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PURPOSE. To characterize a light damage paradigm and establish structural and immunocy-
tochemical measures of acute and protracted light-induced retinal degeneration in the
rhodopsin (RHO) T4R dog model of RHO–autosomal dominant retinitis pigmentosa (ADRP).

METHODS. Retinal light damage was induced in mutant dogs with a 1-minute exposure to
various light intensities (0.1–1.0 mW/cm2) delivered with a Ganzfeld stimulator, or by fundus
photography. Photoreceptor cell death was assessed by TUNEL assay, and alterations in retinal
layers were examined by histology and immunohistochemistry 24 hours and 2 weeks after
light exposure. Detailed topographic maps were made to document changes in the outer
retinal layers of all four retinal quadrants 2 weeks post exposure.

RESULTS. Twenty-four hours post light exposure, the severity of photoreceptor cell death was
dose dependent. Immunohistochemical analysis revealed disruption of rod outer segments,
focal loss of the RPE integrity, and an increase in expression of endothelin receptor B in
Müller cells with the two highest doses of light and fundus photography. Two weeks after
light exposure, persistence of photoreceptor death, thinning of the outer nuclear layer, and
induction of Müller cell gliosis occurred with the highest doses of light.

CONCLUSIONS. We have characterized outcome measures of acute and continuing retinal
degeneration in the RHO T4R dog following light exposure. These will be used to assess the
molecular mechanisms of light-induced damage and rescue strategies in this large animal
model of RHO-ADRP.
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Decades of exposure to light is considered to influence
retinal damage in AMD,1 and it may play a role in

modifying the disease course in human patients and animal
models of RP2,3 as well as in a subset of inherited retinal
diseases in animal models such as Usher’s syndrome4 and Leber
congenital amaurosis.5,6 Autosomal dominant RP accounts for
30% to 40% of all RP patients, and of these, 30% carry a
mutation in the rhodopsin gene (RHO). These patients have
been functionally categorized into class A and class B.7 Class A
patients exhibit early panretinal rod dysfunction; but the onset
of disease in class B patients occurs in adulthood and has a slow
progression that affects the inferonasal and pericentral areas
more severely than the superotemporal retinal region (subclass
B1). This patient subclass also exhibits a delay in dark
adaptation kinetics after exposure to light that bleaches
>95% of available rhodopsin,8 and a potential for light
exposure to trigger and/or contribute to photoreceptor
death.3,9 Experimental evidence for increased susceptibility to
light damage has been demonstrated in several animal models
carrying class B1 RHO mutations, including T4R,9 T4K,10,11

T17M,12 P23H,13–15 Y102H,16 I307N,16 and S334ter.17 These
and other studies have fueled the debate about the detrimental
impact of constant light ‘‘pollution’’ in our modern societies,18

and the need to consider light restriction measures particularly
in patients affected with some forms of retinal degeneration.3

The naturally occurring RHO T4R mutation in the dog8

presents an extreme model of such light-induced damage,
where severe membrane disruption of the rod outer segments
(OS) can be observed within minutes of acute clinical light
exposure, followed by the onset of photoreceptor cell death 6
hours later.9,19 The mutant retina undergoes rapid degeneration
with short-duration light intensities commonly found under
normal environmental conditions. For this reason, it is an
optimal large animal model in which to study the molecular
pathways that link a photoreceptor-specific gene mutation with
light-induced photoreceptor cell death, and to test rescue
strategies such as corrective gene therapy or neuroprotective/
pharmacologic treatments.

In previous studies, we established doses that cause light
damage, examined cell death pathways during the first 6 hours
following light exposure, and demonstrated that photoreceptor
loss continues for several weeks following the initial insult.20–23

In the present study, to establish structural outcome measures
that can be used to assess the effect of therapeutic intervention
for RHO-ADRP in this large animal model, we examined the
topography of light-induced photoreceptor loss in the first 2
weeks after exposure and identified concomitant and second-
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ary alterations in other retinal layers that contribute to the
degenerative process.

