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Abstract

We examined the effect of increased anterior subject positioning toward the dynamometer’s

footplate during maximal voluntary isometric contractions (MVCs) on the joint moment, rota-

tion and rate of torque development (RTD). Fourteen subjects, with their hip flexed (110˚)

and knee fully extended (180˚), underwent ramp maximal and rapid voluntary isometric

plantar flexion contractions at 4 different positions (0, 3, 6 and 8 cm; randomized). At posi-

tion “0 cm”, the foot was in full contact with the footplate; at the additional positions, the chair

was moved forward. Body kinematics (VICON) and kinetics (HUMAC Norm, PEDAR) were

captured synchronously during MVCs and RTDs. The results showed that the maximal

exerted joint moment was significantly (p<0.01) increased by >32% from the 0-cm to 8-cm

position (126 and 172 Nm, respectively); however, at the “6 cm” and “8 cm” positions, no sig-

nificant difference was found. The joint rotation was significantly (p<0.01) reduced by >50%

(from 15.5 to 7.1˚; 0–8 cm). The maxRTD was only significantly higher at “6 cm” compared

with the “0 cm” position. The time to reach maxRTD showed shorter tendencies for the “8

cm” position than for all other positions. The results indicate an underestimation of the plan-

tar flexor maximal force potential with the current measuring technique. This could be critical

in pre-post study designs where a 2-cm alteration in the chair position can induce an error of

~9% in the joint moment. The joint rotation could be reduced but not completely eliminated.

For position standardization purposes, a pressure >220 kPa under the subject’s foot is

needed to achieve the maximal joint moment. We discussed the possible origins (fascicle

length, neural drive) of the increased joint moment.

Introduction

The isokinetic dynamometer is a widely used [1–6] apparatus to examine the mechanical and

morphological properties of the muscle tendon unit. In the literature [2,6,7], two major types

of devices can be roughly categorized as “custom made” and “commercial dynamometer”.

Most of the scientific research is being conducted in the second type, which is primary devel-

oped for rehabilitation and physiotherapy purposes [8]. Therefore, those devices have
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cushioning pads and more moving parts, and, consequently, are less rigid than the custom-

made devices [4,8,9].

The nonrigidity of the commercial dynamometers induces drawbacks in the experimental

results as reported in numerous studies. For example, Herzog (1988) [10] showed that the

derived measured moment is different from the resultant joint moment in knee extension con-

tractions; therefore, the author suggested caution when concluding about the muscle proper-

ties. The author further stated that factors that could influence the measuring results include

gravitational forces, inertial forces, the elasticity of the dynamometer arm/foot system, the

joint rotation and the axis misalignment. In another study, Arampatzis et al. (2004) [3] showed

that, at the knee extension effort, misalignment of the knee joint axis could falsify as much as

17% of the exerted moment. The same group also reported in another study [4] that, at maxi-

mal plantar flexion contractions, the difference between the measured and resulted exerted

moment could reach, on average, 6–10% (range 0.2–23%). The authors suggested that the dif-

ference was caused by the nonrigidity of the isokinetic dynamometer and the existence of the

human body soft parts. Further studies [2,5] pointed out that, during plantar flexion contrac-

tion, an inevitable ankle joint angular rotation occurs that can influence the final results and,

therefore, must be considered.

The nonrigidity of the dynamometer can also further influence the estimation of various

mechanical and morphological parameters of the muscle tendon unit. For example, joint

rotation [5] could shorten the fascicles and, therefore, would not operate on their optimum or

dedicated length. Furthermore, the maximal activation assessment at maximal voluntary con-

tractions, as measured using the twitch interpolation technique [1,11], could also be affected

by the elasticity of the subject-dynamometer system, resulting in a systematically smaller

twitch force [12]. Additionally, the nonrigidity of the dynamometer-subject system can have

further implications on the estimation of the tendon’s mechanical (stress, strain or young

modulus, stiffness) characteristics. In the case of longitudinal repeated measurements, an esti-

mation error of the exerted moment could falsify the tendon’s mechanical characteristics and,

hence, the intervention effectiveness.

