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We applied machine learning algorithms for differentiation of posterior fossa tumors using

apparent diffusion coefficient (ADC) histogram analysis and structural MRI findings. A total

of 256 patients with intra-axial posterior fossa tumors were identified, of whom 248 were

included in machine learning analysis, with at least 6 representative subjects per each

tumor pathology. The ADC histograms of solid components of tumors, structural MRI

findings, and patients’ age were applied to construct decision models using Classification

and Regression Tree analysis. We also compared different machine learning classification

algorithms (i.e., naïve Bayes, random forest, neural networks, support vector machine

with linear and polynomial kernel) for dichotomized differentiation of the 5 most common

tumors in our cohort: metastasis (n = 65), hemangioblastoma (n = 44), pilocytic

astrocytoma (n = 43), ependymoma (n = 27), and medulloblastoma (n = 26). The

decision tree model could differentiate seven tumor histopathologies with terminal nodes

yielding up to 90% accurate classification rates. In receiver operating characteristics

(ROC) analysis, the decision tree model achieved greater area under the curve (AUC)

for differentiation of pilocytic astrocytoma (p = 0.020); and atypical teratoid/rhabdoid

tumor ATRT (p = 0.001) from other types of neoplasms compared to the official clinical

report. However, neuroradiologists’ interpretations had greater accuracy in differentiating

metastases (p = 0.001). Among different machine learning algorithms, random forest

models yielded the highest accuracy in dichotomized classification of the 5 most

common tumor types; and in multiclass differentiation of all tumor types random forest

yielded an averaged AUC of 0.961 in training datasets, and 0.873 in validation samples.

Our study demonstrates the potential application of machine learning algorithms and

decision trees for accurate differentiation of brain tumors based on pretreatment MRI.

Using easy to apply and understandable imaging metrics, the proposed decision tree

model can help radiologists with differentiation of posterior fossa tumors, especially in

tumors with similar qualitative imaging characteristics. In particular, our decision tree

model provided more accurate differentiation of pilocytic astrocytomas from ATRT than

by neuroradiologists in clinical reads.
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INTRODUCTION

The current standard of care for patients presenting with
posterior fossa tumors is maximal safe resection of tumor,
decompression to eliminate mass effect, and radiochemotherapy.
While histopathological evaluation is currently the gold standard
for brain tumors diagnosis, there is growing body of evidence that
combination of quantitative imagining and machine learning
algorithms can help with non-invasive differentiation of brain
neoplasms based on pre-treatment MRI (1, 2). An accurate
presurgical diagnosis can play an important role in surgical
planning, determining the extent of resection (3, 4), evaluating
the need for neoadjuvant therapy, defining radiation therapy
field, and counseling patients and their families (5).

The apparent diffusion coefficient (ADC) values are
reflective of tumor cellularity, and help with diagnostic and
prognostic assessment of posterior fossa tumors (6, 7). Recent
studies demonstrate the added value of quantitative diffusion
analysis in differentiation of posterior fossa tumors, besides
conventional structural MRI findings such as peritumoral
edema, enhancement pattern, location, or extension through the
foramina of Luschka/Magendie (8–10). However, prior studies
were limited by restricting their analysis pool to select tumor
types, analyzing few ADC quantitative metrics (e.g., ADCmeans,
median, or minimum), or only evaluating ADC values on a
single slice, thus not accounting for tumor heterogeneity (11, 12).

In current study, we assessed the volumetric voxel-based
ADC histogram analysis of the tumor solid components in
a large sample of posterior fossa neoplasms. Using machine
learning algorithms, we utilized clinical variables, quantitative
ADC histogram metrics, and qualitative MRI imaging features
extracted by 2 neuroradiologists on presurgical MRI to devise
decision trees for accurate diagnosis of posterior fossa tumors.
We chose unequivocal imaging metrics, which can be reliably
assessed on widely available image viewer software in all
hospitals, and thus can be readily used in neuroradiology
and neuro-oncology practices. We also compared different
machine learning classification models for differentiation of
the most common posterior fossa tumors, which presents as
a challenge in clinical practice. Including a large number of
patients with a variety of pathologies allowed us to devise
comprehensive differentiation models that represent a broad
range of tumor types and imitate the real-world practice in a
tertiary referral center.

METHODS

Patients’ Characteristics
Clinical and imaging records of all patients with posterior fossa
tumor and surgical pathology results, between January 200 Re
reviewer’s comment #and December 2015 at our institution, were
reviewed. Patients were included if they had (1) intra-axial or
intra-ventricular posterior fossa tumor, (2) surgical pathology
diagnosis of a neoplasm (Table 1), and (3) a presurgical MRI
including ADC map, T2-weighted, Fluid Attenuated Inversion
Recovery (FLAIR), and post contrast T1-weighted sequences.
The exclusion criteria were pathological diagnosis other than a

malignant process (e.g., cavernoma), extra-axial location except
intraventricular tumors, and an ADC map quality precluding
histogram analysis. In addition, tumor pathologies with <6
subjects in our cohort were excluded from univariate, and
machine learning analyses (i.e., Choroid plexus papilloma, n= 4;
Rosette-forming glioneuronal tumor, n = 2; Ganglioglioma, n
= 1; Anaplastic pleomorphic xanthoastrocytoma, n = 1). The
Institutional Review Board approved the study design, granting
a waiver of informed consent given the retrospective nature
of study.

