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Microbes are the biggest shareholder for the quantitative and qualitative deterioration
of food commodities at different stages of production, transportation, and storage,
along with the secretion of toxic secondary metabolites. Indiscriminate application of
synthetic preservatives may develop resistance in microbial strains and associated
complications in human health with broad-spectrum environmental non-sustainability.
The application of essential oils (EOs) as a natural antimicrobial and their efficacy for the
preservation of foods has been of present interest and growing consumer demand in the
current generation. However, the loss in bioactivity of EOs from fluctuating environmental
conditions is a major limitation during their practical application, which could be
overcome by encapsulating them in a suitable biodegradable and biocompatible
polymer matrix with enhancement to their efficacy and stability. Among different
nanoencapsulated systems, nanoemulsions effectively contribute to the practical
applications of EOs by expanding their dispersibility and foster their controlled delivery
in food systems. In line with the above background, this review aims to present
the practical application of nanoemulsions (a) by addressing their direct and indirect
(EO nanoemulsion coating leading to active packaging) consistent support in a
real food system, (b) biochemical actions related to antimicrobial mechanisms, (c)
effectiveness of nanoemulsion as bio-nanosensor with large scale practical applicability,
(d) critical evaluation of toxicity, safety, and regulatory issues, and (e) market demand of
nanoemulsion in pharmaceuticals and nutraceuticals along with the current challenges
and future opportunities.

Keywords: essential oil, biodeterioration, toxins, nanoemulsion, food preservative, eco-friendly

Frontiers in Microbiology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 751062

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.751062
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.751062
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.751062&domain=pdf&date_stamp=2021-11-29
https://www.frontiersin.org/articles/10.3389/fmicb.2021.751062/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-751062 November 23, 2021 Time: 15:56 # 2

Maurya et al. Essential Oil Nanoemulsion as Preservative

INTRODUCTION

Nowadays, global food safety is one of the major public health
issues. Presently, most of the food products viz. bakery, dairy,
meat, fruits, and vegetables are heavily contaminated due to the
presence of various toxigenic species of bacteria and fungi and
their associated toxins leading to severe human illness and deaths.
Therefore, consumers are demanding healthy, high-quality, and
safer food products. Moreover, in tropical and subtropical
regions, contamination of food items by various microbes and
their associated toxic metabolites not only deteriorates the food
but can also alter the nutritional qualities (Barba et al., 2017;
Chaudhari et al., 2021a). Consequently, consumption patterns
are changing toward the intake of healthy food products with
preserved nutritional values (Güneş and Turan, 2017). Therefore,
special attention has been given to improve the quality, safety,
and security of food systems against microbial spoilage and their
associated toxins.

In order to control bacterial and fungal growth, various
synthetic preservatives have been commonly applied. However,
indiscriminate utilization of these preservatives may cause several
negative perceptions in terms of their toxicity to non-target
organisms, development of microbial resistance, and degradation
of environmental sustainability (Calvo et al., 2017). Therefore,
to ensure microbial food safety, contemporary consumers
are demanding “safer alternatives” with a green image and
possible non-toxic effects on humans and animals (Castro-Rosas
et al., 2017; Das et al., 2021c). Currently, plant essential oils
(EOs) and components are garnering more attention in the
commercial food sector due to their unique aroma, flavors,
and antimicrobial properties without affecting organoleptic and
nutritional attributes of food items (Burt, 2004). EOs are
secondary metabolites of aromatic plants and are considered
under the ‘generally recognized as safe’ (GRAS) label by the
US- FDA (Ju et al., 2018). The major implication of EOs
for the preservation of food commodities along with other
chemical components lies in the possible synergistic effect
during long term preservation (Jiang et al., 2009). However,
applications of EOs are still restricted due to intense aroma, low
water solubility, and less stability in fluctuating environmental
conditions such as temperature, light, and oxygen (Maurya et al.,
2021; Singh et al., 2021). Moreover, some of the EOs only perform
their antimicrobial efficacy at higher concentrations leading to
negative impact on the organoleptic properties of food products
(Olatunde and Benjakul, 2018). Therefore, nanoencapsulation of
EOs into different carrier matrices has been regarded as a novel
green strategy to overcome the drawbacks with improvement
in EOs functionalities and their practical application in food
industries (Salvia-Trujillo et al., 2015a; Chaudhari et al., 2021b).

Hydrophobic EOs and their components may be encapsulated
into suitable biopolymers to make them more available in
watery environments as well as to enhance the antimicrobial
efficacy of EOs by increasing uniform distribution on food
surfaces (Salvia-Trujillo et al., 2015b; Das A. K. et al., 2020;
Lugani et al., 2021). Different nanoencapsulation systems like
nanoemulsion, solid lipid nanoparticles, nanofibers, liposomes,
and edible films are available with practical utility in food

preservation (Aswathanarayan and Vittal, 2019). Among them,
nanoemulsion has been considered as more effective (Anwer
et al., 2014) and widely used nanometric systems due to at
least one dimension less than 100 nm (Hasan et al., 2020;
Amiri et al., 2021). Consequently, nanoencapsulation has some
remarkable advantages over other encapsulation systems for
certain applications such as improved stability of encapsulated
active compounds, large surface area to volume ratio, higher
bioavailability, mass transfer behavior (Zhang et al., 2021),
enhanced bioactivity (Donsì and Ferrari, 2016), and better
diffusion to target food systems (McClements et al., 2021).
Recently, extensive investigations have been performed on
the EOs encapsulation and their potential application in the
food industry (Dwivedy et al., 2018; Pabast et al., 2018;
Aswathanarayan and Vittal, 2019; Zhu et al., 2020; Chaudhari
et al., 2021a). However, to date, there is a lack of knowledge
about the utilization of EOs nanoemulsion against microbial
contamination, deterioration, and toxin secretion in food
for long-term sustainable preservation. Therefore, the present
review has briefly discussed (a) processes for the fabrication
of nanoemulsion with critical analyses for antibacterial and
antifungal activity, (b) diverse mechanisms associated with
antimicrobial activity, (c) potential practical applications, (d) the
toxicity and safety of nanoemulsions, and (e) future perspectives
addressing the research gaps and current challenges.