Although attempts have been made to correct possible factors (joint rotation [3,5,13]; axis

misalignment [3,5]; gravitational and inertial forces [3,5]; Co-Activation [2,3,14]) influencing

the joint moment output during plantar flexion contractions, to the best of our knowledge, the

effect of reduced device elasticity induced by a higher pressure on the foot to the joint moment

output has not been examined yet. Therefore, the present study tackles the specific shortcom-

ing of the nonrigidity of the dynamometer arm/shank-foot system, during maximal plantar

flexion efforts. The main aim of this study was to identify if a higher pressure on the foot on

the isokinetic apparatus can alter the muscle’s mechanical output (max. joint moment and rate

of torque development) during plantar flexion contraction. Possible alterations in the ankle

joint geometry during plantar flexion contractions induced from the subject’s positioning

were also considered.

We hypothesized that a higher foot pressure will increase the maximal exerted moment and

decrease the rotation of the ankle joint. Finally, we hypothesized that a higher foot pressure

will also have an effect on the subject’s rate of torque development.

Method

Eighteen healthy adult males initially participated in the study. Four participants could not

complete the whole test battery and, therefore, were excluded from further analysis. Their

mean (±SD) anthropometric parameters were as follows: age: 29.4 ± 6.1 years; body mass:

77.0 ± 9.8 kg; height: 181.4 ± 4.7 cm. They were randomly acquired at the Centre for Sport
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Science and University Sports in Vienna where they regularly participate in physical activity.

All participants provided their written informed consent prior to participating in the study.

The study was approved by the Ethical Committee of the University of Vienna (decision num-

ber 00264). All participants provided their written informed consent before initiation of the

study. None of the participants had any major or recent musculoskeletal injury in the exam-

ined leg at the time of testing.

All subjects performed maximal voluntary isometric contractions (MVC) and contractions

intending to maximize the rate of moment development (RTD). All contractions were per-

formed in the same hip-knee-ankle joint angle configuration (110-180-90˚). Straight hip and

knee joint angles were defined as 180˚. The shank perpendicular to the foot was defined as 90˚.

The foot of the participants was placed on the dynamometer’s (HUMAC NORM Model 770;

CSMi, Stoughton, MA, USA) footplate adapter. Care was given to align the axis of rotation of

the dynamometer to the axis of rotation of the ankle joint. We defined the axis of rotation of

the ankle joint to be parallel to the axis of the dynamometer passing through the midpoint of

the line connecting both malleoli. In the literature [4,5,15], the firm positioning of the partici-

pant’s foot on the dynamometer’s adapter is accompanied by the use of inextensible straps to

prevent any ankle joint rotation. In addition to that method, to the best of our knowledge, no

study has measured the effect of foot straps on joint mobility during plantar flexion MVC.

Therefore, we refrained from securing the foot on the dynamometer plate in order to assess

the maximal ankle joint rotation affected only by the positioning of the subject. Consequently,

we expected an overestimation of the ankle joint rotation using this method.

Prior to marker placement, participants performed a warm-up phase of approximately 5

minutes where they executed multiple submaximal as well as 2 maximal isometric plantar flex-

ion efforts prior to testing for preconditioning purposes [16]. Following the warm up, the par-

ticipants were instructed to perform three ramp (3–4 s) maximal isometric voluntary plantar

flexion contractions and sustain them for ~4 s. Between trials, the thigh’s non-elastic strap was

loosened, and participants were given at least one minute of rest to prevent muscle fatigue or

numbness [1,17]. The same investigator tightened the participant’s thigh prior to any MVC

using the same procedure. To assess the RTD, the participants were subjected to two additional

contractions with a 20-s rest [18] between them. The participants were instructed to develop

MVCs as fast as possible. Visual feedback and encouragement [19,20] were given during all

the MVC and RTD efforts. The RTD was calculated as the slope between two consecutive time

units until the maximal achievable moment was achieved. This method follows the assumption

that the tangential RTD could probably display the influence of all contributory parameters

before or between that instant [21].