MATERIALS AND METHODS

Animals and Rearing Conditions

Retinas from 15 mastiff crossbred RHO T4R (homozygous or
heterozygous) mutant and 2 wild-type (WT) control dogs were
used (see Table 1). All dogs (age range, 11–75 weeks) were
maintained at the Retinal Disease Studies facility (Kennett
Square, PA, USA). The studies adhered to the ARVO Statement
for the Use of Animals in Ophthalmic and Vision Research and
were approved by the Institutional Animal Care and Use
Committee of the University of Pennsylvania. The dogs’
genotypes were determined either from the known status of
their parents, or from genetic testing for the disease-causing
mutation.8

Animals were housed as previously described20 in kennels
with dim cyclic illumination, consisting of 12 hours of white
light per day (175 to 350 lux at the level of the ‘‘standard dog
eye’’) and 12 hours of darkness (lights on at 6 AM and off at 6
PM). In the procedure room, light intensities range from 350 to
700 lux. These ambient light levels do not cause retinal damage
in normal or homozygous mutant prcd dogs that do not carry
the RHO T4R mutation.20 To avoid any potential light-induced
damage, none of the animals underwent a clinical ophthalmic
or ERG examination.

Retinal Illumination

Animals were dark adapted overnight. On the following
morning, the dogs were prepared for retinal illumination as
previously described.22 With two exceptions, the right eye
(RE) was shielded and the left eye (LE) was exposed to light.

Two different approaches were used to illuminate the
retinas for light-damage experiments. The first approach used
the background white light (6500 K) of an Espion electro-
physiology system (Diagnosys LLC, Lowell, MA, USA) delivered
through a monocular Ganzfeld stimulator (ColorBurst; Diag-
nosys LLC). The retinas were exposed for 1 minute with
different intensities measured with a luminometer (IL1700;
International Light Technologies, Peabody, MA, USA), which
resulted in corneal irradiance values of 1, 0.5, 0.3, 0.2, and 0.1
mW/cm2. When measured as illuminance, these light intensi-
ties correspond to 1590, 820, 551, 319, and 170 lux,
respectively. The second method to light expose the retinas
consisted in photographing the retina with a fundus camera.
This approach has been previously reported in other studies to
induce light damage in the RHO T4R model.9,20,21 In brief, 15
to 17 overlapping retinal photographs of microsecond duration
were taken over a period of approximately 5 to 7 minutes with
a handheld fundus camera (RC-2; Kowa Ltd., Nagoya, Japan).
Light intensities used to view and photograph various retinal
regions (tapetal versus nontapetal) were previously described.9

Both methods used to create light damage in the RHO T4R
mutant retina do not cause any retinal lesions in normal
retinas.20,22,23

Following light exposure, dogs were kept under dim-red
illumination until the following day when they were either
humanely euthanized 24 hours post exposure or returned to
the kennel for 2 weeks. Dogs were humanely euthanized in a
dark room under dim-red illumination with an intravenous
injection of pentobarbital sodium. After enucleation, a slit
incision was made at the level of the ora serrata, and the entire
globe was fixed in paraformaldehyde, cryoprotected, and
embedded in optimal cutting temperature (OCT) medium as
previously described.24

TUNEL Assay for Cell Death

The occurrence of cell death was assessed on retinal
cryosections (10-lm thick) extending from the optic nerve
head to the ora serrata along the four meridians (superior,
inferior, nasal, and temporal) at 24 hours and 2 weeks
following light exposure, by imaging DNA fragmentation using
a TUNEL assay as previously reported.24 In some retinal
regions, the overwhelming number of photoreceptors that
were TUNEL-labeled precluded any manual or automated cell
count; therefore, a semiquantitative grading system (see Table
2; Fig. 1A) was established for the 24-hour postexposure time
point and used to produce topographic maps of the
distribution and severity of cell death in the outer nuclear
layer (ONL).

Immunohistochemistry

Assessment of the morphology and immunoreactivity of
several retinal cell populations was done at 24 hours and 2
weeks following light exposure, by fluorescence immunohis-
tochemistry (IHC) using a battery of cell-specific antibodies
(see Table 3) on 10-lm-thick cryosections that extended along
the superior (tapetal) and inferior (nontapetal) meridians.
Specificity of immunostaining with endothelin receptor B
(EdnRB) was demonstrated by incubating 1 lg EdnRB antibody
with 1 lg commercially available blocking peptide for 1 hour at
room temperature prior to incubation on the sections. DAPI
stain was used to label nuclei. Sections were viewed under a
widefield epifluorescent microscope (Axioplan; Carl Zeiss
Meditec GmbH, Oberkochen, Germany), and images were
digitally captured (Spot 4.0 camera; Diagnostic Instruments,
Inc., Sterling Heights, MI, USA) and imported into a graphics
program (Photoshop; Adobe, Mountain View, CA, USA) for
display. A detailed protocol has been described previously.24

