each neurodegenerative disease
(Seeley et al., 2009). The impairment of large-scale brain
networks represents the endpoint of a chain reaction, where
the perturbation of molecular processes at the microscale
level propagates through the mesoscale to eventually affect the
macroscale level. At the microscale level, the abnormal protein
assemblies, that are the very basis of the neurodegenerative
process alter, for example, receptor expression, neurotransmitters
release, and synaptic plasticity, producing synaptic dysfunction
and failure (Bellucci et al., 2015). In the long term, synaptic
impairment alters neuronal functioning by affecting activity-
dependent signaling and gene expression, also producing
distributed effects, at the mesoscale, on local neuronal circuits
(Palop et al., 2006). Dysfunction in specific brain circuits
eventually reverberates onto distant brain regions, resulting in
disintegration of large-scale brain networks (Palop et al., 2006).

The idea of an “active” role for neuron-to-neuron
interconnections in the spread of pathology stems from the
observation that stereotypical patterns of pathology spreading are
detectable in every neurodegenerative disease (see Brettschneider
et al., 2015). Sequential stages of pathology spreading have been
identified from post-mortem data, suggesting that propagation
of pathology follows highly specific topographies (Braak and
Braak, 1991; Braak et al., 2003, 2006; Brettschneider et al.,
2013). Specifically, it was shown that tau spreads from the
locus coeruleus to the transentorhinal cortex to cortical areas
(Braak and Braak, 1991; Braak et al., 2006); amyloid plaques,
from the neocortex to subcortical and brainstem regions (Braak
and Braak, 1991); Lewy bodies (composed of immunoreactive
α-synuclein), from the olfactory bulbar/dorsal motor nucleus
of the vagus nerve through the basal forebrain to the neocortex
(Braak et al., 2003); TAR DNA-binding protein 43 (TDP-43)
pathology, from the agranular motor cortex to brainstem motor
nuclei and spinal cord, eventually reaching the neocortex in later
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disease stages (Brettschneider et al., 2013). This post-mortem
evidence is complemented by recent in vivo and in vitro studies,
demonstrating that pathological proteins, similarly to prions,
spread trans-synaptically along neuronal interconnections
(Dujardin et al., 2014; Song et al., 2014; Narasimhan et al.,
2017). Notably, injection of pathological proteins triggers protein
spreading to spatially remote but anatomically connected brain
regions, and the pattern of spreading depends only on the site
of injection and on the neural connectome at that specific site
of injection, and not on the type of protein strain (Narasimhan
et al., 2017). Brain networks are thus active players in pathology
spreading, setting the topographical constraints according to
which pathology can propagate from its initial site of aggregation
(Zhou et al., 2013). Available in vivo studies support this view,
as spreading of both pathology and neurodegeneration map onto
functional and structural brain networks (Seeley et al., 2009;
Schmidt et al., 2016; Franzmeier et al., 2019). In this framework,
brain connectomics is a powerful tool to investigate and predict
the pattern of long-distance pathology spreading, as pathology
spreading is strictly dependent on the topology of the underlying
brain connectome (Fornito et al., 2015).

Although both the “active” and “passive” conceptualizations
of brain networks are backed up by solid evidence, it stands to
reason that their relevance might change along the time course
of the disease. We can hypothesize that, at the very beginning
of the neurodegenerative processes, the brain connectome
would indeed act as an hard-wired “roadmap,” determining
the pattern of pathology spreading (Zhou et al., 2013). Early
on, pathological changes would affect connectome functional
and structural properties, disrupting the “healthy” neuronal
pathways and brain networks (Prescott et al., 2014). At this
stage, pathology-related alterations of the brain connectome
would progressively superimpose on the “original” connectome,
dynamically interacting with the pre-morbid brain architecture,
to determine subsequent spreading of the disease.

PET MOLECULAR CONNECTIVITY

Molecular evidence on brain networks and connectivity
pathways, obtained from PET imaging data, is now becoming
increasingly available. The first PET connectivity studies,
tracing back to the 1980s, took into account [18F]FDG–
PET data to investigate metabolic molecular connectivity,
defined as the association between inter-regional metabolic
demands on the assumption that regions with similar metabolic
demands are functionally associated (Horwitz et al., 1984).
These pioneering studies remained “isolated experiments,” and
were not replicated until the last decade, when the number
of molecular metabolic connectivity studies steeply increased,
in a “renaissance” (Yakushev et al., 2017) mainly driven by the
renewed interest in the newborn field of connectomics. Together
with [18F]FDG–PET metabolic connectivity studies, the
application of connectivity approaches has now been extended
to other PET targets, including neurotransmission systems. So
far, molecular connectivity approaches have demonstrated novel
network-level alterations in a wide range of neurodegenerative

disorders. Crucially, the combination of connectivity approaches
with PET molecular data provides extremely specific results on
the underlying target, thus overcoming the “lack of specificity”
typical of functional connectivity, as estimated from fMRI (Hahn
et al., 2018). It is expected that molecular connectivity will greatly
broaden the field of connectomics, providing an integrated,
network-oriented, and biologically rooted, perspective, leading
to a deeper understanding of the complexity of the brain
architecture (Veronese et al., 2019).