The neutral (“0 cm”) position of the subjects was first identified using the same method

reported in the literature. The criterion for the neutral position was to establish firm placement

of the subject’s foot on the dynamometers plate with both the dynamometer and ankle joint

axes aligned. For the subsequent trials, we moved the subject’s chair (Fig 1) 3, 6, and 9 cm

toward (anterior) the dynamometer plate. All the MVCs and RTDs contractions (Table 1) at

the 4 different dynamometer positions were performed in randomized order. At the most

anterior position (“9 cm”), several participants exhibited pain or felt uncomfortable. In these

cases, we used the next possible increment (7 or 8 cm); however, for simplicity, in the present

manuscript, we referred to this increment as the “8 cm” position.

Kinematic data were recorded using the Vicon-MX-Motion-Capturing-System (Oxford,

UK) with eight cameras operating at 200 Hz. Reflective markers were placed and captured on

the following anatomical landmarks: The C7, trochanter major, the most prominent points of

the lateral and medial femoral condyles, lateral and medial malleolus, the most prominent

point of the tuber calcanei and on the forefoot on the pressure insole between the second and
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third metatarsals. Markers were also placed on the axis of the dynamometer, and two markers

were placed on the footplate of the dynamometer (Fig 1). The midpoint of the lines connecting

both the malleoli and femoral condyle were defined as the ankle and knee joint centers. The

marker positions were low-pass filtered using a fourth-order, zero phase-lag Butterworth filter

with a cutoff frequency of 12 Hz [22].

The joint moment was measured using the HUMAC isokinetic dynamometer, where the

analog signal was captured using the Vicon Nexus A/D card (16 bit) at 2000 Hz. Gravitational

forces acting on the foot-dynamometer arm system were compensated for all subjects prior to

the voluntary contractions. The corrected moment was calculated through inverse dynamics

by a method previously [4,5] reported (Eq 1). Briefly, to calculate the lever arm of the reaction

force to the ankle joint during the plantar flexion contraction, assuming the force to be perpen-

dicular to the dynamometer footplate, we determined the point of force application under the

foot using a flexible pressure distribution insole (Pedar-X; Novel GmbH, Germany) operating

at 100 Hz as follows:

Mcorr ¼ FdA ¼ Mmeas
dA

dB
; ð1Þ

where Mcorr is the corrected joint moment, F is the perpendicular force exerted on the dyna-

mometer footplate at the point of force application, dA is the lever arm of the force (F) to the

Fig 1. Exemplarily setup for the plantar flexion contractions. The arrow demonstrates the positioning direction of

the subject.

https://doi.org/10.1371/journal.pone.0219840.g001

Table 1. Measuring positions and horizontal distances of the dynamometer chair according to the “neutral”

position.

Position Distance to dynamometer axis [cm]

0 0.00 ± 0.00

3 3.00 ± 0.00

6 6.00 ± 0.00

9 8.25 ± 0.85

(mean ± SD, n = 14)

https://doi.org/10.1371/journal.pone.0219840.t001
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ankle joint defined as the midpoint of both malleoli, dB is the lever arm of the force (F) to the

dynamometer axis, and Mmeas is the moment measured by the dynamometer device.

The synchronization of all systems was established by a custom-made trigger device (TTL,

0–5 V) that was connected to both the Pedar-X and Vicon Nexus systems. By triggering twice,

the Pedar-X system started and then stopped. The last trigger signal was used to synchronize

all the captured data. All the acquired data (kinematic, pressure) were interpolated using cubic

splines to achieve a common (2000 Hz) frequency. The joint moment and pressure data were

low-pass filtered with a fourth-order, zero phase-lag Butterworth filter using a cutoff frequency

of 10 and 6 Hz, respectively.