MRI Acquisition
The presurgical MRI was performed on 1.5 and 3 Tesla
MRI scanners using surgical navigation (BrainLab) imaging
protocol—which included axial 2D T1 weighted images, axial
diffusion-weighted images (DWI), 3D T2 weighted images, 3D
FLAIR, axial susceptibility weighted imaging, dynamic contrast
enhancement perfusion, and 3D post contrast T1 sequences. In
majority of patients, spin-echo echo-planar DWI was performed
in 2D axial plane on a GE Discovery MR750 3T scanner
(Waukesha, WI), with image acquisition at b= 0 s/mm2 and b=
1,000 s/mm2; repeat time= 8,300ms, echo time= 65ms, section
thickness of 2mm, field of view of 250mm, and matrix size of
128× 128.

Qualitative Assessment of Posterior Fossa
Tumors
All MRI scans were reviewed independently by two board-
certified neuroradiologists (SP and MA), each with 8 years
of experience in interpretation of brain tumor MRI. Except
for the patients’ age, the reviewers were blinded to clinical
information, radiology report, and pathological diagnosis at
the time of review. Both SP and MA predicted the single
most likely differential diagnosis for each tumor based on
presurgical brain MRI. In addition, the official “clinical report”

TABLE 1 | List of (intra-axial/intra-ventricular) posterior cranial fossa neoplasms

(n = 256).

Surgical pathology diagnosis Patients number (frequency)

Metastasis 65 (25.4%)

Hemangioblastoma 44 (17.2%)

Pilocytic astrocytoma 43 (16.8%)

Ependymoma 27 (10.5%)

Medulloblastoma 26 (10.2%)

Low grade glioma/astrocytoma 10 (3.9%)

Lymphoma 8 (3.1%)

Anaplastic astrocytoma 7 (2.7%)

Atypical teratoid/rhabdoid tumor 6 (2.3%)

Glioblastoma multiforme 6 (2.3%)

Subependymoma 6 (2.3%)

Choroid plexus papilloma 4 (1.6%)

Rosette-forming glioneuronal tumor 2 (0.8%)

Ganglioglioma 1 (0.4%)

Anaplastic pleomorphic xanthoastrocytoma 1 (0.4%)
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in the electronic medical records were examined to identify
the foremost differential diagnosis in the “impression,” which
considered as the most likely diagnosis for comparison purposes.
In addition, the imaging characteristics—listed in Table 2—
were extracted and corroborated with the official clinical report.
In case of discrepancy between the neuroradiologist reviewers
and official clinical report, the senior author (SC) reviewed
the scan to reach consensus. The lesion morphology was
categorized as predominantly solid (>80% solid component),
mixed solid and cystic, cystic/necrotic (>80%) with irregular
wall, and cystic (>80%) with smooth mural nodule. A “T2
hyperintense” solid component was determined by T2 signal
greater than the gray matter (Figure 1) (13). The presence of
prominent vascular flow void was assessed on T2-weighted
images and confirmed on post contrast series. The tumor
volumes, including both solid and cystic components, were
calculated after manual segmentation on post-contrast T1
images with attention to T2/FLAIR series for non-enhancing
component. We also measured the maximum radial width of
FLAIR hyperintensity surrounding the tumor on axial slices as
a surrogate for peritumoral edema.

ADC Histogram Analysis
On a GE Advantage Workstation (GE healthcare, Milwaukee,
WI), we manually segmented the solid component of tumors
on ADC maps with attention to post-contrast T1-weighted,
T2-weighted, and FLAIR imaging. The volumetric voxel-based
ADC histograms of the solid component were calculated and
normalized to the average ADC value from cerebrospinal
fluid in the body of lateral ventricles, as described previously
(8). For each tumor, a total of 24 histogram metrics were
calculated—including 21 ADC percentile values with 5 percentile
increments (i.e., minimum, 5th, 10th, 15th percentile. . . ) as
well as the mean, kurtosis, and skewness. The schematic mean
ADC histograms of different tumor types were developed for
visual comparison.

Decision Tree Model
For development of decision trees, we applied the “rpart”
R package for Classification and Regression Tree (CART)
models (14). At each split/node, a variable is selected to
maximize the variance explanation of dependent variable. The
patients’ characteristics (age and gender), structural MRI findings
(Table 2), and ADC histogram metrics were included as input
for the model. By default, a 10-fold cross-validation and
fitting at each sub-tree were applied. The final classification
of the decision tree model was separately compared with
the top differential diagnosis from the clinical report and
two independent neuroradiologists using the receiver operating
characteristics (ROC) analysis implemented by “pROC” package
in R (Table 3). We also determined the Cohen’s Kappa
inter-rater agreement coefficient (Table 4). The CART models
were first applied for differentiation of all tumors, and
then separately for dichotomized classification of the 5 most
common posterior fossa tumors. The block diagram in Figure 2

summarizes the analysis steps in decision tree and machine
learning models.

Machine Learning Classification
Different machine learning models were applied and compared
for dichotomized classification of the 5 most common posterior
fossa tumors—including the naïve Bayes, random forest, support
vector machine (SVM), and neural networks (Figure 2). For
development of the naïve Bayes models, we applied the
“naivebayes” R package with a Laplace smoothing value of 0,
as suggested by the package developers. The “randomForest”
package was used for random forest ensemble learning
classification (15). For each random forest model, 500 trees
were constructed applying a randomly-selected one-third of
variables at each split (16–19). In our preliminary experiments,
the error rate consistently plateaued after constructing 160–300
tree splits in random forests; thus, the default recommendation
of 500 trees by the R package deemed adequate to achieve
optimal accuracy in our models. For SVM algorithms, we
used the “e1071” R package to construct dichotomized
classification models. We applied both linear and non-linear
kernels for data classification—in this series, polynomial kernel
was used for non-linear kernel function. During finetuning
of the hyperparameters for SVM models, a cost of 0.1
yielded the optimal error rate, and was applied for all linear
kernels. For polynomial kernel, we used a sigma of 1 as
the optimal cutoff. For neural networks, we applied the
“neuralnet” package, and used the “rBayesianOptimization”
package to optimize the number of nodes in the neural network
hidden layer.