Basic Principles and Methods in
PET Molecular Connectivity
Different analytical approaches have been implemented for
molecular connectivity modeling (Yakushev et al., 2017). Three
main analytical approaches are commonly used to estimate PET
molecular connectivity:

(i) Seed correlation or interregional correlation analysis
(IRCA): this voxel-wise approach relies on the selection
of a region of interest (ROI), or seed, from which the
average value of tracer uptake is extracted (Figure 1A).
The correlation between average uptake in the seed
and uptake in each voxel in the rest of the brain is
then tested (Lee et al., 2008), to obtain an estimation
of the connectivity profile, or connectivity map, of
the seed of interest. This method yields a certain
flexibility, as the researcher can select the ROI, or seed,
in either a data-driven fashion (e.g., Morbelli et al.,
2013; Iaccarino et al., 2018) or based on an a priori
hypothesis (e.g., Ballarini et al., 2016; Malpetti et al.,
2018). In the former case, the seed is derived directly
from data analysis, usually by inputting, as seed, the
cluster derived from a first round of univariate analyses
(e.g., Morbelli et al., 2013; Iaccarino et al., 2018). In
the latter case, this method has been commonly used
to estimate large-scale brain networks in [18F]FDG–
PET molecular connectivity studies (e.g., Ballarini et al.,
2016; Malpetti et al., 2018). Resulting networks have
similar topographies to the ones obtained with resting
state-fMRI (Passow et al., 2015).

(ii) Independent component analysis (ICA): this voxel-wise
approach is based on the multivariate decomposition
of PET signal across the brain (Di et al., 2012),
under the assumption that PET signal can be
described as a mixture of statistically independent
components (Pagani et al., 2017). This approach
allows identification of highly coherent brain networks
in a data-driven fashion, without requiring any
a priori selection of specific ROI (Figure 1B). Still,
researcher’s intervention is needed to set the number of
components to be extracted, and to select components
with pathophysiological/anatomo-functional meaning,
while discarding unimportant components of pure
statistical noise. Although ICA represents the election
method for connectivity analysis with fMRI data,
contrasting results have emerged on its application to
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FIGURE 1 | Continued
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FIGURE 1 | Schematic representation of the most common analytical approaches for molecular connectivity modeling. (A) Seed correlation analysis: molecular
connectivity estimation is performed from a specific seed of interest, selected by the researcher. Here, the seed corresponds to a cluster encompassing the
precuneus/posterior cingulate cortex; the resulting connectivity map corresponds to the default mode network. (B) Independent component analysis: whole-brain
tracer uptake signal is decomposed into multiple statistically independent components, at voxel-wise level. The number of extracted components is set by the
researcher. Here, N = 20 components are extracted (only six are shown for visualization purposes). By comparing the topography of the identified components with
known anatomo-functional networks, the researcher can then select the components of interest. Here, three selected components are shown for visualization
purposes, corresponding to the primary visual network, executive network, and default mode network. (C) Partial correlation analysis: molecular connectivity
estimation is performed from ROIs selected by the researcher. Here, the ROIs comprehensively cover the whole brain. If the number of subject is smaller than the
number of ROIs, sparse inverse covariance estimation (SICE) is used to estimate a connectivity matrix. This is then translated into a network, where nodes are
represented by ROIs and edges by molecular connections. Here, a weighted connectivity matrix and weighted networks are shown, with edges computed at three
different network densities. A wide array of graph theory metrics can then be estimated. BrainNet Viewer (http://www.nitrc.org/projects/bnv/) was used for rendering
(Xia M. et al., 2013). ROIs, regions of interest.

[18F]FDG–PET data for large-scale network estimation
(Di et al., 2012; Savio et al., 2017).

(iii) Partial correlation analysis: this ROI-based approach
allows to compute a comprehensive “connectivity
matrix” following selection of a series of target
regions, either based on a specific a priori hypothesis,
i.e., ROIs belonging to a specific anatomo-functional
system of interest or in a data-drive fashion, i.e.,
ROIs covering the whole brain (Figure 1C). This
approach allows to estimate the degree of linear
association between each couple of selected ROIs, after
factoring out the contribution of all remaining ROIs
to the target association. As such, partial correlation
analysis overcomes the limitations of simple correlation
analysis, that, by capturing pairwise information only,
cannot characterize the effects of multiple brain
regions interacting together (Huang et al., 2010).
This method has subsequently been refined into a
more advanced approach, known as sparse inverse
covariance estimation (SICE) (Huang et al., 2010). The
advantage of SICE is that it allows to estimate molecular
connectivity even when the number of subjects included
in the analysis is smaller than the number of ROIs,
a relatively frequent scenario in PET studies (Huang
et al., 2010). This is crucial particularly in connectivity
studies for connectome assessment, where an elevated
number of ROIs, covering the whole-brain, are selected.
Once the whole-brain connectivity matrix is estimated
through SICE, graph theory indices can be eventually
computed, molecular hubs and modules identified, and
changes in nodal and global network properties assessed
[see Bullmore and Sporns (2009) for a review on graph
theory indices].

