
Plasmodium vivax Sub-Patent Infections after Radical
Treatment Are Common in Peruvian Patients: Results of
a 1-Year Prospective Cohort Study
Peter Van den Eede1*., Veronica E. Soto-Calle2., Christopher Delgado2, Dionicia Gamboa2,3, Tanilu

Grande4, Hugo Rodriguez4, Alejandro Llanos-Cuentas2, Jozef Anné5, Umberto D’Alessandro1, Annette
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Abstract

Background: There is an increasing body of literature reporting treatment failure of the currently recommended radical
treatment of Plasmodium vivax infections. As P. vivax is the main malaria species outside the African continent, emerging
tolerance to its radical treatment regime could have major consequences in countries like Peru, where 80% of malaria cases
are due to P. vivax. Here we describe the results of a 1-year longitudinal follow up of 51 confirmed P. vivax patients living
around Iquitos, Peruvian Amazon, and treated according to the Peruvian national guidelines.

Methodology: Each month a blood sample for microscopy and later genotyping was systematically collected. Recent
exposure to infection was estimated by detecting antibodies against the P. vivax circumsporozoite protein (CSP) and all PCR
confirmed P. vivax infections were genotyped with 16 polymorphic microsatellites.

Results: During a 1-year period, 84 recurrent infections, 22 positive also by microscopy, were identified, with a median
survival time to first recurrent infection of 203 days. Most of them (71%) were asymptomatic; in 13 patients the infection
persisted undetected by microscopy for several consecutive months. The genotype of mostly recurrent infections differed
from that at day 0 while fewer differences were seen between the recurrent infections. The average expected
heterozygosity was 0.56. There was strong linkage disequilibrium (IA

s = 0.29, p,1.1024) that remained also when analyzing
only the unique haplotypes, suggesting common inbreeding.

Conclusion: In Peru, the P. vivax recurrent infections were common and displayed a high turnover of parasite genotypes
compared to day 0. Plasmodium vivax patients, even when treated according to the national guidelines, may still represent
an important parasite reservoir that can maintain transmission. Any elimination effort should consider such a hidden
reservoir.

Citation: Van den Eede P, Soto-Calle VE, Delgado C, Gamboa D, Grande T, et al. (2011) Plasmodium vivax Sub-Patent Infections after Radical Treatment Are
Common in Peruvian Patients: Results of a 1-Year Prospective Cohort Study. PLoS ONE 6(1): e16257. doi:10.1371/journal.pone.0016257

Editor: Anne Charlotte Gruner, Agency for Science, Technology and Research (A*STAR), Singapore

Received August 24, 2010; Accepted December 20, 2010; Published January 28, 2011

Copyright: � 2011 Van den Eede et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the Flemish government funds: "Fonds voor Wetenschappelijk Onderzoek" (FWO), and the "Institute for the Promotion of
Innovation by Science, and Technology in Flanders" (IWT, PhD grant). The sample collection was funded by the Directorate General for Development Cooperation
(DGCD) of the Belgian Government (framework agreement 2 and 3; project 95501 and 95502 respectively). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pvandeneede@itg.be

. These authors contributed equally to this work.

Introduction

In the Peruvian Amazon, after the eradication program was

abandoned in the 1980’s, malaria cases steadily increased to reach

a peak between 1995 and 1998, with 121 268 cases recorded in

1997, more than half due to Plasmodium falciparum [1,2]. Additional

efforts of the Peruvian National Malaria Control Program, from

1998 onwards, achieved a substantial reduction of the malaria

burden, though this was less pronounced for Plasmodium vivax [2,3].

Indeed, in 2009, among the 25 837 malaria cases recorded in the

Loreto department, 85% (n = 21 942) where due to P. vivax [4].

The ability to develop liver forms (hypnozoites) that may remain

dormant for weeks or even years before relapsing may partly

explain, despite vigorous control measures primarily aimed at P.

falciparum, the importance P. vivax has acquired in this setting.