Retinal Morphology and Morphometry

Retinal cryosections (10-lm thick) extending along the four
meridians were stained with hematoxylin and eosin (H&E) and
examined under bright field microscopy (Axioplan; Carl Zeiss
Meditec) with a 403 objective. Outer nuclear layer thickness
was based on the number of ONL nuclei counted every 1000
lm. In addition, the location and morphology of the
photoreceptor inner segments (IS) and OS, the RPE, and the
tapetum lucidum (a cellular multilayered reflective structure
located in the superior region of the choroid) were observed,
manually recorded, and reported in a graphic format. Specific
criteria examined included density and/or length of IS and OS,
pigmented status of the RPE and altered morphology (e.g.,
hypertrophy), and presence or absence of a tapetum.

RESULTS

Light Exposure Causes Acute Dose-Dependent
Photoreceptor Cell Death in the RHO T4R Retina

A dose-dependent cell death response was observed in the
ONL of RHO T4R mutant retinas 24 hours after a 1-minute
exposure period of varying intensities of white light delivered
by means of a Ganzfeld stimulator (Figs. 1B1–B4). With the
highest dose of light (1 mW/cm2 for 1 minute), there was
massive TUNEL-labeling of photoreceptors (grade 4) in the
central region of the retina with a decreasing gradient of
TUNEL-positive cells from center to periphery (Fig. 1B1). With
a 50% decrease in light dose (0.5 mW/cm2 for 1 minute), the
most severe damage (grade 4) was limited to the central region
of both the superior and temporal meridians, while there were
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fewer TUNEL-labeled cells (grades 3 and 2) in the nasal and
inferior meridians (Fig. 1B2). A dose of 0.3 mW/cm2 for 1
minute caused moderate cell death in the central retina that did
not exceed grade 2 (Fig. 1B3). After exposure with the lowest

dose (0.2 mW/cm2 for 1 minute), a limited number of TUNEL-
labeled photoreceptors (grade 1) were found, predominantly
in the tapetal region (superior and temporal meridians) (Fig.
1B4). No cell death was seen in a WT retina exposed to the
highest dose (1 mW/cm2 for 1 minute) of light (Supplementary
Figs. S1A–C).

Light damage triggered by a series of overlapping fundus
photographs caused a pattern of cell death severity that was
similar to that obtained after Ganzfeld illumination at 1 mW/
cm2 for 1 minute. Grade 4 was observed in the central retina
throughout the four meridians (Fig. 1C). One difference
between the two light-damage paradigms appeared to be the
more limited distribution of cell death throughout the retinal
expanse, which likely resulted from anatomic limitations
because it is more difficult to visualize and photograph the
more peripheral regions with a handheld fundus camera in the
awake dog.

Some morphologic variation in the pattern of TUNEL-
labeling could be seen when comparing areas with grade 4 to
areas less severely affected. In central regions with grade 4,
many TUNEL-labeled figures in the ONL appeared swollen,
with an irregular contour, and decreased fluorescence in
contrast to the more typical TUNEL-positive nuclei that were
seen more peripherally (Figs. 2A1, 2A2). In addition, TUNEL-
positive RPE cells were seen with grade 4 in the central retina
after fundus photography (Fig. 2A3).

TABLE 1. Summary of Dogs and Light-Exposure Conditions

Animal ID* RHO Status Age, wk Light Exposure PE Interval Analysis (Morphology)