In order to present realistic estimates from our cohort
and minimize the risk of overfitting, we opted to report the
averaged results from “stratified” cross-validation. Given the
uneven distribution of tumor types in our cohort, a “stratified”
sampling strategy seemed appropriate to ensure that enough
number of each tumor type is allocated in every training
and validation sample. Using stratified random sampling, we
applied 5-fold cross validation, preserving the tumor subtype
percentage in both training and validation samples. The random
sampling was repeated 100 times, and the averaged results
from “stratified” cross validation across 500 permutations are
presented. In each pair of randomly selected training/validation
samples, the model was constructed on training sample,
and tested on corresponding validation sample. A confusion
matrix was constructed based on prediction results in each
training and validation sample, and the corresponding accuracy
(number of correctly classified subjects divided by sample
size), sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were calculated. In addition, the
ROC area under the curve (AUC) and 95% confidence interval
(CI) were computed using 2000 stratified bootstrap replicates
per the default implementation in pROC package. The average
test characteristics across 500 training and validation samples
are reported.

All models were first applied and compared for differentiation
of the five most common posterior fossa tumors—with each
combination of tumor type and machine learning analyzed
separately. Given that random forest models yielded higher
accuracy for classification of tumor types compared to other
algorithms, we applied the random forest for multi-class
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TABLE 2 | Structural MRI findings and clinical characteristics among various posterior fossa neoplasms.

MET

(n = 65)

HB

(n = 44)

PA

(n = 43)

EP

(n = 27)

MB

(n = 26)

LGG

(n = 10)

LYM

(n = 8)

AA

(n = 7)

ATRT

(n = 6)

GBM

(n = 6)

SEP

(n = 6)

P-value

Patients’ characteristics

Age (years) 57.6±12.2 49.3±17.9 18.7±11.2 26.1±20.1 21.8±16.8 35.6±27.9 63.2±12.9 36.1±23.7 1.3±1.0 31.7±22.3 50.2±13.3 <0.001

Gender (male) 18 (33%) 19 (49%) 11 (61%) 2 (22%) 3 (50%) 2 (40%) 1 (25%) 2 (22%) 3 (50%) 2 (40%) 1 (25%) 0.304

Tumor localization

Cerebellar hemisphere 54 (83%) 39 (89%) 18 (42%) 3 (11%) 9 (35%) 5 (50%) 6 (75%) 1 (14%) 2 (33%) 4 (67%) 0 (0%) <0.001

Fourth ventricle 3 (5%) 3 (7%) 13 (30%) 21 (78%) 17 (65%) 0 (0%) 1 (13%) 0 (0%) 4 (67%) 0 (0%) 6 (100%) <0.001

Vermis/midline 4 (6%) 2 (5%) 10 (23%) 2 (7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0.013

Brainstem 4 (6%) 0 (0%) 2 (5%) 1 (4%) 0 (0%) 5 (50%) 1 (13%) 6 (86%) 0 (0%) 2 (33%) 0 (0%) <0.001

Cerebellar peduncle

involvement

4 (6%) 6 (14%) 4 (9%) 4 (15%) 5 (19%) 5 (50%) 1 (13%) 4 (57%) 2 (33%) 4 (67%) 0 (0%) <0.001

Lesion morphology

Predominantly solid

(>80%)

46 (71%) 6 (14%) 7 (16%) 13 (48%) 17 (65%) 6 (60%) 8 (100%) 6 (86%) 3 (50%) 4 (67%) 6 (100%) <0.001

Mixed solid and cystic 6 (9%) 12 (27%) 20 (47%) 14 (52%) 9 (35%) 4 (40%) 0 (0%) 1 (14%) 3 (50%) 1 (17%) 0 (0%) <0.001

Cystic (>80%) with

mural nodule

4 (6%) 26 (59%) 15 (35%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) <0.001

Necrotic with irregular

wall

9 (14%) 0 (0%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (17%) 0 (0%) 0.013

Enhancement pattern

Homogenous

enhancement

16 (25%) 39 (89%) 8 (19%) 0 (0%) 5 (19%) 0 (0%) 5 (62%) 1 (14%) 0 (0%) 0 (0%) 1 (17%) <0.001

Heterogeneous

enhancement

49 (75%) 5 (11%) 35 (81%) 26 (96%) 20 (77%) 6 (60%) 3 (38%) 4 (57%) 6 (100%) 5 (83%) 5 (83%) <0.001

No enhancement 0 (0%) 0 (0%) 0 (0%) 1 (4%) 1 (4%) 4 (40%) 0 (0%) 2 (29%) 0 (0%) 1 (17%) 0 (0%) <0.001

Extension along the neuroaxis

Multiple lesions 16 (25%) 4 (9%) 2 (5%) 0 (0%) 2 (8%) 1 (10%) 2 (25%) 1 (14%) 0 (0%) 2 (33%) 0 (0%) 0.016