Compliance to national treatment strategy for P. vivax malaria,

three-day chloroquine (CQ) (total dosage 25 mg/kg) and seven-

day primaquine (PQ) (total dosage of 210 mg/kg), is often

relatively low as symptoms usually disappear after three days

while the common occurrence of side effects by PQ reduces the
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motivation of the patients to complete the treatment [5]. In Brazil,

the risk of relapses in travelers after full treatment with CQ (1.5 g

over three days) and PQ (210 mg over 14 days) varied between 5

to 25%, with the majority occurring within the first six months [6].

Similarly, in endemic areas in Brazil and Colombia, such risk

varied between 6% and 18%, respectively [7,8,9]. More recently,

in Brazil, 36% patients having received full treatment of 1.5 g CQ

and 210 mg of PQ experienced recurrent P. vivax infections within

600 days, most of them occurring within the first 180 days [10]. It

is unclear if these observations are due to an increased tolerance of

P. vivax to PQ. Nevertheless, from the above studies there are some

indications that P. vivax strains from South America responds

poorly to the recommended PQ dosage, i.e. 15 mg/day for 14

days. Increasing the dosage to 30 mg/day for 14 days (total dosage

of 420 mg) has already been suggested [8].

There is currently little information on the P. vivax recurrence

rates in the Peruvian Amazon region where transmission is low

and clustered and asymptomatic infections are common [2]. In

2003, the P. vivax incidence in San Juan district was estimated at

0.39 infections/person/malaria seasons but has probably declined

since 2007 thanks to the malaria control efforts [2,4]. In order to

characterize the malaria burden in the Peruvian Amazon and

understand the dynamics of P. vivax infections, we analyzed blood

samples collected during 1-year follow-up in a cohort of patients

treated for a P. vivax clinical episode. All PCR-confirmed P. vivax

infections, symptomatic and asymptomatic, were genotyped to

determine the local dynamics of P. vivax clones in the Peruvian

Amazon. Concomitantly, to identify recent inoculations by

infected mosquitoes, the presence of antibodies against the

circumsporozoite protein (CSP) was measured using the CSP

Enzyme-Linked ImmunoSorbent Assay (ELISA). Results are

reported below.

Materials and Methods

Study sites and population
The study sites are situated at about three to seven kilometers

north of Iquitos, on the other bank of the Nanay River (Rio

Nanay) and include five neighboring villages, i.e. Manacamiri,

Lupuna, Fray Martin, San Pedro and Santa Rita, all being

accessible only by boat from Iquitos. These villages are located in a

densely forested region with many small pools, rivers and swamps,

offering ideal breeding sites for Anopheles darlingi, a sylvatic and

effective malaria vector [1–3]. Its biting activities occur near the

breeding sites and throughout the night, with an early peak

between 6 pm and midnight [1]. The climate is tropical, and

malaria transmission is perennial with a peak during the rainy

season, from November to May. Two health posts are located in

the study area: one in Manacamiri and the other in Lupuna

covering the remaining four villages. The population consists of

‘mestizos’ (individuals not belonging to a specific ethnic minority)

practicing mainly subsistence farming in forest fields situated at

easy walking or paddling distance all year around, with occasional

hunting and fishing [5].

Data collection
The cohort started in March 2008 and P. vivax infected patients

were recruited by active and passive case detection. Eligible

individuals with a P. vivax mono-infection were asked to participate

after signing (the parent/guardian for minors) an individual

informed consent. This study was approved by the Ethics Review

Board at Universidad Peruana Cayetano Heredia, Lima, Peru

(Project PVIVAX-UPCH, SIDISI code: 053256) and by both the

Institutional Review Board of the Institute of Tropical Medicine,

Antwerp, and the Ethical Committee of the University Hospital,

Antwerp, Belgium. Pregnant women, individuals with known

Glucose-6-Phosphate Dehydrogenase deficiency or known adverse

events to the treatment, chronic disease or bacterial infection,

neuropsychiatric disorders or malnutrition were excluded. All

patients included were treated according to the national

guidelines, i.e. CQ total 25 mg/kg over three days, and seven

days PQ, 0.50 mg/kg/day which started simultaneously with CQ

[11]. Patients were visited at home daily by the medical staff

attached to the project and the treatment was directly supervised.

After drug intake, each patient was observed during one hour. If

vomiting occurred during the first 30 minutes, a full dose was re-

administered and only half dose, if vomiting occurred 30 minutes

after drug intake. After completing the treatment patients were

weekly visited until day 28. During these visits blood samples were

collected. For the next 11 months, patients were visited monthly at

home, regardless of any treatment received during the follow up.