MICROBIAL CONTAMINATION OF
FOODS

A number of investigations have explained that food
commodities, especially vegetables, fruits, meat, and other
high fat-containing products are maximally spoiled or wasted
due to infection of bacterial pathogens such as Listeria spp.,
Escherichia spp., Campylobacter spp., Bacillus spp., Salmonella
spp., and Klebsiella spp. (Hadian et al., 2017; Kawacka et al.,
2021; Lages et al., 2021). Recently, Campylobacter species,
especially C. coli and C. jejuni, have been recognized as
the most prevalent pathogens associated with chicken and
meat products in both developed and developing countries,
causing campylobacteriosis in humans (Guirin et al., 2020).
After Campylobacter spp., the second most important
bacterial pathogen is Salmonella spp. isolated from various
foodstuffs causing vomiting, diarrhea, fever, abdominal
cramps, headache, and blood in feces. According to the
World Health Organization (WHO), in the United States of
America, Salmonella typhi was responsible for the infection
of 750,000 people, leading to more than 52,000 deaths
annually (World Health Organization [WHO], 2015). Listeria
monocytogenes is another major food contaminating pathogen
causing listeriosis (Välimaa et al., 2015). Risks of listeriosis
are commonly observed in pregnant women, infants, and
immunocompromised patients, while healthy people showed
mild symptoms (Gholipour et al., 2020). Escherichia coli is
another important food contaminating pathogen associated
with beef and beef products secreting the Shigha toxin (Shigha
toxin-producing strain of E. coli- STEC) eventually causing
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bloody diarrhea and low platelet counts in affected patients
(Niveditha et al., 2021).

Apart from bacterial contamination, several fungal
species viz. Aspergillus, Fusarium, Penicillium, Alternaria,
Cladosporium, Rizopus, and Mucur are also registered to
be responsible for spoilage of fresh fruits, vegetables, stored
grains, meats, and other essential food products (Axel
et al., 2017; Hu et al., 2019; Atif et al., 2020; Das S. et al.,
2020). In addition to food spoilage, fungal pathogens also
deteriorate food products by producing health-hazardous toxic
secondary metabolites, called mycotoxins (Alizadeh et al.,
2020). Moreover, frequent contamination of preharvest and
postharvest stored food products by Aspergillus, Penicillium,
and Fusarium secretes more than one mycotoxin leading
to significant economic losses (Chaudhari et al., 2020).
Among all 400 reported mycotoxins, aflatoxin, zearelenone,
fumonisins, ochratoxins, and deoxynivalenol are major
health-hazardous mycotoxins posing adverse effects on
mammalian health after consumption of contaminated foods
(Aldars-Garcia et al., 2016).

Foodborne pathogens deteriorate the food quality, reduce the
content of important nutrients and vitamins, and shorten the
shelf life of food products by releasing extracellular enzymes
and changing the odor, texture, and overall appearance of
foodstuffs (Deepika et al., 2021). Spoilage of food products is
rarely investigated unless it has taken the form of an outbreak.
Thus, the microbial spoilage and wastage of food and food
products demands extensive research in the area of natural
products including the application of EOs with an objective to
secure public health through long-term preservation of different
food commodities.

NANOENCAPSULATED ESSENTIAL OILS
FOR FOOD PRESERVATION

Essential oils are volatile secondary metabolites obtained from
different parts of medicinal and aromatic plants such as the
leaves, stem, flowers, fruits, and buds (Falleh et al., 2019). Nearly,
3000 EOs have been isolated from 2000 plant species, and of
them, 300 EOs are known to be utilized for commercial purposes.
EOs are complex mixture of several bioactive components such as
terpenes, terpenoids, alcohols, esters, ketones, phenylpropanoids,
and aldehydes. Many synthetic preservatives have been used
against microbial contamination in stored food items, but these
preservatives have several adverse effects on human health and
the environment. Therefore, current researchers are focused
toward plant-based preservatives having negligible side effects.

In line with the non-toxic nature of EOs, some of them
have been used as food preservatives. For instance, Eco-SMART
is one of the most popular EOs based preservatives used in
industry. Eugenol Tween R© and Eugenol ethoxylate, Pycnogenol R©

and Hebalox R©, DMC Base Natural, and Protecta One and
Protecta Two are EO-based preservatives used for the protection
of harmful pathogens commonly encountered in food items
(Prakash and Kiran, 2016).

The current studies in food safety have witnessed the success
of EOs in controlling food spoilage by Gram-positive and
Gram-negative bacteria, fungi, and the toxins secreted by them.
However, the wide-scale application of EOs as free form in food
is limited due to:

(a) Rapid release from applied surfaces,
(b) Possibility in the changes of food organoleptic properties

caused by intense aroma,
(c) Oxidation of EO components by environmental factors like

temperature, irradiation, and moisture, and
(d) Considerable loss in EO biological activity.

Nanoencapsulation has emerged as an important technique
to entrap EOs and bioactive compounds with an objective
to improve the microbial inhibitory activities, antioxidant
properties, and utilization in real food systems (Dwivedy
et al., 2018; Chaudhari et al., 2021a). Nanoencapsulation
encompasses the natural products or compounds of interest
in a compatible polymeric matrix with a minimum of one
dimension below 100 nanometers (Prakash et al., 2018).
Loss in the availability of free EO at applied food surfaces
after short durations restricts their potentiality in the food
system. Controlled release, therefore, could be of considerable
interest to improve the longevity of shelved food products.
Controlled release of EOs loaded on zein nanoparticles has
been presented to preserve meat (Xavier et al., 2021). The
authors also demonstrated preserved antioxidant activity of
Cinnamodendron dinisii EO after incorporation in a chitosan
matrix. Mahdi et al. (2021) reported an enhancement in the
oxidative stability of Citrus reticulata EO after encapsulation
in composite wall materials comprising of whey protein,
maltodextrin, and gum arabic. In addition, nanoencapsulated
EOs are registered to exhibit enhanced antioxidant activity and
solubility, as well as stability against increased temperature
(Hadidi et al., 2021; Yang et al., 2021). Since the strong
flavor and aroma of some EOs may modify the sensorial
attributes of treated food, nanoencapsulation may be performed
to facilitate the controlled release and hence the preservation
of sensory properties. The positive influence of nanoformulated
Cinnamomum zeylanicum EO in comparison to free EO on
sensory attributes of beef patties has been demonstrated by
Ghaderi-Ghahfarokhi et al. (2017). The patties color was more
stable after EO encapsulation, suggesting the effectiveness of
fabricated formulation in improving the organoleptic attributes
of treated meat. Therefore, nanoencapsulation is a promising
approach to augment stability, distribution, and delivery of EOs
and visible characteristics of treated foods.