EM189 T4R/T4R 67 LE: 0.2 mW/cm2 for 60 s 24 h OCT

RE: shielded

EM187† T4R/T4R 67 LE: 0.3 mW/cm2 for 60 s 24 h OCT

RE: shielded

EM186† T4R/T4R 67 LE: 0.5 mW/cm2 for 60 s 24 h OCT

RE: shielded

EM248 T4R/þ 38 RE: 1 mW/cm2 for 60 s 24 h OCT

EM165 T4R/þ 68 RE: 1 mW/cm2 for 60 s 24 h OCT

WB-E239 þ/þ 13 LE: 1 mW/cm2 for 60 s 24 h OCT

RE: shielded

EM210 T4R/þ 11 LE: fundus photographs 24 h OCT

RE: shielded

EM169 T4R/þ 75 LE: 0.1 mW/cm2 for 60 s 2 wk OCT

RE: shielded

EM198 T4R/T4R 55 LE: 0.3 mW/cm2 for 60 s 2 wk OCT

RE: shielded

EM194† T4R/þ 55 LE: 0.5 mW/cm2 for 60 s 2 wk OCT

RE: shielded

EM181 T4R/T4R 73 LE: 0.5 mW/cm2 for 60 s 2 wk OCT

RE: shielded

EM179 T4R/T4R 73 LE: 1 mW/cm2 for 60 s 2 wk OCT

RE: shielded

WB-E240 þ/þ 13 LE: 1 mW/cm2 for 60 s 2 wk OCT

RE: shielded

EM112 T4R/þ 19 LE: fundus photographs 2 wk OCT

RE: shielded

EM109 T4R/þ 19 LE: fundus photographs 2 wk PB

RE: shielded

EMB37†‡ T4R/þ 16 LE: fundus photographs 2 wk PB

RE: shielded

EMB38‡ T4R/þ 16 LE: fundus photographs 2 wk PB

RE: shielded

PE, postexposure interval; PB, plastic embedding medium (PolyBed; Polysciences, Warrington, PA, USA).
* Tissues from dogs whose IDs are underlined were used in previous studies.20,21

† All dogs wereþ/þ at the VMD2 (CMR1) locus unless an † is placed after their ID, which indicates asymptomatic heterozygous status (VMD2�/þ).
‡ All dogs wereþ/þ at the RPE65 locus unless an ‡ is placed after their ID, which indicates asymptomatic heterozygous status (RPE65�/þ).

TABLE 2. Grading System Used to Establish the Incidence of TUNEL-
Labeling in 10-lm–Thick Retinal Sections 24 Hours Following Light
Exposure

Grade Definition/Criteria

0 ONL contains 0–2 TUNEL-labeled cells per 300 lm ONL

length. This is considered a background finding.

1 ONL contains 3–20 TUNEL-labeled cells per 300 lm ONL

length. Cell death is associated with light exposure as grade

1 and higher grades are not observed in shielded and

control retinas.

2 ONL contains 21–50 TUNEL-labeled cells per 300 lm ONL

length.

3 ONL contains >50 TUNEL-labeled cells per 300 lm ONL

length. There are limited areas with clusters of TUNEL-

labeled cells, but the density of these cells remains

quantifiable. Some waviness of the ONL can be present.

4 a. ONL contains >50 TUNEL-labeled cells per 300 lm ONL

length or density is unquantifiable due to clustering.

b. Presence of irregular features of nuclear staining.

c. This grade is always associated with waviness of the ONL.
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Light Exposure Causes Acute Outer Retinal

Alterations and Müller Cell Response

We first examined the effect of light at the 24-hour time point
following exposure and assessed the effects on the retina using
cryosections stained with H&E or immunolabeled. Following
both fundus photography and Ganzfeld exposure with the two
highest doses of light (0.5 and 1 mW/cm2 for 1 minute), an
increase in photoreceptor internuclear spacing was seen
centrally, causing an apparent increase in ONL thickness
(Figs. 2B1–B3). The RPE layer also showed damage and
apparent cell loss centrally as reflected by focal loss of
RPE65 immunolabeling (Figs. 3A2, 3A4). Staining with rod-OS
specific markers (rhodopsin, peripherin, and GRK1) showed
significant disruption of the OS centrally (Figs. 3B2, 3B4, 3C2,
3C4, 3D2, 3D4) but not in a WT dog (Supplementary Fig. S1C).
Under the same exposure protocols, the ONL, OS, and RPE
were well preserved in the periphery (Figs. 3B3, 3C3, 3D3), and
the pattern of immunolabeling was like that seen in the central
region of a shielded RHO T4R retina (Figs. 3A1, 3B1, 3C1, 3D1)
or in the exposed retinas of WT controls (Supplementary Fig.
S1D2, data not shown). At this time point, no obvious changes
in the structure of bipolar cells were seen, although some
distortion of the lamination of the inner nuclear layer (INL) and
shrinkage of the outer plexiform layer (OPL) was observed in

FIGURE 1. Spatial distribution of photoreceptor cell death 24 hours following light exposure in RHO T4R mutant dogs. (A) Grading system used to
map the incidence of TUNEL-positive cells in the ONL. (B1–B4, C) Schematic color-coded representation of grades of TUNEL-labeling in retinal
sections extending from the edge of the optic nerve head to the superior, inferior, nasal, and temporal ora serrata: (B1–B4) four RHO T4R dogs
exposed to decreasing doses of light by means of a Ganzfeld stimulator; (C) a RHO T4R dog exposed to a series of overlapping fundus photographs.
LE, left eye; RE, right eye.