At each visit, patients were asked about clinical signs and

symptoms, and of any adverse events. A blood sample for

microscopy (thick and thin film) and a blood spot on filter paper

(Whatman grade 3, Whatman, Springfield Mill, USA) for later

molecular (PCR diagnosis and microsatellites genotyping) and

serological analysis (CSP ELISA) were systematically collected.

Malaria infections detected during the follow up were treated with

3 days of CQ 10 mg/kg 1st and 2nd day and 5 mg/kg 3rd day.

Laboratory methods
All filter paper blood spots collected at day 0 (before treatment)

and during the monthly visits were selected. DNA extraction was

performed with the saponine-chelex method and then analyzed by

species-specific PCR [12,13]. Positive samples positive were then

selected for genotyping using 16 microsatellites as previously

described [14]. The PCR product size was analyzed on a 3730 XL

ABI sequencer (Applied Biosystems, Foster city, California, USA).

Fragment sizes were determined with Genemapper (Applied

Biosystems, Foster city, California, USA) using default microsat-

ellite settings, whereby bands smaller than 100 relative fluores-

cence units (rfu) were defined as background. For one locus,

MS16, the rule was adapted because of stutter: for each sample,

only the peaks above 25% of the dominant one (highest rfu) were

considered as real alleles [14]. Samples for which we obtained no

amplification in some loci were re-analyzed to complete the

haplotypes.

The presence of antibodies to the circumsporozoite protein

(CSP), expressed during the sporozoite stage, was assessed in

patients’ sera by Enzyme-Linked ImmunoSorbent Assay (ELISA)

using three different long synthetic CS peptides (N-, R- and C-

polypeptide) [15]. All three peptides are reported to contain B-cell

epitopes and antibodies are generated against these regions in

natural infection [15]. The R-polypeptide corresponded to the

VK210 type of the CSP protein. One half of the micro plates

(Costar EIA/RIA Plate, Corning, New York, USA) were coated

with 1 mg/ml peptide and incubated overnight at 4uC. The whole

plates were blocked with 5% skim milk in PBS pH 7.4 for two

hours at room temperature. After washing, 100 ml of serum

samples diluted 1/200 times in PBS-Tween220 0.05% and 2.5%

skimmed milk was added in duplicate on each half of the plate and

incubated for one hour at room temperature. Human IgG

antibodies bound to the coated peptides were detected by adding

100 ml/well of phosphatase-conjugated polyvalent anti-human

immunoglobulin’s (Sigma Aldrich, St Louis MO, USA) at a

dilution of 1:1000. The enzymatic activity was developed after

incubation for 45 minutes at room temperature with 100 ml/well

para-nitrophenyl phosphate substrate (Sigma Aldrich Co., St Louis
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MO, USA) and stopped with 50 ml/well 12% NaOH. Absorbance

was measured at 405 nm in a Microplate Reader (Multiskan

Ascent, Thermo Electron Corporation, Vantaa, Finland).

The corrected optical density (OD) of each sample was

calculated by subtracting the background OD from the corre-

sponding non-coated wells. Duplicates for which the OD values

differed by more than 30% were rejected for the analysis and

retested. Otherwise, the median was taken as the final result. Sera

from healthy individuals living in Belgium without any history of

stay in endemic areas were used as negative controls. The cut-off

value for sero-positivity was set as the cumulative mean plus three

standard deviations of all the negative control values. Samples

were considered positive if the OD of any of the three peptides was

higher than the cut-off value.

Data analysis
Data were entered and cleaned in Excel (Microsoft cooperation,

USA) then analyzed with Stata.10 (Stata Release 10, StataCorp,

College station, USA). A P. vivax recurrence was defined as any P.

vivax blood infection (symptomatic and asymptomatic) identified

after radical treatment by PCR (regardless of symptoms) and

occurring between day 28 and month 12. A patient was classified

as symptomatic if he/she had fever ($37.5uC) or history of fever at

the time of collection or in the previous 48 hours. Plasmodium vivax

recurrences were defined as ‘‘patent’’ or ‘‘sub-patent’’ depending

on whether the infection was diagnosed either by both microscopy

and PCR (patent) or only by PCR (sub-patent). As an estimate of

transmission potential due to P. vivax carriage, the person-infected

month (PIM) rate, i.e. months with P. vivax infection (either by

microscopy and/or PCR) divided by months of follow-up, was

computed and expressed in 100 person-months. Kaplan-Meier

survival curves were used to estimate the probability of having a P.

vivax recurrence in the first year after radical cure treatment. The

logrank test was used to compare the different curves.