METHODS OF ENCAPSULATION OF
ESSENTIAL OILS (FABRICATION OF
NANOEMULSION)

Fabrication of nanoemulsion can be classified into:

(i) Methods involving nanoemulsion synthesis, and
(ii) Ingredients/major components of nanoemulsion.
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Methods for Fabrication of
Nanoemulsion
Nanoencapsulation of EO into a suitable polymer matrix in
the form of nanoemulsion has been performed by different
processes viz. nanoprecipitation, inclusion complexation, solvent
evaporation-emulsification, coacervation, and supercritical fluid.

Nanoprecipitation is a common technique for the
encompassment of lipophilic components like EOs into
semipolar solvents and polymers through interfacial deposition.
The method is easy, reproducible, and commonly used due to the
its minimal energy use and simplicity (Eisner, 2014). Commonly
used polymers for encapsulation of lipiophilic components
involve poly (lactic-co-glycolic acid), poly (alkylcyanoacrylate)
(PACA), polylactic acid (PLA), and poly(ε-caprolactone). More
importantly, for improvement in functionalities of core material,
controlled delivery, and cellular uptake, multiple biopolymer
matrices have been used (Walia et al., 2019).

Inclusion complexation is another important method of
encapsulation involving molecular linkage between the core
material and matrix polymer. Molecular linkage during the
encapsulation process includes Van der Waal forces, hydrogen
bonding, and hydrophobic interactions with a high yield of
nanoparticles (Aree and Jongrungruangchok, 2016). In this
method, β-cyclodextrin and β-lactoglobin have especially been
recognized as suitable nanocarriers for encapsulation of lipophilic
components (Walia et al., 2019).

Solvent evaporation-emulsification involves polymer solution
emulsification followed by solvent evaporation and subsequent
formation of nanoparticles. Ethyl cellulose, polycaprolactone,
polylactic-co-glycolic acid (PLGA), and polylactic acid (PLA) are
commonly used polymers for the development of nanospheres
by employing high-speed homogenization and ultrasonication
(Fornaguera et al., 2015). Tsai et al. (2011, 2012) reported high-
pressure emulsification for effective incorporation of curcumin
in PLGA with improved bioavailability.

The coacervation process allows differentiation and phase
separation of a single polymer matrix or a mixture of polymer
matrices followed by encircling of the core phase. Cross-linking
in hydrocolloid shells has occurred in presence of enzymatic
and chemical cross-linkers such as transglutaminase and
glutaraldehyde that help to increase the coacervate robustness
(Ezhilarasi et al., 2013). On the basis of the number of polymers
used, the process has been differentiated into simple and complex
coacervation. More importantly, encircling/coacervate strength
depends on chemical/enzymatic cross-linkers, ionic strength, pH,
biopolymer type, concentration, and the nature of the complex
formed (de Kruif et al., 2004). Hu et al. (2018) synthesized
cinnamon-thyme-ginger composite essential oil nanocapsule by
complex coacervation with the involvement of chitosan as
biopolymer and tripolyphosphate as cross-linking agent.

A supercritical fluid is used for encapsulation of thermally
sensitive bioactive compounds, followed by evaporation of fluid
by spraying process and further precipitation of the solute
particles. Arango-Ruiz et al. (2018) reported encapsulation of
curcumin into polyvinylpyrrolidone by supercritical antisolvent
technology. In an investigation by Türk and Lietzow (2004),

nanoencapsulation of phytosterol was performed by supercritical
fluid with particle size less than 500 nm.

Ingredients and Components of
Nanoemulsion
Major ingredients of nanoemulsion are EO, surfactant, and water
(Dasgupta et al., 2019). Proper mixing of these components
regulates the properties and stability of the emulsion. The
selection of surfactants during nanoemulsion formation is
dependent on the surface’s active nature emphasizing the stability,
pH, temperature, and ionic strength of the nanoemulsion
system (McClements et al., 2017). Moreover, the water-to-
oil ratio determines the stability and size of particles in
nanoemulsion systems. In addition to EO, surfactant and water,
thickening agent, weighting agent, emulsification, antioxidants,
and polyunsaturated fats also improve the dispersion stability
of nanoemulsion (Dasgupta and Ranjan, 2018). The amount
of water, as well as its unique properties, greatly influence
the organoleptic property of foods. Water crystals in emulsion
have a significant effect on the texture and taste of food
products. Emulsifier also helps in the prevention of coalescence
and flocculation in nanoemulsion by interfacial interaction.
Emulsifier facilitates in droplet break up leading to the formation
of small size particles. The concentration of emulsifier is decided
on the basis of the amount of biopolymer to cover all the
oil- water interfaces and the rate of coating. EOs are used as
oil phase and have more tendency to protect themselves from
oxidative degradation after encapsulation into biopolymer in
nanoemulsion system (Dasgupta et al., 2016a).

ROLE OF ESSENTIAL OILS
NANOEMULSION AS FOOD ADDITIVES

Recently, consumers as well as modern food industries are
focusing on nanoengineered EOs in the forms of nanoemulsion
to avoid the drawbacks of unencapsulated EOs for practical
utilization with maximum stability and compatibility. Further,
nanoemulsions provide maximum benefits associated with the
use of EOs in food items such as:

(a) Increased dispersion within the food surfaces where
microbes generally multiply.

(b) Reduced sensorial effects.
(c) Increased antimicrobial activity of nanoemulsions

containing bioactive molecules of EO
(Donsì and Ferrari, 2016).

(d) Due to multiple targets sites in microbial cells, the
emulsion-based delivery systems containing EOs may
easily interact with microbes, thus interfering with the
normal biological activities.

(e) Most importantly, different components present in
EOs either individually or in combination with other
components may exhibit synergism and conceivably
play a crucial effect in membrane disruption, leakage of
cytoplasmic constituents, and metabolic alterations.
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Antibacterial Efficacy of Essential Oil
Nanoemulsion
The antibacterial efficacy of EOs is a research hotspot to fulfill
the need for natural antibacterial compounds. However, in
most of the studies, EOs showed higher activity against Gram-
positive than Gram-negative bacteria. This mainly happens
because of structural differences in the membrane of Gram-
positive and Gram-negative bacteria in terms of the association
of hydrophobic compounds (Franklyne et al., 2016). A number
of researchers have added valuable information about the
antibacterial activity of EO nanoemulsions against a wide range
of food contaminating bacteria.