Leptomeningeal drop

metastasis

5 (8%) 0 (0%) 1 (2%) 0 (0%) 1 (4%) 1 (10%) 0 (0%) 0 (0%) 0 (0%) 1 (17%) 0 (0%) 0.354

T2/FLAIR findings

Prominent vascular

flow voids

2 (3%) 25 (57%) 0 (0%) 3 (11%) 6 (23%) 0 (0%) 0 (0%) 0 (0%) 2 (33%) 0 (0%) 0 (0%) <0.001

Surrounding FLAIR

(cm)

1.8±0.9 1.7±0.9 0.5±0.5 0.4±0.6 0.7±0.6 0.5±0.4 1.8±0.6 1.0±1.0 0.4±0.3 1.0±0.9 0.1±0.1 <0.001

T2 hyperintense solid

component*

9 (14%) 17 (39%) 33 (77%) 10 (37%) 6 (23%) 10 (100%) 1 (13%) 7 (100%) 0 (0%) 1 (17%) 0 (0%) <0.001

Mass effect

Volume (mL) 11.4±9.3 19.8±15.5 29.7±30.1 21.6±18.0 27.4±19.8 14.2±13.8 10.6±9.1 21.4±12.3 42.8±35.6 12±9.0 4.8±4.3 <0.001

Hydrocephalus 22 (34%) 23 (52%) 27 (63%) 20 (74%) 19 (73%) 5 (50%) 2 (25%) 4 (57%) 5 (83%) 2 (33%) 0 (0%) <0.001

Results of univariate comparison between different neoplasm types.
*A “T2 hyperintense” solid component was determined by T2 signal greater than the gray matter (13).

AA, anaplastic astrocytoma; ATRT, atypical teratoid/rhabdoid tumors; EP, Ependymoma; GBM, glioblastoma multiforme; HB, hemangioblastoma; LGG, low-grade glioma/astrocytoma; LYM, lymphoma; MB, medulloblastoma; MET,

metastasis; PA, pilocytic astrocytoma; SEP, subependymoma.

A p-value < 0.05 was considered statistically significant, and depicted in bold.
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FIGURE 1 | Post contrast T1, T2, Diffusion Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) scans from representative posterior cranial fossa tumors.

differentiation of all tumor types. The average multiclass
ROC AUC was determined for random forest models and
neuroradiologist interpretations using the “multiROC” package.
Notably, comparison and calculation of 95% CI for multiclass
averaged AUC is not feasible. In addition, the averaged “mean
decrease in Gini coefficient” are reported to depict the relative
effect of each variable on random forest model accuracy if the
variable is deleted.

Statistical Analysis
The data are expressed as mean ± standard deviation, and
frequency (percentage). Kolmogorov–Smirnov test confirmed
normal distribution of continuous variables in our analysis.
For univariate comparison between different tumor types, the
ANOVA with Tukey post-hoc analysis was used for continuous

variables, and Chi square test was used for nominal variables.
MANOVA was applied to evaluate the effects of 1.5 vs. 3
Tesla scanners on ADC measurement. In addition to R package
(https://cran.r-project.org/), we used SPSS 22.0 (IBM, Somers,
NY) for statistical analysis.

RESULTS

Posterior Fossa Tumors
Of 403 consecutive patients with pathologic diagnosis of
posterior cranial fossa neoplasm over 12-year period, 256
patients had intra-axial/intra-ventricular tumors. We excluded
136 patients with extra-axial tumors (except intraventricular
tumors), and 11 subjects with poor quality of MRI. Excluded
extra-axial tumors were schwannoma, meningioma, metastases,
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TABLE 3 | Comparing the accuracy of decision tree model (Figure 5) with the official clinical interpretation and independent neuroradiologist reviewers.

Decision tree model Clinical report Reader #1 Reader #2

ROC AUC

(95% CI)

ROC AUC

(95% CI)

P-value ROC AUC

(95% CI)

P-value ROC AUC

(95% CI)

P-value

Metastasis 0.857

(0.810–0.904)

0.958

(0.935–0.982)

0.001 0.917

(0.877–0.957)

0.056 0.956

(0.935–0.975)

0.001

Hemangioblastoma 0.885

(0.826–0.944)

0.891

(0.829–0.951)

0.9148 0.913

(0.858–0.968)

0.510 0.847

(0.779–0.916)

0.448

Pilocytic astrocytoma 0.885

(0.825–0.946)

0.792

(0.718–0.867)

0.020 0.855

(0.788–0.922)

0.403 0.830

(0.759–0.901)

0.151

Ependymoma 0.759

(0.663–0.855)

0.857

(0.780–0.934)

0.0841 0.773

(0.678–0.867)

0.838 0.876

(0.801–0.953)

0.018

Medulloblastoma 0.8545

(0.767–0.942)

0.788

(0.692–0.884)

0.345 0.856

(0.769_0.944)

0.969 0.912

(0.841–0.983)

0.178

Low grade glioma/astrocytoma 0.6358

(0.515–0.785)

0.721

(0.557–0.885)

0.392 0.737

(0.574–0.901)

0.308 0.815

(0.664–0.965)

0.1049

Atypical teratoid/rhabdoid tumor 0.913

(0.749–1.000)

0.579

(0.415–0.742)

0.001 0.742

(0.522–0.961)

0.306 0.750

(0.531–0.969)

0.329

The receiver operating characteristics (ROC) area under the curve (AUC) with 95% confidence interval (CI) were calculated for the decision tree model (Figure 5) vs. official clinical

interpretation, and independent neuroradiologists (separately) in differentiation of posterior fossa tumors. A p-value < 0.05 was considered statistically significant, and depicted in bold.