Prevalence and levels of antibodies against the P. vivax CSP were

used to determine the risk for new P. vivax infections. Recent

exposure to P. vivax sporozoites was defined as seroconversion

(from negative to positive) or, in case of a positive test, at least 50%

increase of the corrected OD value between two consecutive

monthly samples.

Within each patient, the genetic profile of each recurrent episode

was first compared to the one at day-0 and later with all previous

episodes as described in [14], and classified into following

categories: i) fully related: all alleles in all loci of the current infection

present in at least one of the previous episodes/infections (including

day 0); ii) incomplete: as above but with alleles missing in one or more

loci; iii) unrelated: at least one locus completely different from any of

the previous episodes/infections, including day 0.

An infection was defined as polyclonal if there was at least one

locus with more than one allele. For each malaria infection, the

locus with the highest number of alleles was considered as a proxy

for the multiplicity of infection (MOI), representing the minimal

number of parasite haplotypes in the sample. The MOI and the

average number of allele per locus were assessed for day 0 and

samples collected during monthly follow up.

The parasite population characteristics were assessed only in

samples with monoclonal infections. The number of alleles/locus,

the allelic richness, and the genetic diversity of each locus were

computed for each population. Genetic diversity was assessed by

calculating the expected heterozygosity (He) = [n/(n-1)][12gpi
2],

where n is the total number of alleles, pi is the frequency of the ith

allele in the population. The He represents the probability of

finding a different allele for a given locus in any pair of haploids

randomly drawn from the same population, and it was computed

with FSTAT version 2.9.3 [16]. Genetic differentiation (h)

between day 0 and monthly follow up samples was measured in

FSTAT using the method of Cockerham & Weir [16]. To evaluate

the likelihood that identical haplotypes found in two or more

samples originated from a different ancestry the psex values were

computed using GenClone ver. 2.0 [17]. This program test

whether all samples with identical haplotypes belong to the same

genetic clone. The allelic frequencies for a locus was estimated by

taking a sample pool composed of all the genotypes distinguished

by all loci except the one being estimated and this procedure was

repeated for each locus in a round robin fashion. These allelic

frequencies were used to calculate the unique genotype probabil-

ity, as given by PGEN. The PSEX was derived using binomial

regression of PGEN [18].

The presence of overall multilocus linkage disequilibrium (LD =

non random association of alleles occurring at different loci) was

assessed with LIAN software version 3.5 [19]. The Standardized

Index of Association (IA
s) was estimated as a measure of linkage in

the population, and the significance was tested using the Monte

Carlo method. The presence of linkage disequilibrium was

assessed on monoclonal infections and unique haplotypes.

The distribution of the haplotypes in time was analyzed. The

eBURST software (version 3) was used to group haplotypes based

on their filiations to each other [20]. Different but related

haplotypes were grouped. Two arbitrary criteria to assign

haplotypes to different groups were applied, either 15 identical

loci out of 16 or at least 11 identical loci [10].

Results

Fifty-one P. vivax patients were recruited between March and

May 2008, and followed up monthly for one year. Males (n = 26)

and females (n = 25) were equally represented and the median age

was 15 years (range: 2–80 years old). The geometric mean of the

parasite density at D0 was 1171 parasites/ ml (range 12–9145).

During the first 28-day follow-up, no parasite recurrence were

observed, except in a 67 years old woman who had at day 28 a sub-

patent and asymptomatic P. vivax infection that spontaneously

cleared before the following monthly visit. All patients but one who

left the study area after day 120 completed the 12-month follow up,

totaling 604 person-months at risk. Among the 657 follow up

samples analyzed, 84 recurrent P. vivax infections were identified by

PCR, among which only 26% were detected by microscopy (22

patent infections), and even less (18 episodes) were associated with

malaria symptoms (fever +/2 splenomegaly). Five patients had

more than one patent recurrence. The risk of P. vivax recurrences

(sub- or patent infections) was not correlated with age or sex.