Efficacy of Essential Oil Nanoemulsion Against
Listeria monocytogenes
Listeria monocytogenes is the major bacteria responsible for
foodborne illnesses in the food sector, especially ready-to-eat
foods causing disease outbreaks mainly in the US and in other
parts of the world (Harris et al., 2003). L. monocytogenes is the
main causal agent of listeriosis, a very common foodborne illness.
In this context, nanoencapsulated EOs are an effective agent and
have been substantially used to control L. monocytogenes growth
in vegetables, fruits, and ready-to-eat foods. Bhargava et al.
(2015) artificially inoculated fresh lettuce with L. monocytogenes
and dipped it in Origanum spp. oil nanoemulsions for 1 min.
At 0.1% concentration, they observed up to 3.57 log CFU/g
reduction that was further confirmed by disruption in the cell
membrane as revealed through SEM observation. Paudel et al.
(2019) in a similar way artificially inoculated honeydew and
cantaloupe with L. monocytogenes followed by treatment with
cinnamon oil nanoemulsions for one minute. The treatment
showed up to 7.7 log reductions in bacterial growth at 0.5%
nanoemulsion. In another study, Maté et al. (2016) reported the
combined effect of d-Limonene nanoemulsion with heat stress
for inhibition of L. monocytogenes. The thermal resistance of L.
monocytogenes was reduced two to five times when 0.5 mM D-
limonene was added to the heating medium. Moreover, when
the same concentration of D-limonene nanoemulsion was added
to the heating medium, the resistance was reduced by more
than one hundred times and showed very promising results
on the inactivation of microorganisms by the combined effect
of nanoemulsified D-limonene and thermal treatments. These
studies suggested that EO-based nanoemulsions can be used as
effective natural antibacterial agents against L. monocytogenes
contamination in the food industry.

Efficacy of Essential Oils Nanoemulsion Against
Salmonella Species
In a study, Moghimi et al. (2016a) tested Sage (Salvia
officinalis) EO nanoemulsion against S. typhi and found
four times higher activity than the unencapsulated EO. The
nanoemulsion treatment showed extensive cell membrane
damage as determined by efflux of cellular protein, DNA/RNA,
and Mg2+, K+, and Ca2+ in the extracellular media during
in vitro testing. In another study, Kang and Song (2018) spot-
inoculated red mustard leaves with Salmonella typhimurium
and treated them with nanoemulsions containing different EOs.

The investigation observed higher reductions as compared to
0.02% NaOCl. More importantly, the nanoemulsion significantly
maintained the sensory properties of red mustard along
with nutritional qualities. Hadian et al. (2017) demonstrated
the antibacterial activity of nanogel encapsulated Rosmarinus
officinalis EO (REO) against S. typhimurium on beef cutlet
samples. They reported that encapsulated REOs coating on
beef cutlets were more effective as compared to free REOs in
controlling the Salmonella population under refrigerated storage.
Nanoencapsulation effectively reduced the microbial population
by 2 mg/g beef cutlet.

Efficacy of Essential Oil Nanoemulsion Against
Escherichia coli
He et al. (2021) observed the stronger microbial inhibitory
activity of thyme (Thymus daenensis) EO nanoemulsion as
compared to the EO alone or coarse emulsion against E. coli
O157:H7. Further, the combination of the synergistic actions
of ultrasound (US) and EO nanoemulsion showed remarkable
decontamination of E. coli on contaminated cherry tomatoes
without affecting firmness and color. Similarly, Guo et al.
(2020) observed the morphological changes in E. coli cells
after treatment as observed through SEM, TEM, and Laser
scanning confocal microscopy. The synergistic effects of the
ultrasound and oil nanoemulsion caused changes in the
morphology, interior microstructure of cells, and permeability
of cell membranes leading to increased release of nucleic
acids and proteins. The study provided valuable information
with reference to the potential of EO nanoemulsions in
food preservation. However, in a similar study, Salvia-Trujillo
et al. (2014) proposed that microfluidization rather than
ultrasounds seemed to have an improved antimicrobial activity
of Cymbopogon citratus EO against E. coli. Moraes-Lovison
et al. (2017) evaluated the antibacterial and physiochemical
stability of nanoencapsulated Origanum vulgare EO. In this
investigation, in vitro minimum inhibitory concentration (MIC)
and minimum bactericidal concentration (MBC) against E. coli
at were recorded as 0.60 and 3.32 mg/mL, respectively. They also
observed the physiochemical characteristics of meat products
by incorporation of nanoemulsion in chicken pâté and found
negligible changes in meat products. Moghimi et al. (2016b)
developed high-intensity ultrasound-based water-dispersible
Thymus daenensis EO nanoemulsion (diameter = 143 nm). The
EO nanoemulsion showed a high inhibitory efficacy against E.
coli with MIC at 0.4 mg/mL. The nanoemulsion exhibited 10
times more antibacterial activity than the free EO, thus the
conversion of EO into nano-scale particles greatly enhanced the
bactericidal activity.

Efficacy of Essential Oil Nanoemulsion Against
Bacillus Species
Although many Bacillus spp. are non-pathogenic, they can
exhibit hemolysis and are raising concern because of their
extensive use as a model organism. Several case studies
have confirmed severe health impacts associated with the
consumption of Bacillus spp. contaminated food (Singh N.
et al., 2020). There are many reports related with the in vitro
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studies of EO nanoemulsions against different Bacillus spp.
Hassanshahian et al. (2020) observed MIC and MBC values of
Alhagi maurorum EO nanoemulsion as 1.75 and 6.25 mg/ml,
respectively against B. cereus and found it two times more
effective than that of the EO alone using the macro-broth
dilution method. Ghosh et al. (2013) observed a significant
reduction in B. cereus population even at a higher dilution
of Cinnamomum zeylanicum EO nanoemulsion. They also
demonstrated membrane distortion in treated cells as observed
through vital cellular constituents leakage, EtBr staining, and
SEM analysis. In a similar study, Zhang et al. (2017) observed
that encapsulated cloves/cinnamon EO nanoemulsions displayed
prominent antimicrobial effectiveness against B. subtilis as
compared to the non-nanoemulsion counterparts. Further, the
addition of EO nanoemulsion in a sauce prepared from
mushrooms did not alter the flavor, offering practical applicability
for food preservation. Frank et al. (2018) evaluated the
antibacterial activity of Cinnamon EO nanoemulsion (CEO-NE)
incorporated into alginate against B. cereus. Thus, they reported
increased inhibition of Bacillus by enhancing the concentration
of CEO-NE from 20–40%, respectively.

Supplementary Table 1 presents the antibacterial efficacy
of EOs nanoemulsion focusing on the type of EO with
their active constituents, microbes categorization, and effective
mechanisms in foods.