The examined parameters of the joint moment, joint angle and footplate rotation were

identified and analyzed at 100% of the MVC and that of the foot pressure was analyzed at 0%

of the MVC. All the MVCs and maxRTDs were used for statistical analysis assuming normal

distributions due to the high number of observations per group [23]. To identify a possible

effect of the position on the examined parameters, we conducted one-way ANOVA with

repeated measurements. In the case of a significant effect, a post hoc test with Bonferroni cor-

rection was performed to identify the differences among the four positions (0, 3, 6 and 8 cm).

Additionally, we performed paired t-tests between the corrected and measured moments and

Pearson’s correlation between the maximal exerted moment and four different positions. The

level of statistical significance was set at p<0.05.

Results

A significant main positioning effect (Wilk’s lambda = 0.128, F (3, 39) = 88.884, p< 0.001,

η2 = 0.872) was found (Fig 2) for the corrected joint moment (126.7 ± 29.4, 148.1 ± 26.3

167.9 ± 25.3 and 172.7 ± 27.8 Nm at 0, 3, 6 and 8 cm, respectively). The positions 6 and 8 cm

showed significant differences (p<0.001) compared with positions 0 and 3 cm but not

(p>0.05) between them.

A significant main positioning effect (Wilk’s lambda = 0.065, F (3, 39) = 185.771, p< 0.001,

η2 = 0.935) was also found (Fig 3) for the ankle joint rotation (15.5 ± 4.0, 12.2 ± 2.9, 9.2 ± 2.5

and 7.1 ± 2.6˚ at 0, 3, 6 and 8 cm, respectively). The increased anterior positioning of the sub-

ject significantly (p<0.001) reduced the ankle joint rotation ranging from 15.5 to 7.1˚ (at 0 and

8 cm, respectively).

The T-test for 2 dependent samples revealed a significantly (p<0.01) higher corrected joint

moment compared with the measured one (Fig 4) at all four positions (measured moment:

118.0 ± 30.4, 135.2 ± 26.5, 151.3 ± 27.2, and 151.6 ± 28.1 Nm at 0, 3, 6 and 8 cm, respectively).

As expected, the anterior positioning of the subject increased the peak pressure over

4.7-fold (Fig 5) at position “8 cm” compared with that at position “0 cm” (71.7 ± 25.2,

136.0 ± 32.8, 219.0 ± 60.1, and 339.5 ± 85.6 kPa at 0,3,6 and 8 cm respectively). Statistical anal-

ysis revealed a positioning effect (Wilk’s lambda = 0.062, F (3, 39) = 196.005, p< 0.001, η2 =

0.938) on the developed foot pressure on the dynamometer plate at rest. The post hoc test

showed significant differences (p<0.001) among all positions (Fig 5).

A significant main positioning effect (Wilk’s lambda = 0.709, F (3, 25) = 3.419, p = 0.033, η2

= 0.291) was found (653.2 ± 230.4, 690.4 ± 215.8, 729.7 ± 196.6, and 715.6 ± 147.4 Nm/s at 0, 3,

6 and 8 cm, respectively) in the rate of torque development (Fig 6). The post hoc test showed

significant differences (p = 0.017) only between position “0 cm” and “6 cm” (Fig 6).

The hip and knee joint angle were rotated during the MVC efforts (Table 1) with respect to

the reference. Statistical analysis showed a significant position effect on the hip joint angle

(Wilk’s lambda = 0.268, F (3, 39) = 34.418, p< 0.01, η2 = 0.732) and knee joint angle (Wilk’s

lambda = 0.666, F (3, 39) = 6.527, p< 0.01, η2 = 0.334). Post-hoc analysis revealed significant
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(p<0.01) knee joint extension and hip joint flexion at 3–6 and 8 cm (Table 1) compared with

the “0 cm” position.

Discussion

The main finding of the present study is the significant increase in the maximal plantar flexion

moment with increased anterior positioning of the subject toward the dynamometer footplate.