No recurrent infections were observed in 22 (43%, 22/51)

patients (median age 16 years old). Among the 29 patients (57%,

29/51, median age 15 years old) who experienced a total of 84 P.

vivax recurrences, 13 had one episode and 16 more than one, with 3

patients with up to seven recurrences. About half of the patients with

recurrent infections (14/29) had them over two or more consecutive

months, all of them sub-patent and asymptomatic (Table 1). In three

patients the sub-patent infection was followed by a patent infection

within the following month while in all other patients the infection

was cleared without treatment (Table 1). The overall person

infected month (PIM) rate was estimated at 13 per 100 person-

months, i.e. an average 1.6 months of infection. When considering

only the 29 patients with recurrences, the PIM was 22.7/100

person-months, i.e. an average of 2.7 months of infection. The risk

(Kaplan Meier estimate, KME) of having a P. vivax recurrence

(patent and sub-patent) after one year was 59%, with 203 days as the

median survival time to first recurrence. When considering only

Common P. vivax Recurrences after Radical Treatment
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patent infections the risk was 30% (Figure 1) with half of the primary

patent recurrences occurring within the first 70 days of follow up.

Patent recurrent infections tended to occur mainly during month

two to four, with a tendency to decrease with time, while sub-patent

infections were observed throughout the whole follow up period

(Figure 2). The risk of recurrence was higher in Santa Rita (KME

risk = 69%, median time = 154 days) than in the other four villages

(KME risk = 53%, median time: 362 days) (logrank test p = 0.34,

a= 0.05). Though not significant, this difference may be due to the

non-availability of Insecticide-treated nets in Santa Rita at the time

the study was carried out.

Complexity of the parasite population
The median expected heterozygosity (He) was 0.56, with a wide

range of diversity in the different loci (ranging from 0 to 0.84)

(Table 2). The population genotyping characteristics of day 0

samples have already been published elsewhere [21]. The He for

samples obtained during the follow up were comparable to those

obtained for day 0 though the monthly follow up samples carried

additional alleles at MS8 and MS16 as also indicated by the allelic

richness (Table 2). This probably explains the small but significant

genetic difference (h = 0.015, p = 0.0027) between day 0 and

monthly follow up samples.

Only seven polyclonal infections at day 0 and three during the

follow up period were observed. Most infections were monoclonal,

suggesting little outbreeding. Indeed, strong linkage disequilibrium

(IS
A = 0.29, p,1.1024) was observed and remained significant

when considering only the unique haplotypes (IS
A = 0.21,

p,1.1024). From the monoclonal samples, 68 had complete

genotypes among which 38 distinct haplotypes were identified.

The frequencies of the individual haplotypes was low with H12

having the highest frequency (10%). Twenty-three haplotypes

occurred only once (Figure 3) while 15 haplotypes were observed

in more than one malaria episode. From these 15 haplotypes 12

Table 1. Chronogram of the 29 patients with P. vivax recurrences.

2008 2009

PatientVillage Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

1 Manacamiri X S

2 Manacamiri X S

3 Manacamiri X S S S S

4 Manacamiri X S

5 Manacamiri X P S S S S* S

6 Manacamiri X P S S S S

7 Manacamiri X S S S S S S S*

8 Manacamiri X S

9 Manacamiri X S

10 Manacamiri X P*

11 Lupuna X P P S

12 Lupuna X S S

13 Lupuna X P

14 Fray Martin X P S

15 Fray Martin X P* S* S S* S

16 Fray Martin X P

17 San Pedro X S

18 San Pedro X P* P P

19 Santa Rita X S S S S*

20 Santa Rita X P S S P *

21 Santa Rita X P S S S * S S S

22 Santa Rita X S* S S*

23 Santa Rita X S P P*

24 Santa Rita X* S*

25 Santa Rita X P

26 Santa Rita X P *

27 Santa Rita X S S S S S* S

28 Santa Rita X P * S P P * S

29 Santa Rita X S

X = time of enrolment in the study, S = sub-patent infection, P = patent infections,
* = indicate positive ELISA indicating a recent sporozoite inoculation. Two patients had a positive CSP ELISA at day 0 (April) though no recurrent infections were
reported.
doi:10.1371/journal.pone.0016257.t001
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were spread over different months, suggesting little temporal

