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SUMMARY

The emergence of mutations that confer resistance
to molecularly targeted therapeutics is dependent
upon the effect of each mutation on drug affinity for
the target protein, the clonal fitness of cells harboring
the mutation, and the probability that each variant
can be generated by DNA codon base mutation.
We present a computational workflow that combines
these three factors to identifymutations likely to arise
upon drug treatment in a particular tumor type. The
Osprey-based workflow is validated using a compre-
hensive dataset of ERK2 mutations and is applied to
small-molecule drugs and/or therapeutic antibodies
targeting KIT, EGFR, Abl, and ALK. We identify
major clinically observed drug-resistant mutations
for drug-target pairs and highlight the potential
to prospectively identify probable drug resistance
mutations.

INTRODUCTION

Although targeted cancer therapies, for example, against ki-

nases, hormone receptors, or hormone-synthesizing enzymes,

have shown clinical success, many patients develop resistance

to treatment and subsequently relapse. Second- and third-gen-

eration drugs are being developed to target these resistant

mutants; however, there is a significant time span between the

detection of clinically validated resistance mutations and the

availability of suitably targeted treatment options. Early identifi-

cation of drug-specific mutations is therefore critical and the

aim of this study.

Several mechanisms underlying resistance to targeted drugs

have been described (Holohan et al., 2013), including mutations

directly affecting the drug target. Such mutations may, for

example, increase affinity for the endogenous co-factor ATP,

thereby decreasing the relative affinity of an ATP-competitive

drug. Mutations within the binding site may also alter drug-

protein interactions and directly interfere with drug binding

(Barouch-Bentov and Sauer, 2011).

Several computational studies have investigated the impact of

protein mutations on drug efficacy (Kamasani et al., 2017; Mar-
Cell Chemical Biology 25, 1359–1371, Novemb
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tı́nez-Jiménez et al., 2017; Paul et al., 2016; Reeve et al.,

2015), mainly in an antiviral or antibacterial context (Frey et al.,

2010; Hosseini et al., 2016; Fowler et al., 2018). However, rarely

do these studies prospectively identify drug resistance muta-

tions (Frey et al., 2010; Paul et al., 2016; Reeve et al., 2015). In

predicting mutations that render Staphylococcus aureus resis-

tant to an antifolate antibiotic, Reeve et al. (2015) evaluated the

likely effect of possible mutations on both binding of the inhibitor

and on binding of the endogenous ligand— an important aspect

since any mutation that significantly abrogates the native activity

of the wild-type (WT) protein is unlikely to survive selective evolu-

tionary pressure (Gil and Rodriguez, 2016; Sprouffske et al.,

2012; Pandurangan et al., 2017). However, Reeve et al. do not

consider the likelihood of whether each mutation can be formed

in bacteria.

In cancer, the mutation landscape of a tumor can be charac-

terized by themutational signatures operating in a particular can-

cer type (Alexandrov et al., 2013). These signatures describe the

probability of a specific base exchange within a defined trinucle-

otide context. Some of these signatures have been associated

with known mutagenic processes, such as UV irradiation or ag-

ing, while the mechanism of others still remains elusive (Alexan-

drov et al., 2013). These mutagenic processes can generate a

single clone harboring the disease-causing ‘‘driver mutation,’’

which ultimately leads to the development of cancer (Greaves

and Maley, 2012). In addition, non-transforming somatic muta-

tions, so-called passenger mutations, are randomly created.

While not oncogenic per se, passenger mutations can provide

the substrate for an evolutionary advantage throughout cancer

progression, for example, under the selective pressure of a tar-

geted molecular therapy, leading to drug resistance. Known

drug resistance mutations have not only been detected in treat-

ment-naive patients (Inukai et al., 2006; Roche-Lestienne et al.,

2002), but also in healthy individuals (Gurden et al., 2015). This

suggests that small pools of viable treatment-resistant clones

can pre-exist in patients and that drug treatment puts a selection

pressure on a heterogeneous cancer cell population that selects

for resistant sub-clones.

Each drug interacts with its biological target in a unique way,

and each protein target mutation will differentially affect diverse

classes of drugs. As a consequence, each compound can be ex-

pected to exhibit a unique resistancemutation profile. Three fac-

tors contribute to the probability and functional impact of a res-

idue change: (1) the probability that the protein mutation can be

generated from a DNA mutational signature (signature-driven
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Figure 1. Workflow

Potential mutations are evaluated based on their predicted effect on the affinity

of both the drug and endogenous ligand (orange), the fitness of the resultant

clone (blue), and the requirement for triple-point mutations to generate a

mutant (lime green). Resistance hotspots are identifiedwithin the remaining set

of resistant mutants; these resistance hotspots are protein residues where

multiple amino acid changes are predicted to lead to resistance and which

therefore have a high likelihood of functional relevance. Resistant mutations at

these hotspots are prioritized based on the probability that they will be

generated according to the known DNA mutational signatures operating in a

particular cancer type.
probability), (2) whether the mutation maintains protein function

and clones harboring the mutation are still viable (fitness), and

(3) whether the mutation confers lower drug affinity with respect

to the endogenous ligand for the target protein (affinity). Martı́-

nez-Jiménez et al. (2017) recently reported a workflow classi-
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fying potential drug resistance mutations based on Random

Forest models and mutation signatures. However, the effect of

mutations on the fitness of the clone was not taken into account.

In addition, only single-point mutations (SPMs) were considered,

despite the notable detection of double-point mutations (DPMs)

in cancer patients (Table S1).

We report an in silico cascade that sequentially evaluates the

probability of generating anymutant within 5 Å of a bound ligand,

the clonal fitness of each mutation, and the effect of each muta-

tion on drug affinity in order to systematically and objectively

prioritize mutations that are highly likely to arise under drug

treatment. Importantly, our workflow classifies the impact of a

mutation on drug affinity relative to endogenous ligand and

does not rely upon accurate calculation of binding free energies;

it also ranks mutations according to their likelihood of being

generated in particular cancer type. The workflow (Figure 1

and described in detail below) is validated on a comprehensive

benchmark dataset that describes the effect of nearly all

possible extracellular signal-regulated kinase 2 (ERK2) missense

mutations on sensitivity to the ERK2 inhibitor SCH772984

(Brenan et al., 2016). In addition, we apply the workflow to four

well-established cancer targets and evaluate at least two US

Food and Drug Administration-approved drugs (small molecules

or biologics) per target.

