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CSF from Parkinson disease Patients Differentially
Affects Cultured Microglia and Astrocytes
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Abstract

Background: Excessive and abnormal accumulation of alpha-synuclein (a-synuclein) is a factor contributing to
pathogenic cell death in Parkinson’s disease. The purpose of this study, based on earlier observations of Parkinson’s
disease cerebrospinal fluid (PD-CSF) initiated cell death, was to determine the effects of CSF from PD patients on
the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and
astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF,
non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for a-
synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell
growth patterns from day 1-8; a-synuclein density and distribution by antibody tagged 3D model stacked
deconvoluted fluorescent imaging.

Results: After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with
morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures.
Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not
consistently noted. PD-CSF treated microglia showed a significant increase in a-synuclein content by day 4
compared to other treatments (p ≤ 0.02). In microglia only, a-synuclein aggregated and redistributed to peri-
nuclear locations.

Conclusions: Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-
PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and a-synuclein deposition
compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.

Background
Evidence of increased levels of specific cytokines and
growth factors within nigrostriatal dopamine regions of
the brain in Parkinson’s disease (PD) patients, has led to
the belief that PD is the result of immunological responses
that promote an increased synthesis and release of proin-
flammatory cytokines [1-3]. These cytokines have been
shown to affect the quantity and distribution of intracellu-
lar proteins such as a-synuclein in cultured microglia [4].
The exact function of a-synuclein is unknown. However,
there is evidence supporting a vesicular, pre-synaptic role
for a-synuclein in the dopamine transporter system [5-7].
This normally soluble protein is recognized to be a large
component of the Lewy body, the pathologic hallmark of

the disease. What promotes the formation of Lewy body
inclusions is poorly understood, but it has been proposed
that this is a protective pathway in response to failed
mechanisms, such as aggresome degradation of dysfunc-
tional protein [8]. The Lewy body, and its precursor the
Lewy neurite, have been reproducibly traced through the
CNS, resulting in a progressive and predictable pattern of
involvement leading to the staging of sporadic Parkinson’s
disease and the clinical correlation of symptoms with neu-
roanatomical localization [9].
The majority of investigations regarding the patho-

genic mechanisms underlying cell death in PD have
emphasized post-mortem studies, genetically altered ani-
mals and neuronal cultures, but a role for non-neuronal
cells in the pathoetiology of PD by investigations into
glial cell line responses, may lead to a better under-
standing of the role of a-synuclein in cell-cell com-
munication and the neuron-glia relationship in PD.
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Our previous work with cultured microglia cells showed
that after exposure to specific cytokines, a-synuclein
was both redistributed and increased in content, with
the cells becoming prone to enter cell death pathways
[4]. We therefore treated cultured human microglia cells
with PD-CSF to see if we could produce similar results.
The cells responded dramatically, exhibiting reduced
growth, a loss of adhesion, and eventual necrotic death.
Given these findings with cultured microglia, we postu-
lated that effects in other glial cell lines such as astro-
cytes might be similar to those in microglia. Astrocytes
have not been investigated to as great a degree as other
cell types, despite having critical signaling and support
roles in the CNS. Astrocytes are known to be involved
in protection against neurodegeneration, and display
a-synuclein immunoreactivity in cases of sporadic PD
[10-13]. Therefore, the purpose of this study was to con-
tinue a line of research exploring the effects of PD-CSF
and disease control CSF on cultured glial cells, while
comparing outcomes with microglia and astrocytes in
terms of resiliency and protein aggregations and distri-
butions. These two cell types differ in their functions in
the CNS and in their origins, microglia being derived
from bone marrow and functioning primarily as phago-
cytic neuroprotective first responders, whereas astro-
cytes are multi-task cells derived from neurectoderm,
with functions ranging from metabolic buffers and
detoxifiers, to providers of endothelial support and scar
formation. We hypothesized that these two functionally
diverse cell lines would both succumb to PD-CSF treat-
ments, but different responses would occur in protein
losses/changes and ability to overcome these challenges.
Using not only PD-CSF, but also non-PD disease control
CSF and no-CSF treatments, expands our limited
knowledge of cellular responses in PD. Previous studies
have shown the ‘toxicity’ of PD-CSF on adrenal medulla
tumor cells and retardation of cell growth [14]. Since
1995, it has been known that PD-CSF contains factors
which result in dopaminergic neuron distress and
growth inhibition [15,16]. However, the role of non-neu-
ronal cells in disease progression has been studied to a
lesser degree, even though their roles in signaling and
neuron support are well established.

Results and Discussion
Cultured microglia cells growth patterns
Microglia cells showed a reduced rate of growth following
PD-CSF treatment, as well as diverse morphological
changes that included cellular blebbing, but these observa-
tions were not apparent in disease control CSF treated or
control (no-CSF) microglia cultures. Figure 1 demon-
strates that by day four control cells had grown to conflu-
ence, whereas PD-CSF treated microglia were sparse and
non-confluent. Disease control CSF treated cells had a

reduced growth rate, but overt changes in cell morphology
were not apparent. By day seven, after the addition of
fresh culture medium, all cell groups showed substantial
renewed growth and viability (Magnification ×400).