clustering. The probability of having identical haplotypes resulting

from a different sexual reproduction was low (average

psex = 5.2561024), indicating the existence of a common ancestor

and a clonal propagation as result of inbreeding. The genetic

relatedness among haplotypes was calculated with eBURST. Five

clusters of related haplotypes and 20 singletons were identified

when the haplotypes within these clusters carry identical alleles in

at least 15 loci and decreased to three clusters and six singletons

when the criterion of at least 11 loci was applied [10]. No temporal

clustering for related haplotypes was observed.

For the remaining infections (n = 67), the haplotypes could not

be retrieved as they were either polyclonal (n = 10) or no allele was

obtained (n = 57) for one or more loci, even after repeating the

PCR. No amplification could be obtained for 13 of the 84

recurrent infections, all of them sub-patent and asymptomatic,

despite a positive species specific PCR.

Equality versus heterology of recurrent infections
Out of the 71 recurrent infections for which genotyping data

was obtained, 82% (n = 58) carried alleles different from those at

day 0. Only three recurrent infections had a fully related genotype

Figure 2. Monthly prevalence of P. vivax patent, sub-patent infections and of anti-CSP antibodies, and monthly rainfall.
doi:10.1371/journal.pone.0016257.g002

Figure 1. Kaplan-Meier survival analysis showing the probability of remaining free of P. vivax infection (A, patent and sub-patent; B,
only patent) during one-year of follow up.
doi:10.1371/journal.pone.0016257.g001
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with the infection at day 0. All fully related infections occurred

within the first 6 months of follow up. In 10 infections, the

genotypes were incomplete, though the alleles present were

identical to those at day 0. The incomplete genotypes were

analyzed assuming that all incomplete genotypes were either a)

fully related or b) different compared to the genotype obtained at

day 0. Consequently, the proportion of recurrences with a

different genotype ranged between 82% and 96%. Out of the 22

patent infections, 18 were different from those at day 0.

In 30 recurrent episodes (42%, 30/71), the genotype differed

within the same patient from all previous infections; 18 occurred

during the first recurrent episode and within the first three months

of follow up. Seventeen episodes (24%, 17/71) had a similar

genotype with one of the earlier P. vivax episode, while for 24

infections (34%) incomplete haplotypes were obtained in which all

present alleles were similar to all previous infections. When

assuming that incomplete haplotypes were either fully related or

different, the proportion of recurrences with genotypes different

from all previous infections ranged between 42% and 76%. When

considering only patent infections (n = 22), 16 (73%) were different

from all previous infections while six were fully related to one or

more previous infections.

Antibody prevalence against the circumsporozoite
protein

All blood samples PCR positive for P. vivax were analyzed to

detect the presence of anti-CSP antibodies. The OD values were

generally low (0.07–1.3); 6% (3/51) samples collected at day 0 and

21.4% (18/84) at the time of recurrent infection were positive for

anti-CSP antibodies. No significant association between anti-CSP

antibodies and unrelated genotypes, sex or age was found. The

majority of positive samples (60%, 11/18 during follow up and

2/3 at day 0) had been collected in individuals from Santa Rita.

Seroprevalence increased with increasing rainfall while patent

infections showed an opposite trend, suggesting that during the

early months of follow up the observed recurrences may have been

relapses (Figure 2).

Discussion

Despite the low transmission, a substantial number of recurrent

P. vivax infections (patent and sub-patent) were observed after the

supervised administration of the recommended radical cure

regimen. Unlike previous P. vivax cohort studies in which blood

samples were collected only on symptomatic individuals

[10,14,22–25], our cohort patients were systematically examined

every month and blood samples collected regardless of symptoms,

allowing for the detection of asymptomatic infections, a common

occurrence in the Amazon Basin [2,3,26–28]. Microscopy

detected only 26% of the infections identified by PCR. In regions

were sub-patent recurrences are frequent, evaluation of treatment

efficacy based on clinical signs and microscopy might be

insufficient and likely underestimate the true number of recurrent

infections. Consequently the human reservoir is probably much

larger than previously thought. As indicated by the high

proportion of sub-patent and asymptomatic infections, partial

immunity could be induced despite the low transmission.