RESULTS

Affinity
In the first step, the software package Osprey (Chen et al., 2009;

Gainza et al., 2013) was applied to evaluate the potential impact

of protein active site mutations on both drug and endogenous

ligand binding using protein crystallographic data.

Osprey uses ensembles of minimized side chain rotamers to

calculate a K* score (Chen et al., 2009; Gainza et al., 2013), which

estimates ligand binding to the evaluated protein construct.

Importantly, by employing ensembles of rotamers, Osprey

takes the dynamic nature of protein amino acid side chains

into account.

K* scores were computed for the WT protein and all possible

amino acid exchanges for both the drug and the endogenous

ligand-protein complex with the exception of Pro, which cannot

be processed byOsprey.We identify mutants that reduce affinity

for the drug in comparison with the endogenous ligand and are

therefore more likely to drive a viable resistant clone. Impor-

tantly, calculation of absolute drug affinity for WT and mutant

proteins is not required. Please refer to the STAR Methods for

additional details.

Fitness
Clones harboring a mutant oncoprotein that is unable to bind its

endogenous ligand lose their function and are unlikely to persist.

All such deleterious mutants with a K* score of 0.0 for the endog-

enous ligand were discarded.

Exclusion of Triple Point Mutations
Base codons for each WT residue were retrieved from the

COSMIC database (Bamford et al., 2004). Amino acid ex-

changes that would require mutation of all three codon bases

were discarded. We hypothesized that three contiguous coding



base mutations are highly unlikely and, to the best of our knowl-

edge, no such patient case has been reported.While themajority

of drug resistance mutations arise from SPMs, we also included

DPMs (so-called tandem mutations), which represent 5% (7 of

132) of unique drug resistance mutations with defined genetic

alterations in the COSMIC database (access date 5 January

2018) and occur with similar frequency to insertions (Table S1).

Resistance Hotspots and Signature-Driven Probability
Functional protein mutants were further triaged according to the

number of predicted mutations at a specific residue position.

This approach identifies resistance hotspots, where multiple

different viable mutants are predicted to cause resistance to

the drug under study. While comparing the prevalence of muta-

tions at hotspots in a particular drug-target pair can be used for

ranking positions, this method cannot be applied to cross-

compare the prevalence of mutations at hotspots between

drug-target pairs to infer global inter-target susceptibility to

resistance. The top three ranked resistance hotspots were

then analyzed in more detail in order to further prioritize amino

acid changes at these positions that have a high probability

(relP) of being generated in particular tumor types according to

the DNA mutational signatures reported by Alexandrov et al.

(2013). Each possible resistance hotspot mutation was ranked

according to its derived relP and the top-ranked amino acid

changes were considered most relevant. Please refer to the

STAR Methods for additional details.

ERK2: A Benchmarking Study
In 2016, Brenan and colleagues systematically studied the

effect of a wide range of ERK2 genetic alterations on the cellular

response to the ERK2 inhibitor SCH772984 (Brenan et al., 2016).

They generated nearly every possible missense mutation using

multiplexed site-directed mutagenesis. Pooled vectors were

used to express ERK2 mutants in A375 human malignant mela-

noma cells; after drug exposure, the enrichment of resistant

variants relative to their abundance in the initial cell population

was determined by massively parallel sequencing.

This comprehensive dataset of possible resistant mutants to

the ERK2 inhibitor SCH772984 provides a benchmark to eval-

uate the performance of our workflow. However, as a conse-

quence of the aggressive mutant-generation protocol, this data-

set includes protein mutants that require exchange of all three

coding bases. Such mutants are excluded in our workflow (see

above) and were also removed from the Brenan dataset.

Brenan and colleagues reported 46 experimentally observed

resistance mutations within 5 Å of the bound ligand that were

not mutations to Pro or triple-point mutations. For SCH772984,

559 mutants covering 31 residues were evaluated by our work-

flow. The number of true-positive (TP) (mutants predicted to

confer resistance that were confirmed by experimental testing),

true-negative (mutants predicted to be sensitive that did not

confer resistance in experimental testing), false-positive (FP)

(mutants predicted to confer resistance that were found to be

sensitive in experimental testing), and false-negative (mutants

predicted to be sensitive, but conferred resistance in the exper-

imental testing) predictions was calculated (Figure 2A).

Our workflow correctly classifies 84.6% of mutants and iden-

tifies almost 40% of the experimentally observed resistance mu-
tations reported by Brenan et al. When considering only residue

positions, 80% of experimentally observed mutated residues

are discovered. The majority of experimentally evaluated ERK2

mutants remained sensitive to SCH772984 treatment and are

correctly identified as sensitive by our approach, contributing

to the high overall proportion (84.6%) of correct predictions.

The low TP rate for SCH772984 (3.2% of mutants predicted to

confer resistance were confirmed by experimental testing) is

consistent with the experimental observation that only a small

proportion of possible mutants (8.2%) cause drug resistance.

The prioritized hotspot residues and their corresponding re-

ported resistance mutations are provided in Table 1. For a

detailed list of all predicted mutations please refer to Table S2.

Clinical Case Studies
We studied four protein kinases (KIT, epidermal growth factor

receptor [EGFR], breakpoint cluster region-Abelson [Bcr-Abl]

kinase, and anaplastic lymphoma kinase [ALK]). In each case

protein-ligand crystal structures of approved drugs exemplify

multiple generations of compound design; furthermore, as inhib-

itors of these targets provide the current standard of care for

multiple cancer types, clinically observed resistance mutations

are documented for most compounds and provide the potential

for clinical validation of our computational workflow.