Although these approaches are methodologically quite
different, they all rely on the assessment of regional co-variation
in PET tracer uptake across subjects to estimate molecular
connectivity (Figure 1). This is quite different from fMRI studies,
where the availability of a time series for each subject allows to
estimate functional connectivity based on regional co-variation of
BOLD signal, through time, within the same subject. Since a times
series is not available in PET studies, i.e., parametric PET images
are inherently “static,” molecular connectivity studies always rely
on the identification of patterns of inter-subject co-variation of

regional tracer uptake. This will be further detailed in the last
paragraph of the present review.

Independent of the analytical method used to estimate
molecular connectivity, and the resulting outcome, i.e., seed-
based maps of connectivity, mutually independent networks
or connectivity matrices, results of molecular connectivity
studies are usually translated into a common lexicon, with
reference to decreased or increased connectivity. This is usually
achieved through statistical comparison of connectivity metrics
(e.g., network topography, connectivity stregth, and number
of significant connections) between the target population
and a reference group of healthy controls. At a basic level,
interpretation of decreased and increased connectivity is quite
straightforward, i.e., decreased (or increased) connectivity
of a region to another indicates that the former region has
a tracer uptake that is less (or more) associated with tracer
uptake in the latter. At a more informative level, however,
interpretation of connectivity changes becomes non-trivial and
varies greatly depending on the type of PET tracer being used. In
[18F]FDG–PET studies, similarly to fMRI studies, connectivity
changes are usually interpreted in terms of function: connectivity
decreases indicate functional disconnection between regions,
while connectivity increases indicate increased functional
coupling between regions. Interpreting the significance of
connectivity increases is particularly non-trivial (Pievani
et al., 2014): when increased connectivity affects metabolically
preserved brain regions, it might be indicative of a “beneficial”
compensatory process, with recruitment of brain regions
that are still functional; when increased connectivity affects
metabolically impaired brain regions, it might be indicative
of a common underlying pathological process, conjunctly
affecting metabolism of multiple brain regions in a similar
fashion. For tracers targeting pathology, molecular connectivity
increases can be expected with progressive pathology spreading.
For tracers targeting neurotransmission, interpretation strictly
depends on the specific neurotransmission system and target
being studied: connectivity decreases might be indicative, for
example, of selective denervation from the neurotransmitter
nuclei projecting to the target regions being evaluated. Of note,
changes in molecular connectivity can, but do not necessarily,
reflect changes in anatomical connections between regions.
Although anatomical disconnection between regions would
likely result in changes in molecular connectivity, changes in
molecular connectivity can be expected also without structural
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disconnection. Accordingly, and similarly to fMRI functional
connectivity (Smith et al., 2013), molecular connections reflect
both direct or indirect (polysynaptic) connections between
regions, i.e., regions can be functionally connected, with or
without a direct anatomical connection.

Molecular Connectivity Studies
Targeting Brain Metabolism
The investigation of brain metabolic connectivity has its
foundation in the principle that regions whose metabolism is
associated are functionally interconnected (Horwitz et al., 1984).
This assumption stems from a pioneering study, demonstrating
that metabolic connectivity results are largely consistent with
known anatomo-functional data (Horwitz et al., 1984). Among
the different declinations of molecular connectivity, metabolic
connectivity theoretically represents the one most closely akin to
functional connectivity, as assessed by fMRI. Available evidence
suggests a close link between resting-state functional brain
connectivity, as measured by resting-state fMRI, and glucose
consumption, as measured by [18F]FDG–PET (Riedl et al.,
2014; Passow et al., 2015). In a recent cross-modal study,
it was shown that network properties of the brain metabolic
covariance network indeed resemble that of the fMRI network,
retaining the small-worldness property typical of functionally
relevant organizations, as opposed to the randomness typical of
structural organizations (Di et al., 2017). Direct comparison of
the topography of brain networks as identified by [18F]FDG–
PET vs. resting-state fMRI provided, however, contrasting results.
Passow et al. (2015) demonstrated remarkably overlapping
patterns of functional and metabolic connectivity seeding from
the posterior cingulate gyrus, clearly corresponding to the
topography of the default mode network (Passow et al., 2015).
Savio et al. (2017), using simultaneously acquired [18F]FDG–
PET and resting-state fMRI data, expanded these findings,
reporting again substantial overlap within the major large-scale
brain networks (Savio et al., 2017). While these results seem to
point at a common underlying neural substrate for functional
and metabolic connectivity (Passow et al., 2015; Savio et al.,
2017), Di and colleagues (2012) reported mostly dissimilar
findings, especially pertaining the default mode network (Di
et al., 2012). It must be noted that, while both [18F]FDG–
PET and fMRI signals represent proxies of synaptic function,
they record extremely different aspects of neural activity. fMRI
BOLD signal measures changes in the relative levels of oxy- and
deoxy-hemoglobin, and is coupled to neural activity through the
hemodynamic response, a neurovascular mechanism aimed at
increasing blood flow to cover the energy demands of local brain
activity (Bullmore and Sporns, 2009). BOLD signal is dependent
on a combination of oxidative metabolism, blood flow, and
blood volume (Gauthier and Fan, 2019), and is also affected by
vessels size (Liu, 2013). fMRI is thus inherently more dependent
of neuro-vascular coupling, and less directly linked to synaptic
function, as compared to [18F]FDG–PET (cf. Yakushev et al.,
2017). [18F]FDG–PET signal measures glucose consumption and
is coupled to neuronal activity through a specific biochemical
pathway, where excitatory glutamate release in the synaptic cleft