TABLE 4 | Inter-rater agreement in differentiation of posterior cranial fossa

neoplasms.

Diagnosis Cohen’s Kappa

Clinical report vs

Reader #1

Clinical report vs

Reader #2

Reader #1 vs

Reader #2

Metastasis 0.802 0.839 0.787

Hemangioblastoma 0.788 0.820 0.728

Pilocytic

astrocytoma

0.749 0.662 0.679

Ependymoma 0.664 0.781 0.677

Medulloblastoma 0.724 0.615 0.823

Low grade

glioma/astrocytoma

0.718 0.569 0.423

Lymphoma 0.388 −0.006 −0.006

Anaplastic

astrocytoma

0.435 −0.006 −0.006

Atypical

teratoid/rhabdoid

tumor

0.057 −0.012 0.593

Glioblastoma

multiforme

0.559 0.535 0.291

Subependymoma 0.000 0.000 0.063

Choroid plexus

papilloma

−0.008 −0.005 −0.005

Ganglioglioma 0.000 0.000 0.000

Rosette-forming

glioneuronal tumor

0.000 0.000 0.000

The Cohen’s Kappa co-efficient for inter-rater agreement in classification of

each neoplasm type among the official clinical report, and two independent

neuroradiologist reviewers.

and hemangiopericytoma. Among tumors included in our
analysis (Table 1), metastasis, hemangioblastoma, pilocytic
astrocytoma, ependymoma, and medulloblastoma were the

most common types, comprising 205/256 (80%) subjects.
Representative tumors from different pathologies are depicted
in Figure 1.

Patients’ Characteristics and Qualitative
MRI Analysis
A summary of the univariate analysis comparing various
posterior fossa tumors is shown in Table 2. The patients’
age at presentation, tumor lesion localization, tumor
morphology, enhancement pattern, degree of peritumoral
FLAIR hyperintensity, whole tumor volume, and presence of
hydrocephalus were significantly different among tumor types in
univariate analyses. The results of post-hoc analysis for patients’
age, peri-tumor FLAIR hyperintensity width, and tumor volume
between different neoplasms are depicted in Figure 3.

ADC Histogram Analysis
Figure 4 depicts the schematic representation of the averaged
ADC percentile values among different posterior fossa tumors.
Medulloblastomas, followed by ATRT and lymphomas had the
lowest ADC histogram percentile values; whereas, pilocytic
astrocytomas, followed by hemangioblastomas had the highest
ADC histogram percentile values (Figure 4). Using ANOVA,
there was significant difference in all ADC percentile metrics,
average, skewness, and kurtosis values among 11 different tumor
types (with ≥6 subjects) in our cohort (p-values < 0.001). There
has been no significant difference in ADC histogram metrics
between DWI series from 1.5 Tesla (n= 34) vs. 3 Tesla (n= 214)
scanners in MANOVA.

Decision Tree Models for Differentiation of
Posterior Fossa Tumors
The CART decision tree model successfully differentiated
7 types of neoplasms in our cohort (Figure 5). The first
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FIGURE 2 | A block diagram of decision tree model (A) and machine learning algorithms (B). ADC, apparent diffusion coefficient.

decision node identified by the model was patients’ age
with a cut off of 35 years. Subsequent nodes used ADC
histogram values, presence/absence of prominent flow voids
on T2 weighted images, homogenous enhancement pattern,
solid tumor morphology, and the fourth ventricle localization,
respectively, for further tumor classification (Figure 5). The
terminal nodes (leaves) of the decision tree yielded 30 to 90%
correct classification ratios. Moreover, the likelihood of each
tumor type, based on classification criteria is calculated in each
terminal node (Figure 5).

Using ROC curve analysis, we compared the accuracy
of the decision tree model with clinical interpretation, and
each of independent neuroradiologists (Table 3). The decision
tree model yielded a greater AUC compared to the clinical
interpretation in differentiation of the pilocytic astrocytoma (p
= 0.020) and ATRT (p = 0.001) from other neoplasm subtypes;
whereas, the clinical interpretation and reviewer #2 had higher
ROC AUC in differentiation of metastasis (p = 0.001) from
other tumors. The Cohen’s Kappa analysis, showed substantial
inter-rater agreement (>0.6) between the clinical interpretation
and neuroradiologists among the 5 most common tumor types;
however, the agreement rates were lower for the less common
tumors (Table 4).

In order to further delineate specific imaging characteristics of
common posterior fossa tumors and achieve higher classification
accuracy, we also developed separate CART decision treesmodels
for dichotomized classification of the 5 most common tumors in
our cohort (Figure 6). The patients’ age, ADC histogrammetrics,
peritumoral FLAIR hyperintensity width, presence of prominent
flow void, enhancement pattern, presence of cystic component,
fourth ventricle location, cerebellar hemisphere localization,
extension through foramina of Luschka/Magendie, and tumor
volume, were included in these CART decision tree models
(Figure 6).

Machine Learning Algorithm for Tumor
Classification
The ratio of tumor types included in the stratified training
(n = 199) and validation (n = 49) datasets are tabulated in
Supplemental Table 1. In separate classification models devised
for the dichotomized differentiation of the 5 most common
posterior fossa tumors, random forest models achieved the
highest ROC AUC, sensitivity, specificity, PPV, and NPV across
training and validation samples from the ×100 repeat of 5-fold
stratified cross validation (Figure 7, Supplemental Tables 2, 3).