KIT
The first-generation inhibitor imatinib is resistant to the KIT gate-

keeper mutation T670I (Antonescu et al., 2005; Tamborini et al.,

2004). We investigated 648 possible mutations, all of which lie

within 5 Å of either imatinib or ADP; 68 mutations remained after

filtering for reduced drug binding, fitness of the clones, and tri-

ple-point mutants. For residue T670, eight mutations are pre-

dicted to cause resistance to imatinib, making it the first-ranked

resistance hotspot; within this set, gatekeeper mutation T670I

has the highest relP. Furthermore, the known resistance muta-

tion T670E (Wardelmann et al., 2005) is ranked sixth by relP.

Positions C809 and V668 are identified as second- and third-

ranked resistance hotspots, respectively. C809R, the mutation

with the highest relP, has been reported in a patient diagnosed

with myelodysplastic syndrome-derived leukemia (Lorenzo

et al., 2006), highlighting its biological relevance; however,

similar to all predicted V668 mutations, this residue has not yet

been associated with imatinib resistance.

The second-generation inhibitor sunitinib is reported to over-

come resistance to the gatekeeper mutation T670I and, consis-

tent with these reports, T670I/E mutations are not predicted to

elicit sunitinib resistance by our workflow. Indeed, none of our

predicted resistance mutations to sunitinib has yet been associ-

atedwith clinically observed resistance. Only one resistancemu-

tation has so far been reported for sunitinib in the COSMIC data-

base (Bamford et al., 2004, access date 23 November 2017); this

mutation is not within the ATP-binding site.

Ponatinib has been shown to bind KIT, but is not approved

for KIT-associated cancer types and clinical data are therefore

lacking. Our method predicts resistance to ponatinib due to

less-favorable interactions with the gatekeeper T607I mutation;

however, in vitro data suggest that this mutant is sensitive to po-

natinib treatment (Garner et al., 2014). Prioritized KIT resistance

hotspot residues and their corresponding reported clinical
Cell Chemical Biology 25, 1359–1371, November 15, 2018 1361



Figure 2. Predicted Resistance Mutations

(A) Performance of the workflow on ERK2-SCH772984. The confusion matrix shows the absolute number of mutations (+, resistant; �, sensitive).

(B) Predicted resistance hotspots that are consistent with clinically observed resistant mutants for the representative case study EGFR (gray) and osimertinib

(orange), PDB: 4ZAU (Yosaatmadja et al., 2015). Residues within 5 Å of the ligand are depicted in gray, predicted and clinically observed resistance hotspots are

highlighted as crimson sticks and labeled, predicted hotspot residues that have not yet been observed in the clinic are shown as pink sticks; figure created with

PyMOL (PyMOL Molecular Graphics System, Version 1.7, Schrödinger, LLC).

(C) Contribution of filtering steps to the identification of resistancemutations. Themajority of mutants were discarded because they did not decrease drug affinity

in comparison with binding of the endogenous ligand (orange). Mutations were further removed because of abrogated clonal fitness (blue) or because they

required triple codon changes to be formed (green). The remaining pool of mutations (crimson) is predicted likely to confer resistance to drug treatment.
resistance mutations are provided in Table 2. A full list of pre-

dicted resistance mutations and their relP values is available in

Table S3.

EGFR
Applying our workflow to the first-generation EGFR inhibitor

erlotinib revealed that G796 is the resistance hotspot with the
1362 Cell Chemical Biology 25, 1359–1371, November 15, 2018
most predicted mutations. Consistent with this prediction, the

G796Rmutation with the second-ranked relP, has been reported

to weaken the affinity for erlotinib in comparison with the WT

enzyme (Avizienyte et al., 2008). T790 is the second-ranked

resistance hotspot with gatekeeper mutation T790M (Pao

et al., 2005) having the second highest relP. L718, L788, and

T854 share the third-ranked hotspot, with three predicted



T
a
b
le

1
.
P
re

d
ic
ti
o
n
o
f
E
R
K
2
M
u
ta
ti
o
n
s

C
o
m
p
o
u
n
d

N
o
.
o
f
P
re
d
M
u
t

(N
o
.
o
f
A
ll
M
u
t)
a

R
a
n
k
1
R
e
s
is
ta
n
c
e

H
o
ts
p
o
t
(N
o
.
o
f
M
u
t)
b

E
x
p
e
ri
m
e
n
ta
lly

C
o
n
fi
rm

e
d

R
e
s
is
ta
n
c
e
M
u
ta
n
ts

a
t

H
o
ts
p
o
t
R
e
s
id
u
e
c

R
a
n
k
2
R
e
s
is
ta
n
c
e

H
o
ts
p
o
t
(N
o
.
o
f
M
u
t)
b

E
x
p
e
ri
m
e
n
ta
lly

C
o
n
fi
rm

e
d

R
e
s
is
ta
n
c
e
M
u
ta
n
ts

a
t

H
o
ts
p
o
t
R
e
s
id
u
e
c

R
a
n
k
3
R
e
s
is
ta
n
c
e

H
o
ts
p
o
t
(N
o
.
o
f
M
u
t)
b

E
x
p
e
ri
m
e
n
ta
lly

C
o
n
fi
rm

e
d

R
e
s
is
ta
n
c
e
M
u
ta
n
ts

a
t

H
o
ts
p
o
t
R
e
s
id
u
e
c

S
C
H
7
7
2
9
8
4

7
6
(5
5
9
)

Y
6
4
(1
0
)

Y
6
4
Id

Y
3
6
(9
)

Y
3
6
R
d

N
A
e

N
A

Y
6
4
L
d

D
1
1
1
(9
)

Y
3
6
N
d

Y
6
4
V
d

Y
3
6
Q

d

Y
3
6
G

d

Y
3
6
Id

Y
3
6
L
d

Y
3
6
V
d

S
e
e
a
ls
o
T
a
b
le

S
2
.