TABLE 3. List of Antibodies Used for IHC

Antigen Source and Catalog No.

Antibody Dilution

for IHC

RPE65 Novus Biologicals, NB100-355 1:500

Rhodopsin Millipore, MAB5316 1:200

Human Cone

Arrestin

C. Craft (LUMIF) 1:10,000

Peripherin R. Molday (3B6) 1:100

GRK1 Affinity Bioreagents, MA1-721 1:1,000

PKCa BD Biosciences, BD610107 1:100

Goa Millipore, MAB3037 1:5,000

Vimentin Agilent, M0725 1:2,000

GFAP Agilent, Z0334 1:1,000

EdnRB Alomone Labs, AER-002 1:200

Novus Biologicals (Littleton, CO, USA); Millipore (Billerica, MA,
USA); Affinity Bioreagents (Golden, CO, USA); BD Biosciences (San
Jose, CA, USA); Agilent (Santa Clara, CA, USA); Alomone Labs
(Jerusalem, Israel).
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the central/exposed RHO T4R retina (Figs. 3E1–E4). These
alterations were likely the consequence of the swelling of the
overlying ONL. Müller cells, whose radial extension through
the retinal thickness was clearly immunolabeled with vimentin,
showed no increase in glial fibrillary acid protein (GFAP)
staining, a marker of reactive gliosis; however, there was an
increase in expression of EdnRB in the central exposed retinas
(Figs. 3F1–F4, 3G1–G4). Immunohistochemical alterations were
also found in RHO T4R retinas exposed to lower doses of light
(0.5 mW/cm2 and 0.3 mW/cm2) for 1 minute, but no obvious
changes were seen with exposure to 0.2 mW/cm2 (Table 4).

Light Exposure Causes Rapid Retinal Degeneration
in the RHO T4R Dog

To examine the effect of light at 2 weeks post exposure, retinas
from dogs exposed to similar light-damage protocols were
processed for histologic/IHC evaluation. Biaxial spider graphs
that extended along the horizontal (nasal-temporal) and
vertical (inferior-superior) axes were constructed. Careful
attention to the structure of the IS, OS, and RPE was
documented in sections extending from the optic disc to the
ora serrata in both tapetal and nontapetal areas. By 2 weeks
post exposure, the retina that had received the highest dose of
light (1 mW/cm2 for 1 minute) had an ONL thickness reduced
to 1 to 2 rows of nuclei over a distance extending more than 10
mm from the optic nerve head and that included the central
and midperipheral regions of all four quadrants (Fig. 4A1). This
was associated with a loss of photoreceptor IS and OS. Loss of
RPE integrity was found particularly in the superior tapetal

area, whereas RPE hypertrophy was commonly seen in
nontapetal areas (Fig. 5). Exposure to half of the highest dose
(0.5 mW/cm2 for 1 minute) caused ONL thinning, particularly
in sections extending through tapetal areas (superior and
temporal). Loss or shortening of IS and OS was also seen, but
the RPE was preserved (Figs. 4A2, 4A3). Exposure to 0.3 mW/
cm2 of light for 1 minute caused photoreceptor damage and
some ONL thinning that was limited to the central to
midperipheral tapetal areas (Fig. 4A4). No evidence of
photoreceptor loss was seen in a retina exposed to 0.1 mW/
cm2 for 1 minute, corresponding to one-tenth of the highest
dose of light, although loss of OS was found in one focal area
(Fig. 4A5). Spider graphs of retinas that were exposed to a
series of overlapping fundus photographs (Figs. 4B1–B4)
showed a loss of ONL, IS, OS, and RPE that was similar to
that observed following Ganzfeld exposure to 1 mW/cm2 of
light for 1 minute and was uniformly present in the three
animals with this exposure paradigm. However, damage was
limited to the central retina (approximately 5 mm from the
optic nerve head) as more peripheral regions were difficult to
light expose using fundus photography as the exposure
paradigm.