Antifungal Activity of Essential Oils
Nanoemulsion
As most of the studies dealing with antimicrobial activity of
EO nanoemulsions have focused on bacteria, the study with
respect to antifungal activity is sparse. However, some valuable
information on the antifungal activity of EO nanoemulsions
against some food-borne fungal strains has been added by
some researchers during the last decades. The food items are
most commonly contaminated with Aspergillus, Fusarium, and
Penicillium causing severe health hazards to consumers, oxidative
deterioration, and lipid peroxidation of contaminated food due to
their mycotoxin-producing ability (Ribeiro et al., 2019).

Efficacy of Essential Oil Nanoemulsion Against
Aspergillus Species
Among different mycotoxins, aflatoxins secreted by Aspergillus
are the most common and serious food contaminant. During
in vitro studies, Das S. et al. (2020) observed better fungitoxic
efficacy of Myristica fragrans EO nanoemulsion (1.75 µl/ml) than
the EO alone (2.75 µl/ml) against a toxigenic strain of A. flavus.
A similar finding was also observed when tested in vivo in rice
food samples stored for 6 months. The authors further suggested
that the superior activity of nanoemulsion was due to the
subcellular size particles with targeted delivery of components. In
another study, Ribes et al. (2017) observed enhanced inhibitory
effect of Cinnamomum spp. leaf EO nanoemulsions than free
EO against A. niger mycelial growth and spore germination.
The authors further suggested that the antifungal action was
correlated with the loss of cytoplasm in hyphae and hyphal tip
as observed in A. niger. Another interesting finding of the work
has been associated with the implication of nanoemulsions for

the preparation of effective and stable natural antifungal agents
in food-based applications.

Efficacy of Essential Oil Nanoemulsion Against
Penicillium Species
Mahajan et al. (2021) tested Ocimum gratissimum EO and its
nanoemulsions against P. digitatum of kinnow mandarin fruit
by the poisoned food technique. The nanoemulsion exhibited
stronger growth inhibition (1 × 104 CFU ml−1, 96%) than
unencapsulated oil (13 × 104 CFU ml−1, 85%) on the 15th

day of incubation. Further, the SEM and optical microscopy
suggested stronger suppressive activity of EO nanoemulsions for
germination of spore and elongation of hyphae in P. digitatum.
In a similar study of interest, Long et al. (2020) observed
about 300 times more bioactivity as MIC value changed
from 3.7% to 0.013% when garlic oil nanoemulsion was
tested in comparison to garlic oil alone against P. italicum, a
common contaminant causing postharvest decay of fruits and
vegetables. The antifungal mode of action of oil nanoemulsion
showed malformation in cell structure with destroyed lipids,
nucleic acids, and proteins. Further, the oil nanoemulsion also
successfully inhibited P. italicum infestation in citrus during
in vivo trials, thereby strengthening its use as a suitable alternative
to fungal contamination in fruits and vegetables.

Efficacy of Essential Oil Nanoemulsion Against
Fusarium Species
Wan et al. (2019) tested fungitoxic potentiality of lemongrass,
clove, peppermint, thyme, and cinnamon EO nanoemulsions
against F. graminearum using the agar dilution method. The
thyme oil nanoemulsion showed the strongest antifungal activity
(EC90 = 7.25–7.61 mg/g), while the peppermint oil nanoemulsion
showed the lowest (EC90 = 23.67–23.84 mg/g) activity against
mycelial growth of both strains. The authors also suggested that
the strong activity of thyme EO nanoemulsion was due to the
presence of phenol, i.e., thymol causing disruption in ergosterol
biosynthesis and membrane integrity. In another study, Abd-
Elsalam and Khokhlov (2015) observed suppression of mycelial
proliferation in F. oxysporum f. sp. vasinfectum, the causal agent
of wilt of cotton by eugenol loaded nanoemulsion.

Efficacy of Essential Oils Nanoemulsion Against
Rhizopus spp.
Rhizopus is the main causal agent of soft rot in fruits and
vegetables during storage. In a study, Yousef et al. (2019)
observed MIC value 1000 µl/L of cinnamon EO nanoemulsion
in potato dextrose agar medium against R. stolonifera, causing rot
of strawberry. In general, the EO nanoemulsion showed stronger
antifungal activity than the EO alone and the common synthetic
fungicide thiabendazole. In addition, the EO nanoemulsion
also caused significant fruit decay reduction and the lowest
fruit infection (5.43%) at 0.2% concentration. In a similar
study, cinnamon EO nanoemulsion also showed better efficacy
than the EO coarse emulsion and a common antifungal drug
Amphotericin B against R. arrhizus when examined through the
disk diffusion method (Pongsumpun et al., 2020). The authors
suggested better efficacy of nanoemulsion facilitated by small
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sizes particles delivering EOs to the fungal cell membrane,
while the coarse emulsion was due to low solubility in water,
and could not interact with the cell membrane properly. These
studies proved the efficacy of cinnamon EO nanoemulsion as
natural fungicides for the control of postharvest losses caused
by Rhizopus spp. A list of important studies indicating the
inhibitory potential of EOs nanoemulsion against different
storage fungi along with the key findings is presented in
Supplementary Table 2.

ANTIMICROBIAL MECHANISM OF
ACTION OF ESSENTIAL OILS
NANOEMULSION

Essential oils recognized as secondary metabolites have been
obtained from aromatic plant families such as Lamiaceae,
Asteraceae, Myrtaceae, Apiaceae, Rutaceae, Zingiberaceae, and
many others. Naturally, EOs are lipophilic or hydrophilic in
nature and are complex mixtures of hundreds of unstable and
non-volatile active organic compounds and may be characterized
into terpene (e.g., limonene and myrcene), terpenoids (linalool
and Thymol), and phenylpropanoids (anethole, eugenol)
(Hassoun and Çoban, 2017; Pateiro et al., 2021). Major bioactive
components responsible for antimicrobial activity in various
EOs include the presence of phenolic components such as
carvacrol, eugenol, and thymol in EOs which exhibit strong
antimicrobial properties, followed by terpenes and ketones
(Li et al., 2015; Pathania et al., 2018). In addition to major
components, minor components of EOs also play a significant
role against microbes owing to synergistic activity between minor
and major components (Bhavaniramya et al., 2019). However,
the mechanism of action of EOs and their components is largely
restricted due to low solubility, poor bioavailability, and quick
release. The drawbacks associated with EOs alone could be
overcome by encapsulation. Therefore, nanoencapsulated EOs
having enhanced antimicrobial activity can be used in various
food sectors against different food spoilage microbes.