elicits activation of the sodium/potassium pump, stimulating
glucose consumption via aerobic glycolysis (Stoessl, 2017).
Notably, energy consumption represents a proxy for directional
signaling, as increases in local metabolism are indicative of
increased afferent neuronal activity (cf. Riedl et al., 2016).
Interestingly, this observation can be exploited to estimate
effective brain connectivity with a completely data-driven
approach, by combining undirected signaling pathways estimated
from fMRI, with the information on directionality derived from
[18F]FDG–PET data (Riedl et al., 2016).

In the following sections, we review the available
metabolic connectivity findings in the main neurodegenerative
disease spectra.

Amyloidopathies/Tauopathies – Among metabolic connecti-
vity studies, Alzheimer’s disease represents definitely the
nosographic entity that has received the greatest attention.
The first study of metabolic connectivity in neurodegenerative
conditions, in the 1980s, was indeed performed on a small
sample of patients with Alzheimer’s disease dementia (Horwitz
et al., 1987). Subsequent studies have consistently shown reduced
metabolic connectivity seeding from the posterior cingulate
gyrus/precuneus (Morbelli et al., 2012; Ballarini et al., 2016;
Herholz et al., 2017), crucially representing the main hub of
the default mode network. This finding was replicated in both
late- and early onset Alzheimer’s disease, with involvement
of additional brain networks in the latter group (Ballarini
et al., 2016). It remains to be determined whether the pattern
of metabolic connectivity alterations differs among atypical
presentations of Alzheimer’s disease. To this regard, preliminary
data suggest that, in atypical variants, specific alterations in
metabolic connectivity might co-exist with the typical default
mode network dysfunction (Herholz et al., 2017). Notably, cross-
sectional studies suggest that metabolic connectivity deficits
become increasingly more pronounced as disease progresses,
with a gradual disintegration of the default mode network
from prodromal to overt disease phases (Pagani et al., 2017).
Interestingly, the majority of these studies reported reduced
metabolic connectivity in both hypo-metabolic and metabolically
preserved brain regions, at consistence with the view that
connectivity alterations can exceed local metabolic deficits
(Clark and Stoessl, 1986). This is also in accordance with
recent pathophysiological models of neurodegenerative diseases,
suggesting that connectivity alterations can spread at long-
distance, affecting brain regions that would be otherwise spared
by pathology (Warren et al., 2013). Together with decreases
metabolic connectivity, increased network connectivity has also
been reported in Alzheimer’s disease, in association to reserve
proxies such as education (Morbelli et al., 2013; Malpetti et al.,
2017) and bilingualism (Perani et al., 2017). It has been suggested
that these results might be indicative of a common compensatory
mechanism, according to which lifelong protective factors
promote stronger integration of large-scale brain networks,
in spite of more severe hypometabolism (Yakushev et al.,
2017). Of note, in a recent report in Alzheimer’s disease, we
found that –in females only – high body mass index levels
determine decreased connectivity in the very same brain networks
involved in the above-mentioned compensatory mechanisms
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FIGURE 2 | Whole-brain metabolic connectome in Dementia with Lewy bodies. (A) Brain connectivity graphs in healthy controls and patients with dementia with
Lewy bodies. A global connectivity reconfiguration is evident in patients with dementia with Lewy bodies, with metabolic connectivity decreases mainly affecting
occipital cortex, thalamus, and cerebellum. Only the strongest connections (density ≈ 3%) are shown (yellow edges). The size of each node depends on the node
total number of connections, whereas the color indicates its anatomical localization. (B) The T-score matrix reports T-test statistics, derived from the direct
comparison of the number of metabolic connections (within and between each macroarea) between patients and healthy controls, following a bootstrapping
procedure. Connectivity decreases are indicated by negative T-scores (green); connectivity increases by positive T-scores (violet). BrainNet Viewer
(http://www.nitrc.org/projects/bnv/) was used for rendering (Xia M. et al., 2013). Modified from Caminiti et al. (2017c). F, frontal; PCL, paracentral lobule; MCC,
median cingulate cortex; ROL, rolandic operculum; P, parietal; O, occipital; T, temporal; In, insula; Th, thalamus; BG, basal ganglia; BS, brainstem; Cbl, cerebellum.

(Malpetti et al., 2018), suggesting a multi-factorial modulation of
brain connectivity in Alzheimer’s disease.

As for primary tauopathies, to the best of our knowledge,
only one metabolic connectivity study is available. In this
study, Titov et al. (2017) reported that pathological metabolic
connections tend to cluster in the frontal and temporal lobes of
subjects with the behavioral variant of frontotemporal dementia
(Titov et al., 2017).

Although patterns of focal metabolic alterations have been
relatively well-characterized in the other primary tauopathies,
namely corticobasal degeneration and progressive supranuclear
palsy (e.g., Niethammer et al., 2014; Caminiti et al., 2017a),
a network-level characterization of these diseases is still lacking.