a
T
h
e
n
u
m
b
e
r
o
f
m
u
ta
n
ts

p
re
d
ic
te
d
to

c
o
n
fe
r
re
s
is
ta
n
c
e
(n
o
.
o
f
p
re
d
m
u
t)
fr
o
m

th
e
in
it
ia
l
p
o
o
l
o
f
p
o
s
s
ib
le

m
u
ta
n
ts

w
it
h
in

5
Å
o
f
th
e
lig

a
n
d
(n
o
.
o
f
a
ll
m
u
t)
.

b
R
e
s
is
ta
n
c
e
h
o
ts
p
o
ts

a
re

id
e
n
ti
fi
e
d
a
n
d
ra
n
k
e
d
a
c
c
o
rd
in
g
to

th
e
n
u
m
b
e
r
o
f
v
ia
b
le

m
u
ta
n
ts

(n
o
.
o
f
m
u
t)
p
re
d
ic
te
d
fo
r
th
a
t
re
s
id
u
e
.

c
E
x
p
e
ri
m
e
n
ta
lly

o
b
s
e
rv
e
d
re
s
is
ta
n
c
e
m
u
ta
ti
o
n
s
a
re

h
ig
h
lig

h
te
d
fo
r
e
a
c
h
re
s
is
ta
n
c
e
h
o
ts
p
o
t.

d
M
u
ta
n
ts

o
f
re
s
is
ta
n
c
e
h
o
ts
p
o
ts

w
e
re

n
o
t
fu
rt
h
e
r
ra
n
k
e
d
b
a
s
e
d
o
n
th
e
ir
re
lP

in
th
is
c
a
s
e
b
e
c
a
u
s
e
B
re
n
a
n
e
t
a
l.
e
v
a
lu
a
te
d
th
e
m
u
ta
n
ts

in
c
e
ll
lin
e
s
a
n
d
th
e
c
lin
ic
a
l
re
le
v
a
n
c
e
o
f
th
e
m
u
ta
n
ts

fo
r
th
e

d
if
fe
re
n
t
c
a
n
c
e
r
ty
p
e
s
is

n
o
t
k
n
o
w
n
.

e
N
A
,
n
o
t
a
p
p
lic
a
b
le
,
ti
e
d
re
s
is
ta
n
c
e
h
o
ts
p
o
t
a
t
ra
n
k
2
.

mutations each. L788F has been detected in lung adenocarci-

noma patient samples highlighting its clinical relevance (Liu

et al., 2013); however, similar to all other third-rank mutations,

L788F has not yet been associated with clinical resistance to er-

lotinib. Gefitinib, another first-generation EGFR inhibitor, elicits a

similar predicted resistant mutation profile to erlotinib (Table 3).

The third-generation inhibitor osimertinib binds reversibly to

EGFR prior to covalent bond formation (Yosaatmadja et al.,

2015). Osimertinib was reported to overcome resistance to

T790M and, consistent with this finding, the T790M mutation is

not predicted to elicit resistance to osimertinib according to

our protocol. Residues G796 (14 mutations), C797 (4 mutations),

L718, G719, V726, and A743 (3 mutations each) are the top-

ranked hotspot residues predicted to confer resistance. During

the preparation of this manuscript, osimertinib resistance muta-

tions affecting C797 (Ou et al., 2017b), G796 (Ou et al., 2017b;

Zheng et al., 2017), and L718 (Ou et al., 2017a) (Figure 2B)

were reported in clinical studies, building confidence in the pro-

spective utility of our approach.

Further to small-molecule EGFR inhibitors, anti-EGFR mono-

clonal antibodies cetuximab and panitumumab are approved

for the treatment of metastatic colorectal cancer. In contrast to

small-molecule ATP-competitive kinase inhibitors, cetuximab

and panitumumab interact with the extracellular domain

of EGFR.

We evaluated the effect of extracellular domain mutations on

antibody affinity and affinity of the endogenous ligands EGF

and transforming growth factor a (TGF-a)––interactions that

have been characterized by protein structural data. Both EGF

and TGF-a are peptidic macromolecules with larger interaction

surfaces compared with small molecules; thus evaluation of a

higher number of possible mutations was necessary to ensure

coverage of the extensive protein-protein interaction interface

(1,153 and 1,207 mutations for cetuximab and panitumumab,

respectively).

For both cetuximab and panitumumab, resistance mutation

G441R (residue G465R in the mature protein sequence including

the signaling peptide [mps]) has been detected in the clinic (Braig

et al., 2015). G441 is the second-ranked resistance hotspot, with

mutation G441R ranked first according to relP for both anti-

bodies (Table 3). Confirmed clinical resistance mutations to

cetuximab have also been identified at residues S468 (S468R

[S492R in the mps]) (Montagut et al., 2012) and I467 (Arena

et al., 2015) (I467M [I491M in the mps]); the fourth- and fifth-

ranked resistance hotspots in our workflow (Table S4).

Our top-ranked predicted hotspot residues, S418 and G471

have not yet been associated with clinical resistance to cetuxi-

mab or panitumumab; however, seven endogenous ligands

can activate EGFR (Schneider and Wolf, 2009) of which only

EGF and TGF-a interactions are characterized by protein struc-

tural data. Residues S418 and G471, while not predicted to

affect the interaction of EGFR with endogenous ligands EGF

and TGF-a, may be important for interaction with one or more

of the remaining five endogenous ligands such that mutation at

these residues reduces clonal fitness and persistence. For

example, we predict that several mutations affecting EGFR res-

idues S440 and V417 tolerate TGF-a binding, but abrogate EGF

binding, and are therefore filtered out in our workflow. Given the

lack of structural data for the majority of endogenous EGFR
Cell Chemical Biology 25, 1359–1371, November 15, 2018 1363
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ligands, and the number of potential mutations, the identification

of clinically relevant resistance mutations is encouraging. All

prioritized EGFR hotspot residues and corresponding reported

clinical resistance mutations are summarized in Table 3. A list

of all predicted mutations and relPs is provided in Table S4.