Moreover, in several patients P. vivax infections remained sub-

patent and asymptomatic for several consecutive months until

spontaneous clearance without treatment. In only three patients

the sub-patent infection became patent and was treated. The

median survival time to the first relapse was about six months

when considering all infections and the majority of patent

infections occurred within three months of follow up, which is

consistent with relapse patterns previously reported in Latin

America [6,9,10,29]. The substantial proportion of individuals

(43%, 22/51) in the cohort who never experienced a recurrent

infection throughout the follow up period suggests either a

heterogeneous exposure or risk to P. vivax infections or an

infection with PQ susceptible parasites with corresponding

clearance of hypnozoites [2,30,31]. Alternatively, recurrent

infections in these individuals may have been missed by the

monthly sampling and cleared by the immune system before being

detected.

Although, comparison between different studies is difficult,

given the variation in methodology, the observed parasite

population diversity and polyclonality was lower than previously

reported in 2003 and 2006 for parasite populations in the same

region of Peru and in the bordering Brazilian Amazon province

[10,21,22,31]. For the latter, the difference could be explained by

the variability of malaria endemicity found in the Amazon region

[27,28,30]. In Peru, we observed a lower diversity and

polyclonality of the parasite population in 2008 compared to

previous studies done in 2003 and 2006. This could be explained

by the decreasing trend in malaria incidence [4,21,31]. However,

the difference with the 2003 study may also be due to the different

molecular markers used for the genotyping [31].

The strong linkage disequilibrium observed suggests little out-

breeding as a result of the low transmission and the paucity of

polyclonal infections [21]. Structuring our haplotypes with

eBURST showed relatively few groups and singletons, indicating

that the circulating haplotypes are closely related to each other

and support the clonal population structure. The absence of

temporal clustering of specific haplotypes could be explained by

the little outbreeding, the activation of hypnozoites and by the

presence for long periods of undetected sub-patent infections. This

Table 2. Genetic diversity of the 135 positive P. vivax samples
analyzed.

Gene diversity (He6) Allelic Richness

Locus Full D0* MF Full D0 MF

MS1 0.10 0,20 0.04 2.99 2,00 1.98

MS2 0.68 0,65 0.69 4.00 3,99 4.00

MS3 0.61 0,67 0.56 3.98 3,00 3.95

MS4 0.44 0,36 0.49 4.00 3,00 4.00

MS5 0.28 0,27 0.29 2.00 2,99 2.00

MS6 0.62 0,64 0.62 5.96 5,00 4.94

MS7 0.00 0,00 0.00 1.00 1,00 1.00

MS8 0.84 0,74 0.84 12.00 8,00 9.00

MS9 0.77 0,74 0.76 7.00 6,00 6.00

MS10 0.59 0,53 0.63 5.00 4,00 4.00

MS12 0.68 0,64 0.70 6.93 6,00 4.00

MS15 0.51 0,51 0.51 5.98 5,98 4.00

MS16 0.65 0,71 0.62 11.90 5,99 8.82

MS20 0.72 0,75 0.71 6.95 5,00 5.86

Pv6635 0.75 0,72 0.76 8.00 6,00 7.00

Pvsal 0.67 0,69 0.65 7.99 6,00 7.90

Average 0,56 0,55 0.55 5.98 4,62 4.90

*Already published in [21]. MF = monthly follow-up. uHe: expected
heterozygosity.
doi:10.1371/journal.pone.0016257.t002
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contrasts with the situation described in the Brazilian Amazon

where temporal clustering occurs [10,22].

Despite, the clonal population structure, a small though

significant genetic differentiation between monthly follow up and

day 0 was found, possibly because recurrent infections carried new

alleles not present or detected at day 0, in MS8 and MS16 as

indicated also by the allelic richness. Heterologous activation of

hypnozoites or new infections may explain this observation. The

majority of recurrent infections carried a genotype different from

that at day 0 while fewer differences were observed when

comparing with all previous episodes within the individual patient.