Benjemaa et al. (2018) reported that the antibacterial activity
of EOs was enhanced and prolonged after nanoencapsulation.
Usually, the antibacterial activity of nanoencapsulated EOs
cannot be assigned to a single mechanism of action due to
the presence of different bioactive components of EOs having
multiple functional groups in their chemical composition (Diao
et al., 2014), facilitating different routes for their possible
action on microbial cells. Many researchers have presumed
an enhancement in the specific mechanism of action of
nanoencapsulated EOs as compared to free EOs (Moghimi et al.,
2016b; Lu et al., 2018; Chu et al., 2020; El-Sayed and El-
Sayed, 2021). In this reference, nanoencapsulated EOs provoked
the disorganization of the phospholipid bilayer of bacterial cell
membrane and mitochondria, damage to membrane proteins,
followed by the increase in cellular permeability, instability of
cellular structure, and the depletion of proton motive force,
electron flow, and active transport (Benjemaa et al., 2018;
Bhavaniramya et al., 2019; Yang et al., 2021). Consequently, the
presence of EO enhances the leakage of vital cellular ions (Na+,

Mg2+, K+) and 260 and 280 nm absorbing cellular constituents
such as DNA, RNA, and proteins (Figure 1), leading to significant
changes in the bacterial cell responsible for cell death.

Notably, nanoencapsulated EOs have also been shown to
exhibit strong activity against food-borne fungal pathogens.
Due to their complex mixture of bioactive components, the
exact antifungal mechanism of action is not fully unveiled.
A possible antifungal mechanism of action of nanoencapsulated
EOs is schematically presented in Figure 2. Several studies have
indicated that the fungitoxic efficacy of nanoencapsulated EOs
and their active constituents are the outcome of interferences in
the biosynthesis of the cell wall rendered by the larger surface
area of nanoparticles and modulation in ionic permeability
of the fungal plasma membrane. Primarily, nanoencapsulated
EOs target cell membrane due to the lipophilic nature of EOs
allowing mobilization across the fungal cell membrane leading
to contraction in the partitioning of the lipid bilayer, damage
of cellular integrity and alteration in membrane permeability,
leakage of vital intracellular components (Ca2+, K+, and Mg2+),
inhibition of mitochondrial electron transport system, reduction
in the membrane potential by inhibiting the proton pump
with subsequent loss in the ATP pool, and eventually apoptosis
(Kalagatur et al., 2018; Singh A. et al., 2020). More importantly,
ergosterol is maximally affected by EO nanoemulsions leading to
destabilization of membrane integrity and stability (Chaudhari
et al., 2021a). An investigation conducted by Singh et al.
(2019) and Li et al. (2020), revealed that Ocimum sanctum
and Illicium verum EOs, respectively can induce considerable
impairment in ergosterol biosynthesis in Aspergillus flavus.
Thus, nanoencapsulated EOs can be utilized as possible natural
antimicrobial agents against food spoilage pathogens.

APPLICATION OF NANOEMULSION

Nanoemulsions have various applications for encapsulation,
protection, and delivery of bioactive components such as
nutraceuticals (food components having health benefits),
pharmaceuticals (drugs), flavor improvement, and antioxidant
qualities in foods.

Nanoemulsions containing lipophilic functional compounds
viz. flavonoids, phytosterol, carotenoids, and fat-soluble vitamins
have multiple applications in biomedical and health aspects.
Guttoff et al. (2015) synthesized vitamin D nanoemulsion by
spontaneous emulsification and studied the effect of composition
and preparatory conditions on emulsion stability. Meghani et al.
(2018) reported the potentiality of vitamin D encapsulated
cinnamon essential oil nanoemulsion to arrest the cell cycle
progression, increased caspase activity, and decreased expression
of BcL2 protein leading to loss of mitochondrial membrane
potential in human alveolar carcinoma cells. Encapsulations
of bioactive components of Tinospora cordifolia extract viz.
berberine, palmatine, and palmatoside into whey protein
through electrospraying nanospheres with controlled delivery
for anti-diabetic activity have been recently investigated by
Jain et al. (2021). The synthesis of silver nanoparticles with the
involvement of black cumin seed extract and its affectivity as an
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FIGURE 1 | Schematic representation of possible antibacterial mechanisms of action of EO nanoemulsion.

FIGURE 2 | Schematic representation of possible antifungal mechanisms of action of EO nanoemulsion.

antidiabetic and anti-inflammatory agent has been investigated
by Vijayakumar et al. (2021a,b). Agarwal et al. (2021) developed
curcumin-loaded polycaprolactone/polyvinyl alcohol silk-fibroin
based electrospun nanofibrous mat for improved antidiabetic
activity with controlled delivery. In addition to nanoemulsion,
metal nanoparticles also have a prime role in biomedical
applications such as drug delivery, imaging, gene delivery, bio-
labeling, and tissue engineering. Vijayakumar et al. (2021b)

synthesized zinc oxide nanoparticles by involving neem gum as a
capping agent and analyzed the activity for inhibition of cell cycle
proliferation in Hep G2 human cancer cell line.

Nanoemulsions have extended their applicability for
improvement in air dispersion and foam stability in sugar and
flour confectionery products. The non-fat particles of chocolate
such as cocoa, milk, and sugar are suspended in cocoa butter (fat
phase). Moreover, in the nanoemulsion form, emulsifiers help in
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the prevention of blooming, a major cause of sensorial alteration.
The cream of bakery products in sandwiches and cakes poses
huge market demands in the form of emulsions. Nanoemulsion
has been used in ice cream for effective improvement in texture
and uniformity (Prasad et al., 2017).

Nanotechnology has more promising applications in the field
of agriculture, food preservation, and biomedicals in the form
of nanosensors. In addition to EO-loaded nanoparticles, copper,
silica, and zinc nanoparticles showed effective potentiality for
disease management, systemic acquired resistance, and also act
as novel antimicrobial agents for the management of pathogens
affecting agricultural crops, animals, and humans (Chhipa and
Joshi, 2016; Gandhi et al., 2021). Plant-based nanoemulsions
in conjunction with polymers develop smart nanosensors that
can be used in food packaging and detection of agricultural
food quality. Most notably, two different types of nanosensors
viz. phytonanosensor and electrical nanosensors are being used
in agriculture. Copper nanoparticles with nanogold electrodes
have been used to detect salicylic acid levels in oilseed rape
infected by fungal pathogen Sclerotinia sclerotiorum (Wang et al.,
2010). Phyto/bionanosensor in combination with nanoparticles
interpreted the quality of food by color changes without
any laboratory testing. Owing to high toxicity, solubility, and
indiscriminate utilization of pesticides in the agriculture and food
industries, there is an urgent need for nanosensor technology
for residue analysis of these pollutants (Valdés et al., 2009).
Moreover, nanoparticle-based nanosensors can act as a smart
delivery vehicle to protect agricultural crops from pathogens and
facilitate an improvement in agrochemicals in low proportions
(Thiruvengadam et al., 2018).