With the exception of the 0.1 mW/cm2 exposure, TUNEL-
labeled nuclei were present in the central ONL of all retinas 2
weeks after light exposure (Figs. 6A1–A6) but were not
observed in the peripheral retina at any light dose. Significant
autofluorescent material was observed in the RPE layer (Figs.
6A2–A4, white asterisk) in retinas exposed to damaging doses
of light (0.3–1 mW/cm2). RPE65 staining was preserved in all
retinas except in that exposed to the highest dose of light, or

FIGURE 2. TUNEL-labeling patterns and ONL swelling. (A1) Irregular TUNEL-labeled nuclear morphology of photoreceptors (white arrows) in the
central versus midperipheral retina 24 hours after 1-minute Ganzfeld light exposure. (A2) Regular nuclear morphology of TUNEL-labeled
photoreceptors (red arrows) in the midperipheral retina 24 hours after 1-minute Ganzfeld light exposure. (A3) Irregular TUNEL-labeled nuclear
morphology of photoreceptors (white arrows) and TUNEL-labeled RPE cells (blue arrows) in central retina 24 hours after fundus photography. (B1,
B2) ONL swelling in central versus midperipheral retina 24 hours after 1-minute Ganzfeld light exposure. (B3) ONL swelling in central retina 24
hours after fundus photography. In both cases, the irregular swelling caused undulations of the ONL. T, tapetum lucidum.
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fundus photography where there was a loss of RPE cells (Figs.
6B1–B6). Complete loss of rhodopsin (Figs. 6C2, C3) was
observed at the two highest doses of light, and there was a
marked shortening of rod OS in the retina exposed to 0.3 mW/

cm2 (Fig. 6C4). At the lowest dose (0.1 mW/cm2), mild
shortening of rod OS and rhodopsin mislocalization to the ONL
were seen (Fig. 6C5). Cone-arrestin labeling revealed promi-
nent alterations of cone structure (loss of IS and OS) following

FIGURE 3. Immunohistochemical characterization of light-induced damage 24 hours post exposure in RHO T4R mutant dogs. (A1–A4) RPE-specific
protein 65 kDa (RPE65). (B1–B4) RHO and human Cone Arr. (C1–C4) Peripherin. (D1–D4) GRK1. (E1–E4) PKCa and (Goa). (F1–F4) Vim. and GFAP.
(G1–G4) Vim. and EdnRB. IPL, inner plexiform layer; NFL, nerve fiber layer; Cone Arr., cone arrestin; PKCa, protein kinase C alpha; GFAP, glial
fibrillary acidic protein; Goa, Go-alpha.
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exposure to the two highest doses of light as well as after
fundus photography, with only cone-arrestin labeled remnants
remaining (Figs. 6C2, 6C3, 6C6). Although the INL appeared to
be well preserved, significant reduction in OPL thickness
because of retraction of bipolar cell dendrites was seen in the
light-damaged retinas (Figs. 6D2–D4, 6D6). Increase in vimentin
and GFAP staining, indicative of reactive gliosis (Figs. 6E2, 6E3),
as well as sustained expression of EdnRB in ONL, INL, and
retinal ganglion cell layer (GCL) (Figs. 6F2–F6) was observed in
light-damaged retinas.

DISCUSSION

The occurrence of nonsynchronized and protracted cell loss
that takes place over years or decades presents a significant
challenge in studying the molecular mechanisms of photore-
ceptor degeneration in RP patients and most animal models.
Indeed, at any given time, the low percentage of dying
photoreceptors frequently limits the use of tissue-based assays
that may not be sensitive enough to detect rare cell death
events in a whole retina. Thus, even in models of RP that
undergo a transient increased rate of photoreceptor death,
single-cell assays or methods that provide cellular resolution
have been proposed.25 Light-induced retinal damage, however,
can trigger a synchronized and massive burst of photoreceptor
cell death that facilitates the characterization of activated cell
signaling pathways.26 Among the subset of RHO-ADRP models
with increased light sensitivity (for review, see Ref. 22,
Supplementary Table S1), the RHO T4R dog retina undergoes
rapid and synchronized cell death following a 1-minute
duration exposure to white light at levels encountered under
normal environmental or clinical conditions.