Cultured astrocytes cell growth patterns
Figure 2 illustrates variable and minimal changes in mor-
phology of the astrocyte cultures. PD-CSF treated astro-
cytes displayed a slower growth rate than the microglia.
However, when disease control CSF was added to astro-
cyte cultures, the growth rate was much higher than that
in the PD-CSF treated cells, but slower than the no-CSF
treated cultures. Cell growth for cultured astrocytes con-
tinued at a slower rate following exposure to PD-CSF
even after addition of fresh medium, which did support
some increased growth (Magnification ×400).

a-synuclein distribution in microglia
As seen in Figure 3 the intracellular content of a-synu-
clein following PD-CSF treatment, compared to disease

Figure 1 Photographs of cell growth of cultured microglia
showing that by day 4, controls had grown to confluence,
whereas PD-CSF treated cells had not. Disease (neurological)
control CSF treated cells had a reduced growth rate. After addition
of fresh growth medium (Day 7) all cell groups showed substantial
growth. Cell count per frame is in lower left corner; TNTC = too
numerous to count. Magnification ×100.
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control CSF treated and no-CSF controls, was signifi-
cantly increased (p < 0.05 for all comparisons; 1575 ±
1225 v 513 ± 235 v 618 ± 197, PD v control disease v
control; pixel densities, n = 8 experiments). However,
what is of note is that a-synuclein protein increases
were in a somewhat random, intracellular locale, not
along the periphery of the cell and clustered to the
nucleus (Magnification ×600).

a-synuclein density in astrocytes
In contrast to microglia cultures, Figure 4 shows that the
a-synuclein density in cultured astrocytes was variably
affected, with no discernable increases in protein content
following various CSF treatments (Control 333 ± 264;
disease-control 480 ± 324; PD-CSF treated 511 ± 261;
pixel densities, n = 8 experiments). Unlike the microglia
cells, the a-synuclein seen at the cell extensions, was
minimally disrupted (Magnification ×600).

a-synuclein content in treated microglia cells
Relative densities of a-synuclein content in cultured
microglia over time (consecutive days 1-4), between the
three treatment groups are shown in Figure 5. PD-CSF
treatment resulted in a rapid, significant increase in a-
synuclein content, compared to both the no-CSF control

and disease control CSF treated cells by days 3 and 4
(p ≤ 0.02).

a-synuclein content in treated astrocytes
In contrast to microglia, Figure 6 illustrates that treated
astrocytes showed modest increases in a-synuclein con-
tent, with a tendency to return to pre-treatment levels
without further additions of CSF. Only the PD-CSF trea-
ted cells revealed significant increases in a-synuclein,
and this was much later, on day 7, than in microglia
(p ≤ 0.05). These later increases were not sustained and
disappeared over the next 2-3 days. These changes are
also shown in the Western blot.

Figure 2 Photographs of astrocyte cultures in which diverse
morphology changes were not evident between the PD-CSF,
control and diseases control CSF groups. With the addition of
disease (neurological) control CSF, a higher growth rate was seen
than that in PD-CSF treated cells, but a lower growth rate than in the
control (no-CSF) treated cultures. Cell count per frame is in lower left
corner; TNTC = too numerous to count. Magnification ×100.

Figure 3 Fluorescence deconvolution microscopy images
showing an increased density of a-synuclein in microglia
following PD-CSF treatment, but not in neurological disease
control CSF and no-CSF controls. Red = a-synuclein; blue = DAPI
(nuclei); green = filamentous actin. Magnification ×600.

Figure 4 a-Synuclein density in astrocytes, a-Synuclein
distribution patterns were not different between treatment
groups. Red = a-synuclein; blue = DAPI (nuclei); green =
filamentous actin. Magnification ×600.
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a-synuclein distribution in modeled microglia and
astrocyte cells
Figure 7 shows three models of cultured cells. Panels A
and B are images of microglia before and after treatment
with PD-CSF to definitively reveal the changes in both
content and distribution of the a-synuclein. Note that
treatment with PD-CSF causes the normal peripherally
located protein (red; white arrows, Image A) to aggre-
gate and become peri- or juxta-nuclear in location cor-
responding to the increased cellular content shown in
Figure 6 (Image B). However, the astrocyte shown
(Image C) still retains its component a-synuclein at a
constant level and predominantly in the normal, periph-
eral and cytoplasm distribution patterns, even 7 days
after PD-CSF treatment (blue = nucleus, DAPI probe;
Green = Phallicidin-f actin; red=a-synuclein; model con-
structed from >30 sections: Magnification ×900).