Abl
The hotspot residue with the highest number of predicted mu-

tants for the Abl inhibitor imatinib is A380, for which clinically

observed occurrences have yet to be reported. The second-

rank predicted hotspot is shared by residues V256, A269, and

T315. For V256 and T315, resistance mutations V256L (Bamford

et al., 2004; Tiribelli et al., 2013), gatekeeper mutation T315I

(Gorre et al., 2001), and T315V (Redaelli et al., 2012) have all

been identified in the clinic (Table 4). The contribution of muta-

tional signatures to the landscape of mutations has not yet

been reported for chronicmyeloid leukemia (CML), and therefore

the relP for hotspot mutations predicted for Abl residues could

not be calculated.

We obtained similar and consistent predictions for nilotinib,

dasatinib, and bosutinib (Table 4). Additional resistance muta-

tions affecting L248 are predicted for dasatinib consistent with

in vitro data (Redaelli et al., 2012). While these mutations have

been observed in the clinic (Redaelli et al., 2012), they have not

yet been reported as resistant mutants for patients treated with

dasatinib. Similarly, the effect of the predicted V256L resistant

mutation on nilotinib activity has not been reported.

Axitinib has been reported to overcome resistance to the T315I

gatekeeper mutation of Abl (Pemovska et al., 2015). Although not

ranked among the top three resistance hotspots, axitinib is pre-

dicted to be resistant to T315I. Crystallographic studies of the

T315Imutation incomplexwithaxitinib revealed that thismutation

causes large conformational changes of Abl compared with WT

protein (Pemovska et al., 2015), which may not be adequately

captured by our method. The L248Rmutation, reported to confer

resistance to axatinib in vitro (Pemovska et al., 2015), is prioritized

by our workflow; however, clinical resistance data for axitinib tar-

getingAbl is notyetavailable.A summaryof theprioritizedAblhot-

spot residuesand their corresponding reportedclinical resistance

mutationsareprovided inTable4.A full list of predicted resistance

mutations is provided in Table S5.

ALK
The hotspot residue with the highest frequency of predicted

mutations for the first-generation ALK inhibitor crizotinib is

G1269 (13 mutants). The clinically observed resistance mutation

G1269A (Doebele et al., 2012; Gainor et al., 2016) and G1269S

and G1269C mutations (Zhang et al., 2011), which confer resis-

tance in vitro, rank at positions four, seven, and eight, respec-

tively, based upon their relP values. For the second-ranked resis-

tance hotspot G1202, 12mutants were predicted and the known

resistance mutation G1202R (Gainor et al., 2016; Katayama

et al., 2012) has the second highest relP. Hotspots I1122,

G1201, and D1203 rank third equal. While no G1201 mutations

are associated with resistance, the D1203N mutation confers

resistance in vitro (Gainor et al., 2016; Heuckmann et al., 2011)

and has been associated with resistance in patients (Zhang

et al., 2016). I1122V has been detected in a resistance screen

against the second-generation inhibitor brigatinib, and has also
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been confirmed to confer resistance to crizotinib (Ceccon et al.,

2015).We generated similar results for the second-generation in-

hibitor ceritinib (Table 5), although, in this case, the G1269A mu-

tation was not predicted to cause resistance, consistent with

in vitro and clinical data (Gainor et al., 2016; Shaw et al., 2015).

Entrectinib and lorlatinib are investigational ALK inhibitors

currently in clinical trials. Increased half maximal inhibitory con-

centration values (decreased binding) in comparison with theWT

protein have been demonstrated in in vitro experiments for

several of the mutants prioritized by our workflow. In particular,

G1269A (Ardini et al., 2016) and G1202R (Ardini et al., 2016) for

entrectinib and G1269A (Gainor et al., 2016; Johnson et al.,

2014; Shaw et al., 2015) and D1203N (Gainor et al., 2016) for lor-

latinib. In addition, the G1123S and G1123D mutants were iden-

tified in an in vitro resistance screen for the ALK inhibitor TAE684

(Heuckmann et al., 2011) and in a patient resistant to ceritinib

(Toyokawa et al., 2015). However, no data are currently available

on entrectinib. The prioritized hotspot residues for ALK and cor-

responding reported clinical resistance mutations are provided

in Table 5. A comprehensive list of all predicted resistancemuta-

tions is provided in Table S6.

DISCUSSION

We present a computational workflow to identify clinically rele-

vant drug resistance mutations to targeted cancer therapies,

both small molecule and biological. The workflow consists of

consecutive filtering steps addressing three factors, which

determine whether a mutation is likely to confer resistance in

the clinic. Of these, the activity cutoff for protein-drug affinity

compared with affinity for the endogenous ligand proved the

most important and excluded 75.8% ± 1.1% (n = 18 [all

18 target-interaction partner case studies] ±SEM) of all potential

mutants for each drug-target combination (Figure 2C). This

filtering step contains a fitness component; all mutants with pre-

dicted decreased affinity for the endogenous ligand (i.e., less fit

clones), but with equivalent or increased affinity for the drug (i.e.,

more sensitive to drug treatment) are not progressed. In further

considering the potential for disrupted binding of an endogenous

ligand to mutated proteins, 8.6% ± 0.7% (n = 18, ±SEM) of

mutants are predicted to completely abrogate binding of the

endogenous ligand and were discarded. Removing triple-point

mutations excluded a further 3.7% ± 0.2% (n = 18, ±SEM)

of possible mutants. Interestingly, the majority of remaining

mutations predicted to cause resistance (68.1% ± 1.7%

[n = 18, ±SEM]) arise from DPM consistent with a similar

proportion of DPMs observed in the Brenan dataset (Brenan

et al., 2016). While DPMs commonly exhibit a low relP, they

may become relevant when the predominant resistance clone

harboring an SPM has been eradicated by cancer therapy.

Taken together, 11.8% ± 1.0% (n = 18, ±SEM) of all evaluated

mutations were considered to cause resistance (Figure 2C).

The pool of potential resistant mutations was further analyzed

to identify resistance hotspots where multiple different viable

mutants are predicted to cause resistance to the drug under

study. Mutants at these hotspots were prioritized based on their

relP, which quantifies the relative probability of each specific

amino acid mutation in the context of a defined cancer type.