Synucleinopathies – In the spectrum of synucleinopathies,
metabolic connectivity studies have focused mainly on
Parkinson’s disease. Spetsieris et al. (2015) reported a pertur-
bation of metabolic connectivity in the default mode network in
late Parkinson’s disease, associated with subsequent development
of cognitive dysfunction (Spetsieris et al., 2015). In a more recent
study, we replicated these findings, and additionally showed
that connectivity alterations, in Parkinson’s disease, go well
beyond the default mode network, with perturbations of frontal
connectivity in virtually each large-scale brain network (Sala
et al., 2017). In the same study, we also assessed whole-brain
connectome alterations, reporting connectivity decreases, locally
and at long-distance, in the frontolateral cortex, opposed to
connectivity increases, of possible compensatory significance,
in occipital regions. This pattern of connectivity impairment was
antithetical to the one observed in dementia with Lewy bodies,
characterized by local and long-distance occipital connectivity
decreases, and frontal connectivity increases (Caminiti et al.,
2017c; Figure 2). Still, the two synucleinopathies showed
a common backbone of connectivity alterations, involving

cerebellum and mesencephalic–pontine regions, notably
representing very early sites of α-synuclein aggregation into
Lewy bodies, as the pathological hallmark of both diseases
(Caminiti et al., 2017c; Sala et al., 2017). To the best of our
knowledge, no metabolic connectivity studies are available in
multiple system atrophy.

Other – Little is known on network-level molecular alterations
in neurodegenerative diseases underlid by other pathological
proteins, such as TDP-43 and huntingtin proteins. To this
regard, the only available study using IRCA in the TDP-43
spectrum, specifically in amyotrophic lateral sclerosis, reported
a positive association between metabolism in the midbrain and
white matter in the corticospinal tract (Pagani et al., 2014).
Still, results deriving from group-level metabolic connectivity
analysis in amyotrophic lateral sclerosis should be interpreted
with caution, as they might be affected by the intrinsic metabolic
heterogeneity that characterizes this condition (Matías-Guiu
et al., 2016; Sala et al., 2019). Further reflection on group
inhomogeneity and molecular connectivity is reported in the last
section of this review.

Molecular Connectivity Studies Targeting
Brain Neurotransmission Systems
Positron emission tomography studies targeting brain
neurotransmission systems make up a significant proportion of
molecular connectivity evidence. So far, the majority of these
studies have focused on assessing network-level properties
of neurotransmission systems in healthy controls and their
alterations in neuropsychiatric disorders, with only a few studies
available in neurodegenerative conditions. These studies are
based on the assumption that cell firing and neurotransmitter
release from a given neurotransmitter nucleus would affect
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the expression of tracer binding sites in the nucleus’ target
regions (Hahn et al., 2018), and would do so in a similar way
for targets innervated by the same nucleus. The first attempt
to apply multivariate methods to tracers for neurotransmission
was carried out by Cervenka et al. (2010), assessing patterns
of correlations between striatal and extrastriatal dopaminergic
D2-receptor in 16 control subjects. They found that the
pattern of correlations of the radioligands [11C]raclopride
and [11C]FLB457 was consistent with the known biochemical
architecture of the dopaminergic systems, reflecting the
segregation between nigrostriatal, mesolimbic, and mesocortical
pathways (Cervenka et al., 2010). Additional studies followed,
extending the investigation of molecular connectivity to the
serotoninergic (e.g., Hahn et al., 2014; Tuominen et al., 2014;
Pillai et al., 2018) and µ-opioid systems (Tuominen et al.,
2014). During the last years, these studies have progressively
moved from “simple” seed-based correlative approaches, to the
implementation of methods borrowed from functional/structural
connectomics, adopting graph theory measures to estimate
neurotransmission systems’ organization properties. From the
theoretical standpoint, these studies have progressively situated
their results in the framework of connectomics, enriching
“system level” knowledge with “molecular-level” information
(see Tuominen et al., 2014). Altogether, this evidence shows that
PET can reliably reconstruct brain connectivity patterns within
and between neurotransmitter systems, providing in vivo access
to the biochemical architecture of the brain.

To the best of our knowledge, only one study has measured
molecular connectivity alterations of neurotransmission
systems in neurodegenerative diseases. In this study, Caminiti
et al. (2017b) investigated the nigrostriatal and mesolimbic
dopaminergic pathways in a series of Parkinson’s disease patients,
reporting a severe reduction in dopaminergic connectivity
between substantia nigra and putamen, a portion of the striatum
known to be early affected by nigral denervation (cf. Caminiti
et al., 2017b). The mesolimbic network was also affected, with
loss of connectivity between homotopic regions, but no change in
connectivity between the ventrotegmental area and its subcortical
targets. These results support the view of Parkinson’s disease as
a disconnection syndrome, with axonal damage representing an
early occurrence in the degeneration of the nigrostriatal system
(Caminiti et al., 2017b; Fazio et al., 2018). Other studies, based,
however, on single photon emission computed tomography
(SPECT) radioligands for dopaminergic transporter imaging
also adopted a similar approach (Premi et al., 2016, 2017).
These studies showed abnormal patterns of subcortico-cortical
molecular connectivity in Parkinson’s disease (Premi et al.,
2016, 2017), with additional putaminal–cingulate disconnection
specifically associated with the presence of impulse control
disorder (Premi et al., 2016).