Then, we applied random forest model for multiclass
differentiation of posterior fossa tumor types. Using a multiclass
ROC analysis, the average AUC of random forest models was
0.961 in training datasets, and 0.873 in validation dataset. Using
multiclass ROC analysis in same 248 patients, the average AUC of
clinical interpretation, reviewer #1, and reviewer #2 were 0.832,
0.799, and 0.834, respectively. There was significant correlation
between pathological diagnosis and random forest model
prediction in the training (averaged r = 0.96, p < 0.001), and
validation (averaged r = 0.51, p < 0.001) datasets. The patients’
age, width of peritumoral FLAIR hyperintensity, cerebellar
hemisphere location, involvement of cerebellar peduncle, tumor
volume, and ADC histogram metrics had the greatest impact on
accuracy of random forest models (Figure 8).

DISCUSSION

Using the CART decision tree model analysis, we have devised
differentiation algorithms for posterior fossa tumors based on
patients’ age, ADC histogram analysis, and qualitative imaging
features on pretreatment MRI. The proposed decision tree model
(in Figure 5) could differentiate 7 histopathologies with 30
to 90 % accurate classification rates in terminal nodes. This
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FIGURE 3 | (A) On post-hoc analysis, patients with atypical teratoid/rhabdoid

tumors (ATRT) had significantly lower age at presentation compare to all other

tumor types except medulloblastoma and pilocytic astrocytoma. Patients with

medulloblastoma, pilocytic astrocytoma, and ependymoma were significantly

younger compared to those with metastasis, lymphoma, hemangioblastoma,

(Continued)

FIGURE 3 | and subependymoma. Patients with metastasis and

hemangioblastomas were also older than those with anaplastic astrocytoma,

low-grade glioma, and glioblastoma multiforme. (B) On post hoc analysis,

metastases, hemangioblastomas, and lymphomas had larger diameter of

peritumoral FLAIR hyperintensity compared to medulloblastoma, pilocytic

astrocytomas, ependymomas, low-grade glioma, ATRT, and

subependymomas—likely since latter tumors tend to be intraventricular with

virtually no peritumoral edema. Also, the peritumoral FLAIR hyperintensity

surrounding metastases, and hemangioblastomas was larger in diameter

compared to anaplastic astrocytoma, and glioblastoma multiforme. (C) On

post hoc analysis of tumor volumes, pilocytic astrocytomas,

medulloblastomas, and ATRTs had larger size compared to metastases. The

ATRTs were also significantly larger compared to subependymomas. ATRT,

atypical teratoid/rhabdoid tumors; FLAIR, fluid attenuated inversion recovery.

FIGURE 4 | The schematic representation of the averaged ADC histogram

distribution among different posterior fossa neoplasms. Medulloblastomas,

ATRT, and lymphomas had the lowest; whereas, pilocytic astrocytomas, and

hemangioblastomas had the highest ADC histogram percentile values. The

average percentile values for each tumor type were calculated, and

representative averaged histograms were modified so that the median values

would be depicted at the same height on the y axis. ADC, apparent diffusion

coefficient; ATRT, atypical teratoid/rhabdoid tumors; GBM, glioblastoma

multiforme.

decision tree model appears to be most helpful in differentiation
of pilocytic astrocytoma and ATRT - as it achieved higher
accuracy compared to clinical report in our cohort. We also
demonstrated the feasibility of random forest machine learning
algorithms in devising classification models for differentiation
of posterior fossa tumors. Applying multiclass ROC analysis,
we achieved an averaged AUC of 0.961 in training datasets,
and 0.873 in validation dataset, as compared to 0.799 and 0.834
by neuroradiologists.

Recent studies demonstrated the feasibility of machine
learning algorithms in prediction of glioma histopathological
grade, and classification of the most common pediatric posterior
fossa tumors (20–22). These studies, however, utilized small
training datasets with few select types of tumors, therefore
clinical application of these models may be limited (23). In
our study, we used a large comprehensive cohort of patients
including 15 different types of posterior fossa tumors and at
least 6 representative patients for each tumor histology. Our
decision tree models rely on qualitative imaging features and
quantitative histogram analysis, which can be easily translated to
commercially-available image viewer systems in clinical practice;
thus, providing a ready-to-apply tool for neuroradiologists to
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FIGURE 5 | The CART decision tree model could differentiate 7 histopathologies among posterior fossa tumors. In each box (node/leaf), the accurate classification

rate (positive predictive value) is expressed as ratios of the most common tumor type per total number of cases fulfilling the criteria. Each box is colored to represent

the tumor type, and the intensity of the color reflects the accurate classification ratio. ADC, apparent diffusion coefficient; ATRT, atypical teratoid/rhabdoid tumors;

CART, Classification and Regression Tree; EP, Ependymoma; HB, Hemangioblastoma; LGG, low-grade glioma/astrocytoma; MET, metastases; MB, Medulloblastoma;

PA, pilocytic astrocytoma. *The ADC nth refers to the ADC histogram nth percentile value ×10−6 mm2/s; for example, ADC 5th percentile <658 × 10−6 mm2/s. **Both

low-grade glioma and anaplastic astrocytoma had 3/10 (30%) ratios in this terminal node.

formulate their differential diagnosis before pathology results
becomes available. The decision tree model and the “mean
decrease in Gini coefficient” in random forest models also
provide an insight into the innerworkings of machine learning
models in their prediction decision.