We have previously shown that clinical fundus photography
of RHO T4R dogs triggers an acute retinal degeneration9 that is
not activator protein 1 (AP-1) dependent.20,21 In subsequent
publications, we have used a 1-minute exposure to 1 mW/cm2

of white light delivered by a Ganzfeld dome to initiate rapid
photoreceptor cell death22,23 and ruled out the involvement of
an endoplasmic-reticulum (ER) stress response.23 Here, we
show by TUNEL assay that the cell-death pattern in the ONL
using a Ganzfeld stimulator at 1 mW/cm2 was very similar to
that initiated after fundus photography. However, we were able
to achieve more widespread retinal damage with the Ganzfeld
stimulator compared with the fundus camera and in a much
shorter period of time (1 minute by Ganzfeld illumination); in
contrast, comparable damage was obtained by fundus photog-
raphy where ~10-lsec duration flashes were delivered over a
5- to 7-minute time period for a total cumulative exposure
duration of ~150 to 170 lsec. As previously shown,22 light
exposure caused more ONL cell death in the tapetal region
versus the nontapetal area. This topographic difference is
expected as the tapetum lucidum, a biologic reflector system
found in various vertebrates that are active under dim light
environment, increases photoreceptor photon catch by
reflecting light back onto the OS.27 At 24 hours post light
exposure, the central TUNEL-stained nuclei presented an
irregular contour and variable labeling intensities, in contrast
to the peripheral TUNEL-positive nuclei that were circular with
uniform staining. The spatial variability in TUNEL-labeling may
indicate differences in the modes of rod cell death in the
central versus peripheral retina, or alternatively, the irregularly
labeled nuclei may represent those undergoing fragmentation.
Since TUNEL staining is not sufficient to discriminate between
apoptosis, necrosis, or autolytic cell death,28 additional assays
may be needed to identify the possible concomitant occur-
rence of multiple cell death processes.T
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FIGURE 4. Morphometric analysis of retinal changes 2 weeks after light exposure. Spider graphs of ONL thickness and schematic representation of
IS, OS, and RPE structure 2 weeks post light exposure of the LE of RHO T4R mutant dogs. The RE was shielded. Data derived from retinal histologic
sections extending from the edge of the optic nerve head to the superior, inferior, nasal, and temporal ora serrata. T, tapetum.
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FIGURE 5. Retinal sections (H&E stained) showing light-induced alterations in the RPE of the RHO T4R mutant dog. (A) Preserved structure and
morphology of the RPE in the shielded eye (bracket shows RPE thickness). Microphotograph was taken in the nontapetal region, where the RPE is
pigmented. (B) Light-induced RPE hypertrophy (bracket shows RPE thickness) in the nontapetal region of the contralateral eye exposed 2 weeks
earlier. (C) Light-induced disruption and loss of RPE monolayer in the tapetal region of the same eye as shown in (B). Dotted line indicates area
devoid of RPE nuclei and arrows point to single RPE nuclei. The RPE is nonpigmented in the tapetal region.

FIGURE 6. TUNEL and immunohistochemical characterization of light-induced damage 2 weeks post exposure in RHO T4R mutant dogs. (A1–A6)
TUNEL-labeling. (B1–B6) RPE-specific 65 kDa protein (RPE65). (C1–C6) RHO and human Cone Arr. (D1–D6) PKCa and Goa. (E1–E6) Vim. and GFAP.
(F1–F6) Vim. and EdnRB. All images were acquired in central retina. Asterisks (A2–A4) indicate RPE autofluorescence.
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We have recently shown continued ONL loss occurring for
weeks after acute light exposure.22 In the current study, we
now have confirmed that the light-induced death of rods is not
just an acute event but continues for at least 2 weeks post
exposure. This finding strongly supports the occurrence of a
distinct process of cell death happening long after the acute
light insult. Possible causes for this prolonged cell death may
include both passive and active processes such as loss of
structural integrity of the tissue, ‘‘bystander’’ effect,29,30 and
hyperoxia31,32 as well as immune responses to primary cell
death.33,34

The two lowest light intensities (170 lux/0.1 mW/cm2 and
319 lux/0.2 mW/cm2) used in this study for acute exposure
overlap with the range (175–350 lux) of ambient illuminations
in the kennels where these dogs are housed. In our previous
publication,22 we suggest that the mild ONL thinning observed
at 36 weeks (but not at 2 weeks) post exposure to 1 minute of
the lowest light intensity (170 lux/0.1 mW/cm2) may have
been triggered by the acute light insult (continuous exposure
for 1 minute in a dilated eye). However, we did not exclude the
possibility that this might also have been caused by environ-
mental exposure to the standard levels of white light used in
the kennels. In this current study, we confirmed the absence of
photoreceptor loss 2 weeks after a 1-minute exposure to 170
lux/0.1 mW/cm2 but did observe some TUNEL-labeling in the
ONL 24 hours after a 1-minute exposure to 319 lux/0.2 mW/
cm2. We are confident that these short-term (24 hours and 2
weeks) post–light-exposure changes are secondary to the
experimental acute exposure and not to environmental light,
as these were seen exclusively in the exposed but not the
shielded eyes. However, these combined results do suggest
that prolonged housing under ambient illuminations ranging
between 175 and 350 lux may trigger a sustained and slow rate
of retinal degeneration. Ongoing studies in which RHO T4R
mutant dogs are being housed exclusively under dim-red
illumination are being conducted to experimentally confirm
the likely contribution of low levels of environmental white
light to the slow ‘‘natural’’ course of disease.