It must be mentioned that a few PET studies adopted
an alternative strategy, mapping changes in neurotransmission
pathways via estimation of molecular metabolic connectivity
in selected brain regions (see Figure 3 for an example). This
approach is based on the assumption that energy consumption
is influenced by multiple pathological events, notably including
altered neurotransmission (Perani, 2014) and builds on the

evidence of a significant coupling between neurotransmission
impairment and integrity of metabolic networks (Holtbernd
et al., 2015). Using this approach, it was shown that metabolic
connectivity alterations can be detected within the nigrostriatal
dopaminergic and mesocorticolimbic system, in both Parkinson’s
disease (Sala et al., 2017) and dementia with Lewy bodies
(Caminiti et al., 2017c), with reconfigurations more prominent
in the latter. Using a similar rationale, Verger et al. (2018)
reported a disruption of metabolic connectivity in regions
belonging to the mesocorticolimbic system, specifically in
Parkinson’s disease patients presenting with impulse control
disorder (Verger et al., 2018). Further application of this method
extends to the cholinergic pathways, where derangement was
reported running along cholinergic projections from the basal
forebrain and brainstem nuclei, in dementia with Lewy bodies
(Caminiti et al., 2017c; Figure 3).

Molecular Connectivity Studies
Targeting Brain Pathology
The most recent application of brain molecular connectivity
involves the use of PET tracers for brain amyloidosis and
tau pathology. Contrarily to molecular connectivity studies
targeting metabolism and neurotransmission systems, where the
focus is on assessing the effects of pathology on the energetic
and biochemical architecture of the brain, this branch of
molecular connectivity clearly builds upon the hypothesis of
brain networks as active players in the spreading of pathology
(see above, paragraph: “The brain as a network”). Since pathology
spreading maps onto the underlying structural brain networks,
superimposing on the brain connectome, pathology spreading
might show, per se, “network” properties, and thus be modeled
with network-level approaches. Accordingly, recent studies have
started to make reference to the “amyloid network” and “tau
network” (Sepulcre et al., 2013; Hoenig et al., 2018). Quite a few
molecular connectivity studies using established PET tracers for
amyloidosis are available, while molecular connectivity studies
with tau tracers are emerging.

As a side note, it must be underlined that although the
models of connectivity-based pathology spreading hold true for
tau pathology and amyloid pathology in the form of oligomers
(Ahmed et al., 2014; Domert et al., 2014), some evidence suggests
that spreading of extracellular fibrillary amyloid plaques, targeted
by currently available PET tracers, might be led by spatial
proximity and not by brain connectivity (Mezias and Raj, 2017).
Still, this finding remains controversial.

Amyloidosis – In the first study targeting the “amyloid
network,” Sepulcre et al. (2013) demonstrated that it is possible
to use molecular connectivity data to derive information on
putative mechanisms of amyloid spreading (Sepulcre et al.,
2013). They showed that “hubs” in the amyloid network act
as seeding nodes from where amyloid accumulation spread
to more peripheral regions (Sepulcre et al., 2013). The hubs
that they identified, including the medial temporal lobe and
orbitofrontal cortex, are partially consistent with the early regions
of amyloid accumulation, as defined by post-mortem studies
(Braak and Braak, 1991; Thal et al., 2002). Braak and Braak (1991)
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FIGURE 3 | Metabolic connectivity targeting cholinergic pathways. Left panel: selection of ROIs for assessment of metabolic connectivity within the major cholinergic
pathways. The first row shows regions supplied by basal forebrain (Ch1-2; Ch3) and brainstem (Ch5-6) nuclei. The second row shows the three cholinergic
pathways projecting from the nucleus basalis of Meynert (Ch4). Right panel: histograms show the prevalence of regional connectivity decreases in dementia with
Lewy bodies, in each cholinergic pathway. Prevalence of metabolic connectivity decreases in each pathway was computed as the number of regions, within the
pathway, presenting with significantly decreased metabolic connectivity, divided by the total number of regions belonging to that pathway. Only connections within
each pathway (i.e., between regions innervated by the same cholinergic nucleus) were taken into account to compute the prevalence of connectivity decreases
within each pathway. Prevalence of metabolic connectivity decreases was higher in regions supplied by Ch1–Ch2 nuclei (100% of regions presenting with
significantly decreased metabolic connectivity within this pathway) and Ch5–Ch6 nuclei, with additional involvement of the medial and lateral projection (capsular
subdivision) of the nucleus basalis of Meynert (Ch4). BrainNet Viewer (http://www.nitrc.org/projects/bnv/) was used for rendering (Xia M. et al., 2013). Modified from
Caminiti et al. (2017c). Ch4m, Ch4 medial projections; Ch4lc, Ch4 lateral projections, capsular subdivision; Ch4lp, Ch4 lateral projections, perisylvian subdivision.