The patients’ age is one of the most important factors in
differentiation of posterior fossa tumors, and it is well established
that adult and pediatric patients are prone to different types of
posterior fossa tumors. In this study, instead of using preset
age cutoffs as inclusion or exclusion criteria, we applied CART
models to identify data driven and tumor-specific age thresholds
for differentiation of various neoplasms; and indeed, an age
cutoff of 35 years was the first step in decision tree model
for differentiation of various tumor types (Figure 5). Moreover,
in our cohort, an age cutoff of ≤3 years was identified as
differentiation criteria for ATRT from other tumors—including
medulloblastoma (Figure 5); and an age cutoff of <27 years was
helpful for differentiation of pilocytic astrocytoma from rest of
tumors (Figure 6C).

While similar qualitative and quantitative imaging
characteristics were previously used to differentiate posterior

fossa tumors, our decision tree model provides step-wise
approach for differentiation of wide various posterior
fossa tumors (Figures 5, 6, 8). For example, high ADC
values in solid component of the tumor and young age at
presentation could help differentiate pilocytic astrocytoma
from other tumors in posterior fossa (Figures 5, 6C). In
dichotomized analysis, age younger than 27 years, high ADC
percentile values (10th percentile >1,055 × 10−6 mm2/s
and 95th percentile >2,805 × 10−6 mm2/s), and presence
of cystic component had 96% accurate classification rate
(positive predictive value) for differentiation of pilocytic
astrocytoma from other tumors (Figure 6C). On the other
hand, age at presentation of <35 year and low ADC values
are suggestive of medulloblastoma (or ATRT), regardless of
extension through foramina of Luschka/Magendie, tumor
localization, or enhancement pattern (Figures 5, 6E). Although
the number of ATRT patients in our cohort was too small
to draw a firm conclusion, we found that an age cutoff ≤3
years can help differentiate ATRT from other neoplasms
of posterior fossa—including medulloblastoma (Figure 5).
Indeed, an ADC 5th percentile <658×10−6 mm2/s and

Frontiers in Oncology | www.frontiersin.org 9 February 2020 | Volume 10 | Article 71

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Payabvash et al. Posterior Fossa Tumors Differentiation Models

FIGURE 6 | Decision tree models for dichotomized differentiation of the 5 most common posterior cranial fossa neoplasms: (A) metastasis, (B) hemangioblastomas,

(C) pilocytic astrocytoma, (D) ependymomas, and (E) medulloblastomas. In each box (node/leaf), the accurate classification rate (positive predictive value) is

expressed as ratios of the most common tumor type per total number of cases fulfilling the criteria. The intensity of the green color reflects the accurate classification

ratio. Froaminal extension refers to tumoral extension through the foramina of Luschka and/or Magendie. *The ADC nth refers to the ADC histogram nth percentile

value ×10−6 mm2/s; for example, ADC 70th percentile <1,636 ×10−6 mm2/s. **Peritumoral FLAIR hyperintensity width. ***ADC histogram skewness.

age ≤3 years of age had 71% accuracy (positive predictive
value) for differentiation of ATRT from other posterior fossa
tumors (Figure 5).

In this study, we included consecutive patients with posterior
cranial fossa tumors, which is a distinction from many prior
studies restricting their cohorts based on age, select tumor
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FIGURE 7 | Heat map summary for classification performance of different machine learning algorithms in dichotomized differentiation of the 5 most common posterior

fossa tumors. The test characteristics were calculated in validation datasets from ×100 repeats of 5-fold cross validation– details in Supplemental Tables 2, 3. NPV,

negative predictive value; PPV, positive predictive value; SVM, support vector machine.
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FIGURE 8 | The “mean decrease in Gini coefficient” in random forest models for differentiation of posterior cranial fossa tumors. Separate random forests models

were developed for differentiation of all posterior fossa tumors from each other in multiclass analysis, as well as dichotomized classification for the 5 most common

posterior fossa neoplasms. The top 10 variables with the highest averaged “mean decrease in Gini coefficient” among from ×100 repeats of 5-fold cross validation are

reported. ADC, apparent diffusion coefficient; FLAIR, fluid attenuated inversion recovery.
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types, or location (5, 8, 11, 12, 24). In terms of image analysis,
prior research focused on 2D region of interest measurements,
restricted use of ADC histogram metrics, and exclusion of
qualitative features from analysis (6, 8, 11, 12). The strength of
our analysis is defined by volumetric voxel-based ADC histogram
analysis, use of comprehensive ADC histogram metrics, and
incorporation of qualitative imaging analysis and patient’s age
(6, 8, 11, 12).