Applying this workflow, we correctly classify 84.5% of mutations
Cell Chemical Biology 25, 1359–1371, November 15, 2018 1365



Table 4. Prioritized Abl Resistance Mutations

Compound

No. of Pred Mut

(No. of All Mut)a
Rank 1 Resistance

Hotspot (No. of Mut)b
Confirmed Clinical

Resistance Mutationsc
Rank 2 Resistance

Hotspot (No. of Mut)b
Confirmed Clinical

Resistance Mutations

Rank 3 Resistance

Hotspot (No. of Mut)b
Confirmed Clinical

Resistance Mutations

Imatinib 66 (540) A380 (8) NRd V256 (7)

A269 (7)

T315 (7)

V256L (Bamford et al., 2004;

Tiribelli et al., 2013)

T315I (Gorre et al., 2001)

NAe –

Nilotinib 69 (540) V256 (8)

A380 (8)

NR NA – Y253 (6)

A269 (6)

T315 (6)

G321 (6)

T315I (Bamford et al., 2004;

Redaelli et al., 2012;

Weisberg et al., 2005)

Dasatinib 58 (414) A380 (12) NR L248 (7)

A269 (7)

NR NA –

Bosutinib 58 (414) V299 (7)

T315 (7)

G321 (7)

V299L (Jabbour et al., 2012;

Redaelli et al., 2012)

T315I (Cortes et al., 2011;

Redaelli et al., 2012)

NA – NA –

Axitinib 52 (396) V256 (8) NR G321 (7) NR L248 (6)

A269 (6)

A380 (6)

NR

See also Table S5.
aThe number of mutants predicted to confer resistance (no. of pred mut) from the initial pool of possible mutants within 5 Å of the ligands (no. of all mut).
bResistance hotspots are identified and ranked according to the number of viable mutants (no. of mut) predicted for a residue.
cClinically observed resistance mutations are highlighted for each resistance hotspot. The relP could not be calculated as signatures for CML were not available.
dNR, not reported––none of the predicted mutations were reported to confer resistance. In the case of axitinib, clinical resistance data on Abl are not yet available.
eNA, not applicable, tied resistance hotspot at rank 1 or 2. The gatekeeper mutation is underlined.
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in a comprehensive ERK2 mutation dataset and identify almost

40% of mutants conferring resistance to the ERK2 inhibitor

SCH772984. Furthermore, we identify clinically observed drug

resistance mutations within the top three predicted hotspot res-

idues for first-generation compounds in all cases studied and for

most second- and third-generation compounds where clinically

observed resistance mutations have been reported. Importantly,

in all cases studied, except ALK, the gatekeeper mutation is pre-

dicted among the top three resistance hotspots. In the ALK case

study, two mutations that are also commonly observed in the

clinic are highly ranked by our method. For the osimertinib-

EGFR drug-target pair, we predicted resistance mutations

before they were confirmed by clinical reports.

Our workflow highlights mutations not yet observed in the

clinic, or that may constitute FP predictions. The number of mu-

tants progressed to further evaluation can be user defined. In the

cases exemplified here, we prioritize three mutations with the

highest relP for the top three resistance hotspots and signifi-

cantly narrow the pool of potential resistance mutations for

each drug from �350–1,200 possibilities to 9. While it may not

be practical to further explore many hundreds of possible muta-

tions, we suggest that a set of 9 prioritized mutants is more

amenable to experimental testing within a drug discovery project

or clinical setting. Thus, this workflow facilitates more focused

monitoring of potential resistant mutations, as well as the

design of next-generation compounds sensitive to likely resis-

tant mutants.

Notably, our workflow evaluates the effect of a mutation on

drug binding with respect to the WT protein. In some cases,

exquisite drug affinity for the WT protein may mitigate a muta-

tion-driven loss of potency. For example, our workflow correctly

predicted the reduced affinity of lorlatinib for ALK G1269A; how-

ever, the exquisite potency of lorlatinib for WT ALK may render

the relative loss of affinity for ALK mutants inconsequential

(Gainor et al., 2016; Johnson et al., 2014; Shaw et al., 2015).

The workflow is dependent upon the availability and quality of

both protein-ligand structural information and mutational signa-

tures across diverse tumor types. For example, it is not clear

which mutational signatures operate in CML, and, as a conse-

quence, we could not determine the relP for mutants predicted

to interfere with binding of Abl inhibitors in CML.

The approach presented here investigates the effects of pro-

teinmutation on drug bindingmode as characterized by the input

protein-ligand structure. How such mutations affect the overall

conformation of the target protein and/or drug-target complex

is not encompassed by our method. Extension of the approach

by considering the effect of residue mutation on global protein

conformation and by inclusion of structural models for highly ho-

mologous protein families would further expand the potential

impact and is the aim of our future studies. For example, FP mu-

tations that stabilize inactive protein conformations that are un-

likely to persist could be excluded, and mutations that further

stabilize an active protein conformation could be included.

Furthermore, drug-resistant mutations distant from the binding

site, including those which influence protein flexibility and

conformation, which are beyond the scope of our current

method, could also be evaluated.

This workflow includes three critical determinants of clinically

relevant drug-resistant mutations. Importantly, the workflow can
Cell Chemical Biology 25, 1359–1371, November 15, 2018 1367



be further adapted to test more specific hypotheses. For

example, Osprey parameters can be changed to include larger

backbone movements and/or to include multiple ligand ro-

tamers; furthermore, the number of prioritized mutants can

also be user-defined.

In conclusion, we have developed and validated a computa-

tional method to prospectively identify clinically relevant drug-

resistance mutations. We suggest that this approach can have

a significant impact on the design and development of targeted

therapies by proactively signposting drug resistance hotspots.

Prior knowledge of resistant mutants enables their timely detec-

tion in patients and the early development of effective treatment

options against the resistant tumor cell population.

SIGNIFICANCE

Althoughmolecularly targeted cancer therapies have shown

great success in the clinic, drug resistance has emerged as

the major challenge. Resistance mutations are commonly

identified and characterized during clinical evaluation, often

resulting in a reactive approach to tackling drug resistance.