The effect in the most anterior position (>32%) was higher than all the corrections (moment

arm, coactivation and joint rotation) combined (6–10%), as presented in the literature [4]. In

this study, we attempted to position the subjects using the same method as previously

described by other researchers [4–6] who used comparable isokinetic devices. Consequently,

the corrected plantar flexion max. moment at the first position (“0 cm”) is in agreement with

previous reported values [2,6,7,24] (range: 115–161 Nm) examined in a healthy male

population.

Maximal joint moment

The increased moment values were evident in the measured as well as in the corrected joint

moment (Fig 4), indicating that measurements dependent on subject positioning are

Fig 2. Mean (±SD) of the corrected maximal exerted joint moment at the different positions. The bars indicate significant differences

among the positions (0 cm = neutral, 3-6-8 cm; n = 42); ��significant difference (p< 0.01).

https://doi.org/10.1371/journal.pone.0219840.g002
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susceptible to error and are crucial in acquiring valid data. Numerous studies [25–27] were

planned with an intervention (training or detraining) of the lower extremity muscle tendon unit

and examined its effect in a pre-post study design. The present study demonstrated that a poten-

tial measurement error exists; thus, it is extremely important, in a pre-post study design, to keep

all measurements the same distance of the subject’s chair to the dynamometer footplate. Based

on the presented results, a change in position that lies between 0.5 and 2 cm, can induce an

error in the maximal exerted moment in the range of 2–9% (Fig 7). This difference is substantial

when force increments>2% are expected through an intervention. Furthermore, in our study,

the gain in the maximal exerted moment was>32% in the last two positions. The aforemen-

tioned joint moment increase denotes that, with commercial dynamometers, a highly probable

underestimation of the maximal force generation capacity of the triceps surae exists. Addition-

ally, although at the last position (“8 cm”), several subjects sensed an uncomfortable feeling, the

maximal exerted moment was not significantly higher compared to the “6 cm” position, indicat-

ing that no further positioning adjustment is needed to achieve the maximum joint moment.

It was previously reported [4] that the measured moment overestimated the resultant

moment, a finding that was attributed to the differences between the moment arm of the ankle

joint and dynamometer axis to the point of force application. Although we confirmed the

Fig 3. Mean (±SD) of the ankle joint rotation at different positions. Bars indicating significant differences among the positions (0

cm = neutral, 3-6-8 cm; n = 42); ��significant difference (p< 0.01).

https://doi.org/10.1371/journal.pone.0219840.g003
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findings of Arampatzis et al. (2005), in the present study, the measured moment was underesti-

mated (range: 7–14% from “0 cm” to “8 cm”, respectively) compared with the corrected joint

moment (Fig 4). The reason for this discrepancy could be attributed to the positioning of the

subject’s foot on the dynamometer footplate. Underestimation of the corrected moment indi-

cates inferior placement of the ankle joint center with respect to the dynamometer axis, result-

ing in a reduced joint moment arm compared with the moment arm of the dynamometer and

vice versa (sitting position, ankle joint at 90˚). Nevertheless, the findings of both studies denote

the necessity to monitor the kinematics of the ankle joint with respect to the axis of the dyna-

mometer during plantar flexion efforts.

Foot pressure

To standardize the positioning of the subject in maximal isometric plantar flexion contrac-

tions, the use of pressure insoles could reveal fair estimates of the proper position. In the pres-

ent study, the peak pressure at rest (Fig 5) increased significantly from 219 to 340 kPa (at 6 and

8 cm), although the max. joint moment did not show any significant difference. This finding

would indicate that a minimum foot pressure of ~220 kPa is necessary to develop the

Fig 4. Mean (±SD) of the measured and corrected maximal exerted joint moment. Open box: measured joint moment, shaded box:

corrected joint moment at the different subject positions (0 cm = neutral, 3-6-8 cm; n = 42). ��significant differences (p < 0.01) between the

measured and corrected maximal joint moment.

https://doi.org/10.1371/journal.pone.0219840.g004
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maximum plantar flexion moment in similar isokinetic dynamometers. Still unanswered is

whether that amount of foot pressure would also be necessary for more rigid systems. Further

studies are needed to examine the influence of higher foot pressure on the exerted joint

moment in rigid dynamometers.