Several individuals carried sub-patent P. vivax infections for

several months, many of them with the same haplotype, possibly

due to a single parasite clone. However, in three of these

individuals new haplotypes occurred, without any indication of

exposure to new infection, i.e. no anti-CSP antibodies were found,

Figure 3. Distribution of the 38 distinct haplotypes over the different episodes (n = 68) by calendar month.
doi:10.1371/journal.pone.0016257.g003
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suggesting that these infections may have originated from liver

forms. However, the sensitivity of the CSP ELISA test is not

optimal (60–77%) and exposure to new infections cannot be

categorically ruled out [32–34]. Indeed, the OD of the CSP

positive samples were generally weak, an expected result when

considering the low number of sporozoites per inoculation and the

short time they circulate in the blood stream [33]. In addition, the

peptide which corresponded to the central repeat domain is

analogue to the VK210 type of CSP, while in the Amazonian

regions the two other variant, VK247 and P. vivax-like, are present

[35,36]. Nevertheless, positivity corresponded to the malaria

transmission dynamics, indicating that it could be used as a proxy

for transmission intensity [37–40]. The use of CSP ELISA as an

indicator of individual exposure to infection may be more

questionable as there was no correlation between CSP positivity

and occurrence of different haplotypes. This could be due to

activation of heterologous hypnozoites while new infections could

carry similar genotypes given the observed clonal population

structure.

Currently, no data is available on the length of time sub-patent

infection remain circulating in the blood stream and on the role of

new inoculations and hypnozoites to maintain them. Probably, the

balance between the natural acquired immunity and parasite

factors such as its antigenic variation is important. The clonal

population structure with the low parasite population diversity

probably contributed to the suggested rapid acquisition of

immunity. The exact role of asymptomatic/sub-patent carriage

in maintaining the transmission needs to be further evaluated.

Though the capability of asymptomatic carriers to transmit is 22-

fold lower than in symptomatic individuals, the chronic nature and

the larger reservoir of the asymptomatic infections could

compensate the lower transmissibility [41].

The proportion of incomplete haplotypes in this study was

substantial and can be explained by the numerous sub-patent

infections whose density was so low that they could not be fully

genotyped. Therefore the establishing with certainty their relation

with previous infections was not possible. This was an important

limiting factor for the analysis of genotype relatedness within a

patient’s subsequent episodes. Whole genome amplification before

genotyping or a nested PCR protocol could improve the sensitivity

of the test and possibly reduce the proportion of incomplete

haplotypes [42,43].

Treatment efficacy at day 28 was high; just one patient had a

sub-patent infection that was identified only retrospectively and

hence not treated. Nevertheless, the following month this patient

did not have any infection as detected by PCR, indicating that the

day 28 infection had been successfully treated. However, the

absence of infection at day 28 does not necessarily exclude CQ

resistance, low levels of tolerant parasites might still be cleared by

the host immunity. Chloroquine resistant P. vivax cases have been

observed in Peru [44] and the recurrent infections beyond day 28

with the genotype fully related to day 0 may suggest that some

parasites may be CQ resistant. However, it is impossible to make

this statement with certainty because CQ plasma levels for our

cohort are not available. The observed clonal population structure

in Peru might represent a risk for the rise and spread of drug

resistance in this area [45].

In conclusion, despite supervised radical cure treatment, several

patients experienced over a 1-year period P. vivax recurrent

infections, most of them asymptomatic and even sub-patent.

Multilocus genotyping was difficult because of the low parasite

densities. Nevertheless, infections with the same or related

haplotypes were not clustered in time and were shared among

different episodes and patients, a finding probably due to their

chronic nature. Moreover, analysis of the parasite population

structure suggested little out-breeding with few polyclonal

infections, indicating low transmission. Indeed, ELISA results

correlated well with the low risk of infection at population but not

at individual level. Further optimization and validation of the

ELISA test is needed. Serology and PCR based tools could be

helpful in areas like Peru where, despite appropriate treatment,

individuals with a P. vivax infection may still represent an

important parasite reservoir for maintaining transmission. Any

elimination effort should consider such a hidden reservoir.
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