We report a computational method to prospectively identify

drug resistancemutations during the design phase of poten-

tial therapeutics. This approach enables early signposting of

likely resistance hotspots and supports more focusedmoni-

toring of potential emergent resistant clones as well as the

timely development of alternative treatment options.
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Ferruz, N., Russo, M., Misale, S., González, I., et al. (2015). Emergence of mul-

tiple EGFR extracellular mutations during cetuximab treatment in colorectal

cancer. Clin. Cancer Res. 21, 2157–2166.

Avizienyte, E., Ward, Richard A., and Garner, Andrew P. (2008). Comparison

of the EGFR resistance mutation profiles generated by EGFR-targeted

tyrosine kinase inhibitors and the impact of drug combinations. Biochem. J.

415, 197–206.

Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A.,

Flanagan, A., Teague, J., Futreal, P.A., Stratton, M.R., and Wooster, R.

(2004). The COSMIC (catalogue of somatic mutations in cancer) database

and website. Br. J. Cancer 91, 355–358.

Barouch-Bentov, R., and Sauer, K. (2011). Mechanisms of drug resistance in

kinases. Expert Opin. Invest. Drugs 20, 153–208.

Bouaoun, L., Sonkin, D., Ardin, M., Hollstein, M., Byrnes, G., Zavadil, J., and

Olivier, M. (2016). TP53 variations in human cancers: new lessons from the

IARC TP53 database and genomics data. Hum. Mutat. 37, 865–876.

Braig, F., M€arz, M., Schieferdecker, A., Schulte, A., Voigt, M., Stein, A., Grob,

T., Alawi, M., Indenbirken, D., Kriegs, M., et al. (2015). Epidermal growth factor

receptor mutation mediates cross-resistance to panitumumab and cetuximab

in gastrointestinal cancer. Oncotarget 6, 12035–12047.

Brenan, L., Andreev, A., Cohen, O., Pantel, S., Kamburov, A., Cacchiarelli, D.,

Persky, Nicole S., Zhu, C., Bagul, M., Goetz, E.M., et al. (2016). Phenotypic

characterization of a comprehensive set of MAPK1/ERK2 missense mutants.

Cell Rep. 17, 1171–1183.

Case, D.A., Betz, R.M., Cerutti, D.S., Cheatham, T.E., III, Darden, T.A., Duke,

R.E., Giese, T.J., Gohlke, H., Goetz, A.W., Homeyer, N., et al. (2016). AMBER

2016 (University of California, San Francisco).

Ceccon, M., Mologni, L., Giudici, G., Piazza, R., Pirola, A., Fontana, D., and

Gambacorti-Passerini, C. (2015). Treatment efficacy and resistance mecha-

nisms using the second-generation ALK inhibitor AP26113 in human NPM-

ALK-positive anaplastic large cell lymphoma. Mol. Cancer Res. 13, 775–783.

https://doi.org/10.1016/j.chembiol.2018.07.013
https://doi.org/10.1016/j.chembiol.2018.07.013
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref1
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref1
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref1
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref1
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref2
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref2
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref2
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref2
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref3
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref3
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref3
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref3
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref4
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref4
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref4
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref4
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref5
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref5
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref5
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref5
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref6
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref6
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref6
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref6
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref7
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref7
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref7
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref7
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref8
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref8
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref9
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref9
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref9
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref10
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref10
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref10
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref10
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref10
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref11
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref11
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref11
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref11
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref12
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref12
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref12
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref13
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref13
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref13
http://refhub.elsevier.com/S2451-9456(18)30265-4/sref13


Chaikuad, A., Tacconi, E.M., Zimmer, J., Liang, Y., Gray, N.S., Tarsounas, M.,

and Knapp, S. (2014). A unique inhibitor binding site in ERK1/2 is associated

with slow binding kinetics. Nat. Chem. Biol. 10, 853–860.

Chen, C.-Y., Georgiev, I., Anderson, A.C., and Donald, B.R. (2009).

Computational structure-based redesign of enzyme activity. Proc. Natl.

Acad. Sci. USA 106, 3764–3769.

Cortes, J.E., Kantarjian, H.M., Br€ummendorf, T.H., Kim, D.-W., Turkina, A.G.,

Shen, Z.-X., Pasquini, R., Khoury, H.J., Arkin, S., Volkert, A., et al. (2011).

Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chro-

mosome-positive chronic myeloid leukemia patients with resistance or intoler-

ance to imatinib. Blood 118, 4567–4576.

Cowan-Jacob, S.W., Fendrich, G., Floersheimer, A., Furet, P., Liebetanz, J.,

Rummel, G., Rheinberger, P., Centeleghe, M., Fabbro, D., and Manley, P.W.

(2007). Structural biology contributions to the discovery of drugs to treat

chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr. 63,

80–93.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Crystal structures of target-ligand

complexes

The Protein Data Bank Table S7; http://www.rcsb.org/pdb/home/home.do

Mutation signatures Alexandrov et al., 2013;

This study

ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/

Table S8

Coding sequence for wt targets COSMIC, Bamford et al., 2004 http://cancer.sanger.ac.uk/cosmic

IARC P53 Database R18 Bouaoun et al., 2016 http://p53.iarc.fr/

TRACERx Jamal-Hanjani et al., 2017; Abbosh et al., 2017

COSMIC Resistance Mutations v83 COSMIC, Bamford et al., 2004 http://cancer.sanger.ac.uk/cosmic

COSMIC Mutation Data v83 Bamford et al., 2004 http://cancer.sanger.ac.uk/cosmic

Software and Algorithms

Maestro version 9.8.016 Schrödinger https://www.schrodinger.com/maestro

MOE 2015.1001 Chemical Computing Group https://www.chemcomp.com/

Osprey version 2.2beta Chen et al., 2009; Gainza et al., 2013 http://www.cs.duke.edu/donaldlab/osprey.php

AmberTools16 Case et al., 2016 http://ambermd.org/AmberTools16-get.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Julian

Blagg (Julian.blagg@icr.ac.uk).