Ankle joint kinematics

The ankle joint rotation in the “0 cm” position is in line with previous [28] (17.8˚) findings but

differs in magnitude from that in other research groups [2,29] (3.2˚ and 7.4˚, respectively),

indicating that the magnitude of ankle joint rotation could be dynamometer device dependent.

With increased anterior positioning of the subject, the magnitude of joint rotation was reduced

by ~54% (from 15.5 to 7.1˚) at the last (“8 cm”) position. Further reduction of joint rotation

from position “6 cm” to “8 cm” (9.2 and 7.1˚ respectively) could be partly attributed to further

deformation of the seat foam pad because the dynamometer’s foot-plate rotation (Fig 8) did

not significantly differ (p>0.05) between both last positions (4.6 and 4.5˚ respectively).

Although the most anterior positioning was sensed as uncomfortable due to the increased

pressure, the joint rotation could not be completely avoided, confirming previous findings

[4,5,24] that reported an inevitable joint angular rotation during plantar flexion efforts.

Fig 5. Mean (±SD) of the peak pressure of the subject’s foot on the dynamometer plate at rest. The bars indicating significant differences

among the positions (0 cm = neutral, 3-6-8 cm; n = 42); ��significant difference (p< 0.01).

https://doi.org/10.1371/journal.pone.0219840.g005
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Moreover, because the force potential is fascicle length dependent [30], a small joint rota-

tion could further reduce the length change of the fascicles (less shortening), allowing them to

operate at their theoretical optimum or desired length. Although we observed similar joint

moments (Fig 2), but significantly different joint rotations (Fig 3) at the last two positions, it is

unclear whether the fascicle length undergoes any significant changes. Therefore, future stud-

ies should examine the fascicle kinematics under similar protocol conditions to identify the

possible origin of the increased moment.

Possible effects on the MTU neuromechanical properties

The force potential of a muscle depends also on neural activation [31]. Particularly, a previous

study [6] showed a higher maximal EMG activity toward elongated fascicles. This finding

could partially explain the increased maximal moment of the present study because the

reduced ankle joint rotation in the last (“6 cm” and “8 cm”) positions could probably reduce

the fascicle length shortening of the triceps surae muscles.

Owing to tendon mechanics, an increased joint moment could possibly affect the: a) tendon

stress due to the higher forces acting on an approximately similar tendon area, the b) tendon

elongation and the c) Young modulus. It is unclear whether the stiffness and hysteresis could

also be affected.

Fig 6. Mean (±SD) rate of torque development at four different positions. The bars indicating significant differences among the positions (0

cm = neutral, 3-6-8 cm; n = 28); ��significant difference (p = 0.017).

https://doi.org/10.1371/journal.pone.0219840.g006
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Rate of torque development

In the present study, we hypothesized that a higher foot pressure on the measuring device

would increase the rate of moment development. It was suggested [9] that dynamometer com-

pliance will allow uncontrolled changes in the joint rotation and velocity [32] that would fur-

ther decrease the force potential during muscular contraction due to the force-velocity

relationship. The current findings (Fig 6) could not support that assumption because, only at

the position “6 cm”, did we find a significantly greater RTD, although the maximal exerted

moment at “6 cm” and “8 cm” did not significantly differ. According to the previous assump-

tion, due to the joint rotation at position “0 cm” (~15.5˚), the RTD should be less than that at

position “8 cm” (~7˚). It appears that, although the maxRTD was greater at position “6 cm”,

there is a tendency for shorter times to reach maxRTD at position “8 cm” (Fig 9). This finding

would be in line with the main hypotheses but would not explain the lack of differences

between position “6 cm” and “3 cm” and “0 cm”, respectively” (Fig 9). Additional estimations

based on the Moment-Time-Integral over the first 50 ms (threshold 7 Nm) of the MVC effort

showed no significant positional effect (0.95 ± 0.17, 0.94 ± 0.20, 0.99 ± 0.18, and 0.95 ± 0.16

Nm�s for the 0, 3, 6 and 8 cm position, respectively). From the present findings it remains

unclear whether the dynamometer-subject compliance affects the rate of torque development

during MVC efforts.