Practical application of EO nanoemulsion in food products
as an antimicrobial agent is a challenging task. Nanoemulsions
containing EO display a greater surface-to-volume ratio and
more easily controlled delivery, with an improvement in
their antimicrobial properties. In particular, the food-based
application of nanoemulsions has been classified into different
frontier areas:

(a) Direct mixing with food products,
(b) Infusion in porous food matrices,
(c) Food surface washing with antimicrobial nanoemulsion,

and
(d) Coating of food products by nanoemulsion.

The application of nanoencapsulated EOs in the
active packaging of food products is presented in
Supplementary Table 3.

In a recent investigation by Singh P. et al. (2020), it
has been observed that clove oil nanoemulsion effectively
reduced the growth of Fusarium proliferatum and secretion of
fumonisin B1 and B2 in maize kernels during storage conditions.
More importantly, nanoemulsion not only enabled controlled
delivery of EO or antimicrobial compounds, but also facilitated
incorporation into complex food systems. Dasgupta et al.
(2016a) reported food grade vitamin E acetate nanoemulsion
using edible mustard oil with improved antimicrobial and
antioxidant efficacy. Strong antibacterial and antibiofilm impact

of nano-silver decorated Ocimum basilicum leaf extract has
been reported by Muthulakshmi et al. (2021). Corresponding
to complex mechanism, nanoemulsion enhanced the passive
cellular absorption, reduced the mass transfer resistance, and as
a result increased the antimicrobial activity (Ranjan et al., 2016).
Additionally, nanotechnology has a prime role in nanofood
packaging, particularly in smart and active packaging with
resultant inhibition of microbial infection (Singh et al., 2018).

SAFETY PROFILE OF ESSENTIAL OILS
AND NANOEMULSION

In addition to microbial infestation and toxin inhibitory
efficacy, large scale practical recommendation of EOs and
nanoemulsions as an effective food preservative require safety
assessment without any toxic effects on mammals make
them healthier for consumers. To address this issue, different
international organizations such as the Food Chemical Codex,
International Organization of Flavor Industries, Food and Drug
Administration, Codex Alimentarium and the Council of Europe,
and the Flavor and Extract Manufacturers Association have
confirmed specific procedures for toxicological and chemical
characterization of EOs. They also reported antagonistic and
synergistic effects for specific EOs in mammals during practical
application (Falleh et al., 2020; Chaudhari et al., 2021b).
Generally, mammalian safety/toxicity of EOs and nanoemulsions
were performed on experimental mice/rats which permits the
determination of safety assessment in terms of Median Lethal
Dose or LD50 value. In this context, Deepika et al. (2021)
performed acute toxicity assay of Petroselinum crispum essential
oil (PEO) and chitosan encapsulated PEO in mice and the LD50
value was found to be 10,765 and 26,830 mg/kg body weight,
respectively. Similarly, Das et al. (2021b) in a study assessed the
acute oral toxicity of Pimpinella anisum essential oil (PAEO) and
chitosan nanostructured PAEO in mice, and LD50 were displayed
as 19,879.89 and 13,641.35 µl/kg body weight, respectively. They
suggested that the lower LD50 value of nanostructured PAEO
might be due to a small-sized nanoemulsion with more EO
in each nanocapsule and reduced the Median Lethal Dose. In
another research, Dwivedy et al. (2018) reported the acute toxicity
of Illicium verum essential oil (IvEO) on male mice in terms
of Median Lethal Dose and found it to be 11,257.14 µl/kg
body weight. EOs and nanoemulsions having higher LD50
values as compared to other synthetic food preservatives like
bavistin (1500 mg/kg), nystatin (8000 mg/kg), and lindane (59-
562 mg/kg) strengthen their application in food and agricultural
industries as eco-friendly and safe preservatives.

In spite of proven safety in different model organisms,
toxicities have also been reported. Synthesis of nanoemulsionic
particles of tin oxide by using Piper nigrum seed extract
and toxic effects on cancer cell lines has been investigated
by Tammina et al. (2017). More importantly, the toxicity
of nanoparticles is very complex and depends on different
physico-chemical properties such as shape, size, charge, and
reactivity (Fadeel and Garcia-Bennett, 2010). Direct ingestion of
nanomaterials may occur through drug delivery and food
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packaging-based applications. Nanomaterials after ingestion
have been translocated to the intestinal lumen by blood
circulation (Pietroiusti et al., 2013). In addition to size, the
shape of nanomaterials also determines the toxicity, for example
triangular-shaped nanoparticles are more toxic as compared
to spherical nanoparticles (Dasgupta et al., 2016b). There
are a number of risks that have been associated with the
use of nanoparticles which have been focused by different
regulatory agencies. The Royal Society and Royal Academy
of Engineering in the UK significantly anticipate and regulate
health-related problems associated with nanoparticles. The
European Commission’s Scientific Committee on Emerging and
Newly Identified Health Risks has also realized the nanoparticle
toxicity problems in human health as well as the environment
(Sharma et al., 2012). The European Commission’s Scientific
Committee on Consumer Products (SCCP) suggested the
inappropriateness of excessive nanoparticle utilization and that
there was inadequate information of uptake and absorption of
nanoparticles by the skin and other cell organs. Mosa et al. (2018)
reported that the toxicity of nanoparticles has been associated
with liver complications and severe ill health. Most notably,
nanoparticles by virtue of their small size, induce the chances of
genotoxicity by directly interacting with DNA/RNA or causing
indirect damage by ROS (Ranjan et al., 2019). Nanoparticles
also interacte with nuclear and cytoplasmic proteins leading
to interruption of antioxidant defense mechanisms (Jain et al.,
2018). Therefore, there is a need for comprehensive investigation
of nanoparticle uptake, entry into the food chain, and distribution
both under in vitro and in vivo conditions to extend the
applicability of EOs based nanoemulsion in food safety.