DATA AND SOFTWARE AVAILABILITY

Data are available upon request to the Lead Contact.

METHOD DETAILS

Structure Selection and Preparation
When available, crystal structures of wild type protein were used. Formation of the Lys-Glu salt bridge was theminimum requirement

for kinase co-factor structures to be considered representative of an active conformation. Due to the paucity of high resolution

ATP-bound kinase protein structures, we employed ADP or ATP analogue complexes for all kinase structures representative of

endogenous co-factor binding. A list of employed PDB entries is provided in Table S7. All crystal structures were prepared using

the Preparation wizard (Sastry et al., 2013) in Maestro version 9.8.016 (Schrödinger Release, 2014). Bond orders were assigned

and hydrogens were added. Zero-order bonds to metals and disulphide bonds were created and selenomethionines were converted

to methionines. Missing side chains were added and all waters beyond 5 Å from heteroatoms, buffer compounds, and additional

chains were deleted. Ionization states were generated using Epik. H-bonds were assigned, water conformations were sampled

and structures minimized using default settings.

Residues within 12 Å of the ligand were selected using the selector tool in MOE 2015.1001 (Molecular Operating Environment

(MOE), 2017) and only selected residues were included in the input structure. As described in the Osprey documentation, the pro-

tonation state of histidines was defined in the pdb input file, all HETATM identifiers were replaced by ATOM, and chain information

was deleted.

Evaluation of Ligand Affinity
Osprey version 2.2beta (Chen et al., 2009; Gainza et al., 2013), using the Amber94 force field, was employed to evaluate the impact of

protein mutation on ligand binding. All non-peptide interaction partners were parameterized using Antechamber (AmberTools16

(Case et al., 2016)) as described in the Osprey documentation and only the selected crystal structure protein conformation was

used. Small molecule ligands were allowed to rotate and translate during the calculations.

Residues within 5 Å of the ligand were systematically mutated to all other possible amino acids, except if they were known to be

crucial for catalytic activity; namely the AspPheGly motif, catalytic Asp, and Lys-Glu salt bridge in kinases. All three His protonation
e1 Cell Chemical Biology 25, 1359–1371.e1–e2, November 15, 2018
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states were included; His was only considered as a resistant mutation when all protonation states were predicted to confer resis-

tance. Mutation to Pro is not supported by the Osprey package. In cases where ligands form specific water-mediated interactions

with the protein, the water molecules were included and defined as co-factor as suggested in the Osprey documentation. Only one

residue at a timewas allowed tomutate andWT rotamerswere included for all mutable residues. Residue positions were investigated

either individually or in pairs; this led to multiple WT K* scores per protein-ligand complex and the averageWT (avwt) score was used

henceforth. The ratio of the endogenous ligand to drug K* score (= K* ratio) was calculated (Frey et al., 2010; Reeve et al., 2015)

to evaluate the effect of each possible mutation on drug binding in relation to binding of the endogenous ligand. The log score of

the K* ratio was subsequently used. The range of WT scores (rangewt) across log-units was used to determine the variation range

of the method for each input structure which results from the quality of the input model. (Figure S1). A decrease in drug affinity

for a mutant compared to the WT protein has the potential to cause resistance, the activity cut-off for mutants was defined as a

log K* ratio higher than the average WT protein value plus the inherent variation range of the method as described in Equation 1:

cut � off = logðK�ratioavwtÞ+ rangewt (Equation 1)

Every mutation retrieving a value higher than the cut-off was considered as conferring resistance.

The avwt score was used to define K* score values for residue positions that were only investigated for either endogenous ligand or

drug. This was the case if a residue was within 5 Å of one but not the other.

Calculation of relP
The mutation type probabilities were taken from Alexandrov et al. (Alexandrov et al., 2013). The relevant signatures were extracted

based on the cancer type for which the drug was approved. In detail, the signatures operating in stomach cancer and lung adeno-

carcinoma were used to calculate relative probabilities for KIT/ALK and EGFR small molecule drugs, respectively. Colorectal cancer

signatures were employed for EGFR-antibody complexes. No signatures for CML (relevant for inhibitors of Abl) have been reported.

The original values of the signatures (xs) were normalized according to their total contribution to mutational load and the number of

samples in which the signature could be detected (cs) (Figure S2). The normalized signature probabilities of all relevant signatures

were added to give the overall probability for a specific base exchange in a particular cancer type (=SPM probability, pSPM) as

described in Equation 2:

pSPM=
Xsn

s1

cs � xs (Equation 2)

where:

s1 and sn are the first and nth signature contributing to the mutational load in a particular cancer type.

The dataset of cancer-specific SPM probabilities is provided in Table S8 in the Supplemental Information.

To calculate the relP for a specific amino acid missense mutation, the coding sequence for each amino acid residue and their

5’ and 3’ neighbouring bases were extracted from the COSMIC database (Bamford et al., 2004). Signature-derived pSPMs

(as described above) were used to define the relP for a specific amino acid exchange according to Equation 3:

relP=
Xtn

t1

pSPM1 � pSPM2 (Equation 3)

where:

t1 and tn are the first and nth combination of base exchanges resulting in the desired protein residue change.

pSPM1 and pSPM2 are the overall probability for a specific base exchange 1 and 2 in a particular cancer type. DPMs have been

reported in cancer patients with similar frequency to insertions (Table S1) and were therefore included in the workflow. Please note,

that only pSPM1 is required if a protein residue mutation can be facilitated by a single base exchange (SPM), whereas both pSPM1

and pSPM2 are used for a DPM.

Whenever multiple different mutations led to the same amino acid exchange, the individual SPM probabilities were added. The

calculation of relP, exemplified on the EGFR T790M mutation in adenocarcinoma, is depicted in Figure S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microsoft Excel was used to calculate the mean ± SEM across all 18 target-interaction partner case studies (=n) as reported in the

Discussion.
Cell Chemical Biology 25, 1359–1371.e1–e2, November 15, 2018 e2
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