Fig 7. Relationship between the position and the exerted joint moment and percentage difference from position “0 cm”. Mean of the corrected

joint moment at four different positions (filled squares). The standard deviation was removed for clarity. The joint moment percentage difference of the

3-, 6, and 8-cm positions from the neutral (“0 cm”) position (filled stars). The maximal corrected joint moment for each of the four positions was linear

fitted (red line). There was a significant relationship between the maximal corrected moment (r = 0.98, p = 0.018) and the subject’s position.

https://doi.org/10.1371/journal.pone.0219840.g007
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It can be argued that the methodology used to calculate the maxRTD could be susceptible

to greater variations [33] and, thus, could have reduced reliability. Because maxRTD can be

assessed as the absolute [34–37] or near-absolute [38] rise in the moment per unit of time, we

are confident that, using the present method, we could provide valid estimates of the muscle’s

mechanical characteristics.

Limitations

The present findings can be applied to isokinetic dynamometer devices that exhibit similar

elasticity. In the present study, we assumed that the force vector excreted under the foot sole is

perpendicular to the footplate. In a previous study [4], a difference due to shear forces (2.4˚) of

3.8% on the ankle joint was calculated. Nonetheless, it remains unclear how increased are the

shear forces with greater foot pressure and at more plantar flexed positions.

It can be argued that bare-foot plantar flexion contraction may increase the uncomforted

feeling and, hence, limit the maximal exerted moment, particularly in the last position. We

implemented a method used in the past [6,39,40] requiring a bare-foot condition to measure

Fig 8. Dynamometer foot plate rotation. Mean (±SD) of the maximal dynamometer plate rotation (3.8 ± 0.5, 4.2 ± 0.6, 4.6 ± 0.7, 4.5 ± 0.7˚) at

the maximum exerted joint moment on the four different subject positions. The bars indicate significant differences among the positions (0

cm = neutral, 3-6-8 cm; n = 42); ��significant difference (p< 0.001).

https://doi.org/10.1371/journal.pone.0219840.g008
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the PoF application and, hence, calculate the moment arm. Nonetheless, we received no com-

plaints in this regard from the participants, and additionally a possible higher moment output

on the last position would not change the main findings of the present study.

It can also be argued that the absent of foot strapping can facilitate the joint rotation and

reduce the force generation capacity of the triceps surae muscles. In order to assess the influ-

ence of foot strapping (SE) on the two parameters we conducted a separate pilot study (S2

File) at the four different positions. The main finding was that the SE plantarflexion moment

did not differ compared to the non-foot strapping condition (NSE) at all positions. We found

also significant lower (p<0.05) SE moment at 0cm compared with the NSE at the 6cm posi-

tion. The joint rotation with SE was significant lower (p<0.05) than the NSE condition only at

the 0cm position. Those results indicate that the efficacy of the foot strapping in joint rotation

reduction is present only in position with low foot pressure on the dynamometer adapter.

Therefore, we are confident that the absence of foot strapping in this study would not consist

of a limiting factor for the force generation capacity of the triceps surae muscle group.

The knee joint rotation can alter the length of both biarticular gastrocnemii muscles and,

hence, their potential to generate force due to the force-length relationship. In our study, the

Fig 9. Time to reach the maximal rate of torque development. Mean (±SD) (65.5 ± 34.8, 63.6 ± 22.6, 78.2 ± 57.2, 50.7 ± 13.6 ms for the 0, 3, 6

and 8 cm position, respectively). Statistical analysis showed a significant main position effect (Wilk’s lambda = 0.563, F (3, 24) = 6.202,

p = 0.003, η2 = 0.437) on time to reach maxRTD. The bars indicate a significant difference and tendency among the positions (0 cm = neutral,

3-6-8 cm; n = 27); ��significant difference (p < 0.01).

https://doi.org/10.1371/journal.pone.0219840.g009
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maximal knee joint angle rotation was 2.3˚ (Table 2), which would represent a fascicle length

change of 0.66 mm, and, therefore, its effect on the generated moment can be neglected [41].