MARKET DEMAND OF NANOEMULSION
BASED NUTRACEUTICALS AND
PHARMACEUTICALS

The application of nanoemulsion in nutraceuticals,
pharmaceuticals, and food products has huge market
demands along with consumer preferences. Nanoemulsion
basically contributes a lower optical transparency than the
wavelength of light in the production of beverages and foods
(Dasgupta et al., 2019). Furthermore, nanoemulsion also
facilitates in the expansion of the functional food market by
incorporating lipophilic bioactive components. The field of
nutraceuticals is considering the advantages of the incorporation
of innovative nanotechnology with controlled delivery from
nano-nutraceuticals, nanoemulsion, and more importantly
liposome-based delivery. Moreover, nanoemulsion-based
delivery improves bioavailability and fulfills the gap between
active substance content and bioaccessibility (Daliu et al.,
2019). Aquanova, a commercial nanotech industry developed
a number of nanocarrier systems with the encapsulation of
vitamin E, vitamin C, and fatty acids for pharmaceutical and
nutraceutical applications. Zyme and Aquanova synthesized
omega-3 fatty acid nanocapsules as a commercial product
with high market demand. NutraLease, a similar company,
like Aquanova developed a nanoemulsion containing various

functional compounds like lycopenes, isoflavones, vitamins
(A, D3, and E), and phytosterol and have been found stable
at various stages of processing (Silva et al., 2012; Ranjan et al.,
2014; Dasgupta et al., 2015). Nano-self-assembled structured
liquids (NSSLs), a flavor encapsulating nanoemulsion developed
by NutraLease is reported to the enhance bioaccessibility and
bioavailability of nutraceuticals (Jaiswal et al., 2015).

CONCLUDING REMARKS AND FUTURE
RESEARCH OPPORTUNITIES

Microbial food spoilage caused by bacterial and fungal
contamination has documented the rising cases of diseases
outbreaks and massive human deaths globally. Although
the employment of synthetic chemicals to control microbial
food deterioration has received considerable success, the
toxicity to human health and the environment, induction
of resistance development, and the presence of residues
in treated food samples have necessitated the search for
preservatives of natural origin. Among natural products,
EOs derived from aromatic plants have received considerable
attention from the food industry because of their safety,
negligible chances of residual toxicity, considerable antimicrobial
activity, and promising antioxidant activity. Nevertheless,
poor water solubility, high volatility, and the intense aroma
of EOs have restricted their application in the food system.
The limitations associated with EO could be resolved by
encapsulation in suitable polymeric matrices including
chitosan, alginate, zein, carrageenan, polycaprolactone, and
cyclodextrins. Various studies have reported the improved
antimicrobial of encapsulated EOs against food infesting bacteria,
fungi, and associated toxins. The improved antimicrobial
potential of nanoencapsulated EOs has been ascribed to
controlled released of bioactives and easy access to food
regions supporting the microbial proliferation rendered
by the subcellular size of the emulsionic particles. The
antimicrobial mechanism of action of encapsulated EO was
attributed to the inhibitory action on ergosterol biosynthesis,
release of biologically important ions including calcium,
potassium, and magnesium, 260 and 280 nm absorbing
materials, loss in ATP pool caused by disturbances in
proton motive force, and oxidation of biomolecules caused
by ROS. The antimicrobial activity of nanoencapsulated EOs
has been reported to be influenced by fabrication process
parameters including pH, temperature, concentration, and
chemical composition of polymer matrix and tripolyphosphate
content, homogenization speed, time of sonication, surfactant,
and most notably the chemical characteristics of natural
products employed.

Although, the EOs and non-encapsulated formulation thereof
has achieved great success in preventing the growth of food
spoilage bacteria, fungi, and microbial toxins, the commercialized
formulations for application in food industries are still lacking.
Most importantly, a future potential model with emphasis on the
release and delivery of bioactive components/constituents from
nanoemulsion needs to be evaluated before practical application

Frontiers in Microbiology | www.frontiersin.org 10 November 2021 | Volume 12 | Article 751062

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-751062 November 23, 2021 Time: 15:56 # 11

Maurya et al. Essential Oil Nanoemulsion as Preservative

in food and agricultural industries. The time taken to release
the volatile component greatly depends on the concentration
of wall material. In the case of lipid carriers, low-fat product
displayed burst release of the volatile component, while, high
fat gave sustained-release (Dasgupta and Ranjan, 2018). Release
of the non-volatile component occurs due to simple dilution.
After nanoemulsion dilution, some of the bioactive components
could move from oil droplets to the aqueous phase which
may be considered as an efficient release mechanism of non-
volatiles (Maher et al., 2015). A number of intrinsic and extrinsic
factors viz. pH, dilution, ion strength, enzyme activity, and
temperature determine the release rate of bioactives in the
nanoemulsion system. Interestingly, a decrease in particle size
in the nanoemulsion system regulates the oil-water partition
coefficient which further affects the bioavailability and release
profile. Walia et al. (2017) demonstrated encapsulation efficiency,
loading capacity, and viscosity of vitamin-D is a prime factor
for stable and efficient release from nanoemulsion. Additionally,
droplets encapsulated into hydrogel particles increased the
path length for diffusion and minimized the release rate
(Komaiko and McClements, 2014). Some of the important future
research opportunities linked with the application of EO based
nanoformulation:

(a) Fabrication of nanoemulsions with enhanced stability
under fluctuating conditions during food processing.

(b) Development of nanoemulsions with improved
nanoencapsulation efficiency and loading capacity.

(c) The fate and transport of nanoemulsions in the natural
environment needs to be extensively studied in order to
safeguard environmental homeostasis.

(d) The search for newer wall materials as well as the design of
composite materials having suitability for food applications
to encapsulate the EOs is of immense importance in
food industries.

(e) Appraisal of the cost-benefit ratio for the fabrication of
nanoemulsion could be helpful in the development of
cost-effective formulations.

(f) The effect on gut microflora is an important aspect
while thinking about the supplementation of EO-based
nanoemulsion to prevent the spoilage of food and toxin
secretion by bacterial and fungal pathogens.

(g) As extremely small-sized nanoemulsions may get rapid
access to human cellular systems and may exert undesirable
effects after consumption of treated food, extensive in vivo
and in vitro investigations should be conducted to avoid
undesirable effects on human health.

Current challenges and research gaps of nanoencapsulated
bioactive components for practical applications are:

(a) Minimal use of chemical substances during encapsulation.
(b) Long-lasting controlled release of encapsulated

bioactive compounds.
(c) Use of chief plant-based polymeric matrix for

encapsulation, and
(d) Maximization of loading of bioactive compounds in

encapsulating matrix.
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