described the presence of amyloid pathology in basal portions
of the isocortex (including orbitofrontal cortex), together with
mild involvement of medial temporal lobe structures, already
in Stage A (Braak and Braak, 1991). Thal et al. (2002) reported
involvement of the neocortex first (including orbitofrontal
cortex) (Phase 1), followed by medial temporal lobe structures
already in Phase 2 (Thal et al., 2002). Although presence of
amyloid pathology in the medial temporal lobe is described as
an early (Stage A according to Braak’s staging) or relatively
early (Phase 2 according to Thal’s phases) event, it is worth
noting that medial temporal amyloid burden remains mild
even in the latest stages of amyloid accumulation (Braak
and Braak, 1991). Due to the mismatch between timing and
severity of amyloid pathology, univariate approaches based on
severity of amyloid pathology only would necessarily not be
able to identify the same amyloid hubs as those reported by
Sepulcre et al. (2013) using multivariate connectivity techniques.
Interestingly, a recent study has shown that the localization
of pathological hubs in the amyloid network might not be
invariant, but differ across different variant of the Alzheimer’s
disease spectrum (Leyton et al., 2015). This result contrast with
the well-established homogeneity of amyloid burden reported
across different conditions (Iaccarino et al., 2017a). Further
studies on large population of patients are necessary to better
define these aspects.

Other recent studies have compared nodal and global
properties of the amyloid network in healthy controls, subjects

with mild cognitive impairment and patients with Alzheimer’s
disease dementia (Jiang et al., 2015; Son et al., 2015; Duan
et al., 2017). These studies have however reported contrasting
results, with respect to both the direction and the localization
of the amyloid network’s alterations, possibly due to differences
in the proportion of amyloid positive/negative cases in the
tested cohorts (Duan et al., 2017). To this regard, a recent
study adopted a radically different approach, classifying
subjects not on the basis of their clinical status, but on a
multi-modal biomarker-based amyloid staging, allowing
classification of subjects into “negative,” “early,” and “late”
amyloid accumulators (Pereira et al., 2017). This elegant study
has shown that the amyloid network is characterized by a
“community” of strongly interconnected regions, notably
partly overlapping with the default mode network, invariantly
detectable across all amyloid stages (Pereira et al., 2017).
Interestingly, as amyloid accumulation becomes more severe,
this community progressively expands to include additional
neocortical regions (Pereira et al., 2017), suggesting that
changes in network topology reflect amyloid pathology
progression and spreading.

Tau pathology – To the best of our knowledge, only
one study has investigated molecular connectivity using tau
tracers. In this extremely recent study, Franzmeier et al. (2019)
reported that tau covariance is linearly associated with functional
connectivity, independently of spatial proximity (Franzmeier
et al., 2019). These results provide in vivo support to the
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view that patterns of tau spreading map onto the underlying
connectome, and that tau spread preferentially across connected
(but not necessarily adjacent) brain regions (Franzmeier et al.,
2019). Notably, these results were confirmed not only in
Alzheimer’s disease, but also in normal aging and cerebrovascular
cognitive impairment, suggesting a strong coupling between
tau propagation and functional connectivity, independent of
amyloidosis (Franzmeier et al., 2019). Still, these findings need to
be interpreted with caution, as significant off-target binding has
been reported for the [18F]AV–1451 tau tracer used in this study
(cf. Lemoine et al., 2018).

α-Synuclein pathology – Currently, there is no validated
tracer to in vivo measure α-synuclein pathology. Several
compounds have been investigated, but subsequently discarded
as they did not show sufficient in vivo binding or acceptable
selectivity for the target (Jovalekic et al., 2017; Mathis et al.,
2017). To remedy the lack of information on molecular
connectivity alterations within the α-synuclein network, we used
an alternative approach based on [18F]FDG–PET, following the
same rationale explained above. We mapped [18F]FDG–PET
metabolic connectivity in a series of a priori selected brain
regions, as derived from currently available neuropathological
models of α-synuclein staging (Braak et al., 2003). Using this
approach, we showed that metabolic connectivity alterations map
onto the underlying pathology, with the most severe alterations
involving regions early affected by α-synuclein pathology, in
both Parkinson’s disease (Sala et al., 2017) and dementia with
Lewy bodies (Caminiti et al., 2017c). In spite of the relative
lack of specificity of the [18F]FDG–PET signal, these results
show that α-synuclein pathology leaves a unique imprint on
metabolic connectivity.