Several studies have reported that the disruption of rod OS
is one of the very first events of retinal degeneration following
light exposure.35,36 In the RHO T4R model, disruption of rod
OS (but not cones) occurs within 15 minutes of light exposure
at the highest dose (1 mW/cm2 for 1 minute).23 In the current
study, there was disruption of rod OS 24 hours after light
exposure with the two highest doses of light, as evidenced by
the altered labeling of two rod OS integral membrane proteins,
rhodopsin and peripherin, and the loss of immunostaining of G
protein-coupled receptor kinase 1 (GRK1), a peripheral
membrane-associated protein that binds to discs by isopreny-
lation37 and/or through interaction with phosphodiesterase 6D
(PDE6D).38 Two weeks following exposure to the lowest dose
of light (0.1 mW/cm2 for 1 minute), there was shortening of
rod OS length and rhodopsin mislocalization without any
evidence of photoreceptor cell loss. These structural alter-
ations may limit the amounts of RHO protein packaged in discs
and subsequently lead to an overflow in other cellular
compartments. Transient alterations in IS/OS structure has
been previously demonstrated by OCT imaging in RHO T4R
dogs exposed to similar low doses of light, suggesting that a
repair mechanism of OS may take place over time after a
sublethal insult.9

This initial disruption was specific to rods, while cones
appeared to be initially preserved. There was also focal loss of
the integrity of the RPE layer, particularly in the central retina,
and an increase in internuclear spacing in the ONL, both
processes indicative of a collapse of structural integrity of the
outer retinal layers. Breakdown of the outer blood retinal
barrier, which is formed by the tight junctions between RPE

cells, has been associated with edema in retinas exposed to
blue light.39 As the levels of white light used in this current
study did not cause similar alterations in the RPE of WT dogs, it
remains to be determined whether RPE susceptibility to light
in the RHO T4R dogs is mediated via a direct phototoxic effect
or whether it is secondary to the acute damage of mutant rods.

While the initial alterations were seen in the outer retina, an
increase in EdnRB expression in Müller cells was also observed
at 24 hours post light exposure. At two weeks post exposure,
EdnRB immunoreactivity was present in the INL, in particular
in cell bodies of Müller cells, as well as in the ONL
(Supplementary Fig. S2). To the best of our knowledge, this
is the first time that expression of EdnRB in photoreceptors has
been reported, and it may suggest an interspecies difference as
also found for the receptor of ciliary neurotrophic factor.40

Although increased GFAP immunoreactivity was also seen in
Müller cells, the level of reactive gliosis appeared to be milder
in the T4R light-induced model of retinal degeneration than in
P23H rats or following light damage in BALB/C mice.41,42

Regardless, our observations are consistent with other reports
of increased EdnRB expression after acute light damage42,43

and induction of Müller cell gliosis by a wide variety of retinal
injuries including photoreceptor degeneration.44,45 While we
have not examined the expression of endothelin itself, it has
been shown to be increased in photoreceptors after light
damage as well as in inherited retinal degeneration.42

Endothelin-2 secretion by photoreceptors and its binding to
EdnRB on the surface of Müller cells can induce reactive
gliosis.46

In summary, we have further characterized a light-damage
paradigm using a Ganzfeld stimulator that extends retinal
damage to all four quadrants and induces an acute onset of
widespread rod cell death in a large animal model of RHO-
ADRP. Death of rods begins by 6 hours,23 is very pronounced at
24 hours, and persists at least up to 2 weeks post light
exposure. We also identified various immunohistochemical
markers to assess acute as well as progressive photoreceptor
loss following a single light-exposure event. This sets the stage
to further our efforts20,21,23 at identifying pathogenic mecha-
nisms of light-induced damage as well as to evaluate outcomes
of therapeutic interventions in the RHO T4R model of ADRP.
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