The approximately 6˚ hip joint flexion (Table 2) can be attributed to the compliance of the

dynamometers back rest cushioning pad. With increased forward positioning and during the

MVC, the trochanter marker was probably moved toward the metal frame of the back rest;

consequently, the hip joint angle could not be kept constant. Nonetheless, a hip joint flexion

could facilitate a knee joint extension due to the biarticular hamstring muscles. However, in

the present study, the knee extension was marginal (2.3˚) and could not significantly alter the

main findings of this study.

The implemented rest duration of 1 minute between MVC contractions could be a limiting

factor for the muscle’s force generation capacity. Nonetheless, in the present study we fully

randomized the sitting positions and as a consequence a moderate negative effect of that sys-

tematic error could be expected.

It was also previously reported [4] that the contribution of the antagonist m. tibialis anterior

to the resulting joint moment was, on average (across different knee and ankle joint configura-

tions), approximately 4.3%. Nonetheless, the attribution of antagonist coactivation (~4.3%) to

the corrected joint moment would also not alter the main finding of the present study.

Conclusion and perspectives

A higher foot pressure may significantly increase the exerted moment and reduce ankle joint

rotation during isometric MVC efforts. A minimum pressure of ~220 kPa on the subject’s foot

should be developed to achieve the “true” maximum plantar flexion moment. The increased

maximal exerted moment could have important implications in longitudinal interventional

pre-post study designs when examining various mechanical and morphological properties of

the lower leg muscle tendon unit. From the present study, it remains unclear whether the mus-

cle fascicle force-length relationship or muscle activation is responsible for the increased

moment. Further studies are needed to identify the mechanisms responsible for the increased

moment, focusing on the electromechanical and morphological properties of the human mus-

cle tendon unit.

The implemented flexible pressure distribution insole may not be available for clinical or

rehabilitation use due to the high acquisition cost. Additionally, the soft materials of the pres-

sure insoles cannot be subjected to extensive use; therefore, durability issues may arise that

could limit the overall availability. Other alternatives, such as small mobile force plates (k-

invent) that can be accordingly modified and adapted for the different dynamometer footplate

designs, could solve the problem of durability, providing the point of force application with a

high acquisition frequency, but could not provide information on the applied pressure. Future

studies are needed to develop and implement such devices for biomechanical and clinical use.

Table 2. Hip and knee joint angle rotation at MVCmax.

Knee jointmax [˚] Hip jointmax [˚]

0 cm 1.0 ± 4.2 -0.1 ± 5.1

3 cm -0.7 ± 4.7a -3.8 ± 6.0a

6 cm -2.3 ± 4.9b -5.5 ± 5.4b

8 cm -1.9 ± 3.2c -5.7 ± 4.5c

Negative values indicating knee extension or hip flexion.

a, b, c, significant difference (p<0.01) from position “0 cm” (mean ± SD, n = 42).

https://doi.org/10.1371/journal.pone.0219840.t002
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Supporting information

S1 File. S1_File includes all relative raw data. The file contains the raw data of all participants

and trials in the four positions in the following order: foot pressure, ankle joint rotation, foot

plate rotation, measured max. moment, corrected max. moment and additional max. rate of

torque development and time to reach max. rate of torque development.

(XLSX)

S2 File. S2_File includes a brief description of the pilot study. The file contains the main

hypotheses, method and results of the pilot study. Joint moment and joint rotation are pre-

sented in (Figs 1 and 2) and additionally all the data can be found on the Table 1.

(DOCX)
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