Limitations and Future Directions in
Molecular Connectivity – Getting at the
Single-Subject Level?
Although compelling, the net majority of molecular connectivity
results are based on group-level analyses, due to the inherently
“static” nature of PET images – containing either tracer
uptake values averaged over a certain time window or
parametric values derived from the tracer’s dynamics. As
a consequence, quantified PET images do not possess the
temporal “dynamic” component that is typical, for example,
of fMRI data (Yakushev et al., 2017). This limitation makes a
within-subject “fMRI-like” analysis of PET images impossible.
For this reason, molecular connectivity analysis is necessarily
performed at group level. It follows that the reliability of
molecular connectivity findings depends on the definition of
a relatively homogeneous cohort, on the one hand, and on
the normalization of between-subject differences, e.g., due to
variability in image acquisitions, on the other hand (cf. Veronese
et al., 2019). Currently, little is known on the effect of sample
heterogeneity on molecular connectivity results, and, more in
general, on test–retest reliability and reproducibility of molecular
connectivity findings. Encouragingly, a very recent validation
study has shown good reproducibility of molecular connectivity
results, obtained with an ROI-based correlative approach and

graph theory, and confirmed using three different tracers,
suggesting a general applicability within typical experimental
settings (Veronese et al., 2019). More studies are urgently
needed to confirm and extend these findings using other
analytical methods and other tracers, and address the effect of
other experimental variables, e.g., sample size, on molecular
connectivity results.

Together with validation studies, derivation of individual
metrics to quantify molecular connectivity alterations at the
single-subject level represents a top priority in the field of
neurodegenerative diseases. Availability of single-subject metrics
would allow to test the value of molecular connectivity as
a biomarker of diagnostic and prognostic interest, and to
perform correlative analysis, e.g., to investigate the association
between individual connectivity metrics and other imaging
parameters, clinical symptoms/neuropsychological deficits or,
eventually, as complementary outcome measures to evaluate
the effects of new emerging treatments (e.g., Fortier et al.,
2019). Although the estimation of molecular connectivity
patterns necessarily requires – as a first step – a group-
level analysis, different approaches have been developed to
subsequently derive information at the single-subject level. So
far, it has been shown that single-subjects connectivity metrics
can be estimated following group-level molecular connectivity
analysis, from: (i) independent connectivity analysis, followed
by computation of the loading coefficient (Savio et al., 2017);
(ii) partial correlation analysis, followed by a bootstrapping
procedure that allows to obtain a distribution of connectivity
parameters, still at group-level, but that can nevertheless be
used for correlative analysis (Franzmeier et al., 2019); and
(iii) SICE, using the equation of the multivariate Gaussian
distribution (Titov et al., 2017). Finally, a radically different
approach has been proposed, involving the use of dynamic PET
data, traditionally used only to estimate the final parametric
“static” PET image (Passow et al., 2015; Tomasi et al., 2017).
This approach takes full advantage of the dynamic nature of
PET data, using the temporal fluctuations in tracer uptake
to estimate within-subject “temporal” molecular connectivity,
adopting an analytical pipeline similar to the one used
in resting-state fMRI analysis (Passow et al., 2015; Tomasi
et al., 2017). This allows to obtain a “direct” estimation
of the patterns of connectivity alterations at single-subject
level, similarly to fMRI data. Still, it has been noted that
results obtained with this approach, based on estimation
of molecular connectivity using tracer dynamics, might lack
biological specificity (Veronese et al., 2019), in particular for
[18F]FDG tracer. In general, tracer dynamics are dependent
not only on tracer’s specific binding, but also on its non-
specific binding and its delivery properties (Veronese et al.,
2019), making the interpretation of results obtained with such
approach less straightforward, as compared to “traditional”
approaches based on parametric static PET images. In addition,
the use of individual frames of PET acquisitions might harbor
other limitations; most importantly, the necessarily shorter
duration of individual frames would yield lower signal-to-
noise ratio compared to static images derived from the whole
acquisition time.
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CONCLUSION

Molecular connectivity represents a powerful tool to investigate
the pathophysiology of neurodegenerative diseases, providing
in vivo access to a potentially endless series of biological
processes, from cellular metabolism, to neurotransmission,
to aggregation of pathological proteins. The potential of
molecular connectivity is still emerging, and might possibly
be endless, as new areas of application would arise in
parallel with the validation of new tracers for new biological
targets. A recent development is related to the possibility
to assess not only brain glucose metabolism, as measured
by [18F]FDG–PET, but also brain ketone metabolism, using
[11C]AcAc–PET (Courchesne-Loyer et al., 2017). Although
contribution of ketones to brain energy requirements is
scarce under standard conditions (<5%), recent evidence
suggests that ketone metabolism might hold relevance in
both aging and Alzheimer’s disease (Croteau et al., 2018).
Combining [18F]FDG and [11C]AcAc tracers would allow
to test for similarities and differences between glucose-
based and ketone-based brain metabolic networks. Another
interesting development would concern the possibility to
assess molecular connectivity using tracers for synaptic
activity, such as the newly developed [11C]UCB-J tracer
(Finnema et al., 2016). This would give us a direct access
to molecular networks of “pure” neural activity, without

the mediation of BOLD signal or metabolic processes
(Heurling et al., 2017).

Thus, the progressive implementation of molecular connecti-
vity techniques, with possibly unlimited applications brought
by the development of new PET tracers, will allow unique
breakthroughs in our understanding of neurodegenerative
mechanisms. Once approaches to estimate single-subject
brain molecular connectivity will become well-established,
brain connectivity signatures might hold promises to be
validated as biomarkers for diagnostic and prognostic use, or,
eventually, as complementary outcome measures to evaluate
the effects of new emerging treatments. Hopefully, molecular
connectivity studies “will gain momentum, and deservedly so!”
(Yakushev et al., 2017).
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