Almost all prior machine learning schemes for differentiation
of posterior fossa tumors have limited their study to
differentiation of ependymoma, medulloblastoma, and pilocytic
astrocytoma (25). Rodriguez Gutierrez et al. have applied
support vector machine classification of 17 medulloblastomas,
16 pilocytic astrocytomas, and 7 ependymomas (8). They
reported that combination of the ADC histogram 25th
percentile, 75th percentile, and skewness values could achieve
the highest accuracy of 91% (8). Orphanidou-Vlachou
et al. have applied principal component analysis for feature
selection in combination with probabilistic neural network to
classify 21 medulloblastomas, 14 pilocytic astrocytomas and 5
ependymomas patients based on T1- and T2-weighted image
texture features (8, 25). In leave-one-out cross validation,
they achieved 85.8% overall accuracy (25). Fetit et al.
analyzed 21 medulloblastomas, 20 pilocytic astrocytomas
and 7 ependymomas patients; and compared naïve Bayes,
classification tree, k nearest neighbor, SVM, artificial neural
network, and logistic regression classification models using
three-dimensional texture data (26). In leave-one-out cross-
validation, the SVM and artificial neural networks achieved
the highest accuracy of 92% (26). In 2017, Zarinabad et al.
reported the results of 1.5 Tesla 1H-MR spectroscopy for
differentiation of 42 pilocytic astrocytoma, 38 medulloblastomas,
and 10 ependymomas, comparing Naïve Bayes, SVM, artificial
neural networks, and linear discriminative analysis (27).
Using AdaBoost ensemble technique and synthetic minority
oversampling technique (SMOTE), they could achieve an
averaged balanced accuracy rate of 91% in oversampled-data
based on metabolite concentration (27). In 2018, Zarinabad
et al. reported the results of 3 Tesla 1H-MR spectroscopy
for differentiation of 17 medulloblastomas, 20 pilocytic
astrocytomas, and 4 ependymomas, and could achieve the
highest Balanced Accuracy Rate of 86% using SVM classifiers
(28). In our study, there was no exclusion based on the patients’
age or the tumor histopathology, and we could achieve 0.873
averaged AUC among validation datasets for differentiation
of 11 posterior fossa tumor types in the multiclass random
forest analysis.

Of note, ADC histogram metrics were among variables
with the greatest effects on accuracy of random forest
models for differentiation of posterior fossa tumors (Figure 8).
While prior studies have shown the value of ADC maps
in differentiation of posterior fossa tumors (8–10), current
results depict how combination of ADC histogram analysis and
qualitative MR imaging features defined by neuroradiologists
can help with diagnostic differentiation of these tumors.
For example, among adult posterior fossa tumors, both
metastases and hemangioblastomas present with prominent

surrounding vasogenic edema (Figure 3). However, homogenous
enhancement pattern, presence of prominent vascular flow voids,
and higher ADC histogram percentile values favor the diagnosis
of hemangioblastoma over metastasis (Figures 5, 6).

While individual CART decision trees are prone to overfitting,
random forest ensemble learning method theoretically reduces
the potential overfitting. In addition, we opted to report
the averaged results of machine learning models among 500
randomly selected training and validation cohorts to represent
a realistic reflection of machine learning algorithm accuracy
for prediction of tumor type, and compensate for potential
overfitting. By doing so, however, we could not directly compare
the performance of machine learning algorithm with clinical
interpretation or neuroradiologist results. Nevertheless, the
results of multiclass ROC analysis as well as the ROC AUC
of reviewers in Table 3 and averaged ROC AUC of machine
learning models can provide an indirect comparison between
neuroradiologist interpretation and machine learning models.

One of the strengths of our study is the use of a large
cohort of patients presenting with posterior fossa tumor, which
is representative of a patient population in a tertiary care center.
A large and diverse cohort allowed us to have an appropriate
training set for development of an accurate machine learning
based model that differentiates a wide variety of posterior fossa
tumors encountered in a tertiary care center practice. The natural
next step of current study is training of machine learning models
for prediction of molecular subtypes in specific posterior tumors.
Future studies and prospective validation of decision tree models
can also determine the impact of proposed machine learning
algorithms on pretreatment diagnosis and therapy strategies
in patients with posterior fossa tumors. Our results, however,
provide the first step in devising a “no priori” and “data
driven” decision models for differentiation of posterior fossa
tumors, and are a new guide for methodological design of future
machine learning classifiers. In addition, combination of clinical,
and genetic biomarkers with imaging features can provide
multivariate wholistic models for accurate prognostication and
targeted therapy plan.

The major limitations of current study are the small
number of rare tumor types; and the lack of molecular
subtyping in medulloblastomas and ependymomas, which affect
neoplasm prognosis and treatment planning (29). The study
is also inherently limited in devising statistically powerful
diagnostic models for less frequent posterior fossa tumors.
Moreover, we only included subjects with known posterior
fossa tumor; whereas, the machine learning model should
preferably differentiate non-neoplastic tumor-mimics from
tumors. However, designing the selection criteria for inclusion
of potential tumor-mimic lesions for training machine learning
models can be challenging due to lack of consensus on which
lesions are qualified as tumor-mimic. Manual segmentation
of brain tumors and measurement of peritumoral FLAIR
hyperintensity can be challenging and a source of variability,
particularly in non-enhancing T2 hyperintense glial tumors.
Acquisition of MRIs in two different field strengths and on
various scanners may also introduce heterogeneity in our data,
although ADC obtained with repetition time >3,000ms and b
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value of 1,000 s/mm2 are not substantially affected by scanner
magnet strength (30). Additionally, there was no homogenous
standardized imaging performed. Finally, the difference in
imaging protocols, heterogeneity of patients’ population, and age
group can limit generalizability of our models.

CONCLUSION

We developed objective and quantitative decision tree models
for differentiation of posterior fossa tumors based on ADC
histogram metrics, patients’ age, and qualitative MR imaging
features that can easily be extracted on common image viewer
platforms by radiologists. In addition, we have compared
different machine learning classifiers for prediction of the most
common posterior fossa tumors, and found that random forest
models achieved greater accuracy in tumor differentiation.
However, the results of our study need to be used with
caution; and the proposed differentiation model should be
validated in a larger prospective cohort before being used
for clinical decision making. Pending prospective validation,
such quantitative and objective diagnostic tools can potentially
guide surgical planning or treatment decision for presurgical
neoadjuvant therapy.
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