Discussion
Based on our previously reported results with cultured
microglia and cytokines, we postulated that exposure
of these cultured cells to PD-CSF, which has been
reported to contain cytokines, would give similar
results [1]. As a comparison to microglia, which play a

critical role in neurodegenerative disease and may well
be an integral part of the immunologic cascade that
occurs in PD and possibly Alzheimer’s disease, we
chose to culture astrocytes since they have been shown
to play a protective, anti-inflammatory and signaling
role in the brain [17,18,10].
We hypothesized that neuro-toxic effects from PD-CSF

exposure would be specific to the individual cell types
given that they have different roles in the CNS [4,19].
Interest in comparing these two essential CNS cell

types was piqued by reports of microglia-astrocyte inter-
actions in neurodegeneration and the lack of under-
standing of the role of astrocytes in Parkinson’s disease
[20,21]. We therefore undertook a localization-quantifi-
cation direction in our investigations to carry out cell
comparison studies, and found that there were indeed
different outcomes in our two cell lines with regard to
protein content and cell growth responses following
treatments with PD-CSF, a fluid known to be toxic in
cell cultures [14,16].
Our previous research reported the effects of cyto-

kines on both protein aggregations in cultured cells and
resulting cell viability. Results revealed that glial cells
were not only deleteriously affected by sustained and
high-dose cytokine treatments, but that these changes
were continuous by exposure to high doses, in regard to
both protein localizations and protein content [4,19].
We therefore wanted to determine the effects of PD-
CSF treatments on cultured glial cells, while comparing
outcomes to changes seen in cultured astrocytes.
While both cell types showed somewhat similar altera-

tions in growth patterns, with astrocytes growing at a
slower rate, dramatic changes were seen in glial cell
morphology, with evidence of cellular blebbing and a
much decreased growth rate, suggesting their greater
susceptibility to agents such as CD14 or secreted alpha-
synuclein [18,19]. Furthermore, the two cell types
revealed contrasting outcomes when a-synuclein distri-
butions were compared following exposure to PD-CSF.
Astrocytes revealed minimal changes in distributions of
a-synuclein, while microglial cells exhibited a marked
change from a diffuse distribution pattern throughout
the cytoplasm and along the plasma membrane, to a
dense, peri-nuclear aggregation. Whereas astrocytes did
not reveal defined changes in a-synuclein protein densi-
ties, glial cells did demonstrate increasing amounts of
the protein after PD-CSF treatment, amounts that were
significantly higher than those found in both control
(media only) and disease control CSF treated cells on
day 4 post-treatment. Additionally, these increases in
a-synuclein content were concurrent with reduced glial
cell growth, suggesting that the different outcomes
might reflect diverse roles for a-synuclein in the two
cells types and lending support to reports of over

Figure 5 Histogram to show changes in a-synuclein content of
cultured microglial cells for all treatment groups over
consecutive days 1-4. Treatment with PD-CSF resulted in
significant increases of a-synuclein content Day 3 *, Day 4 **; (p <
0.02) when compared to control and neurologic disease control CSF
treated cells (n = 8).
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expression of a-synuclein by genomic multiplications
leading to Parkinsonism [21-25]. Excess a-synuclein
causes deleterious effects in cultured glia, and infers dis-
ruptions in cellular machinery involved in membrane
trafficking, chaperon-mediated autophagy, or via the

production of excessive amounts of reactive oxygen spe-
cies leading to oxidative damage [26,27]. In contrast,
astrocytes appear to be more resilient to PD-CSF assault
and somewhat immune to protein aggregations, thereby
suggesting that astrocyte protection of neurons might be

Figure 6 Histogram demonstrating changes in a-synuclein content of cultured astrocytes of all treatment groups over the course of
the experiment. On day 7 there was a significant (p < 0.05) increase in a-synuclein content in the PD-CSF treated astrocytes, compared to the
neurological disease control CSF treated cells, but all cells showed a trend to a return to baseline of a-synuclein content (n = 8). Western blot of
protein levels is included for comparison.
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sustained under attacks from such factors as soluble
a-synuclein, astrocyte originating prostaglandins and
other noxious compounds [28-30]. These findings also
give support to the possibility that astrocytes, in which
a-synuclein plays a role in fatty acid uptake and traffick-
ing, suffer dire consequences to their membrane func-
tionality, rather than in their signaling role [23].
Due to the results of this study revealing an apparent

resiliency of astrocytes, our future research will include a
focus on changes in cell adhesion properties as a cause of
neurodegeneration, the role of glial derived neurotrophic
factor (GDNF) in PD and cellular protection, and the co-
culturing of CNS cells to display neuroprotective effects of
GDNF and the proactive role of astrocytes in neurodegen-
eration [31,32]. Isolation and identification of circulating
factors involved in chronic neurological diseases is an
ongoing task, but the roles of specific cells and their
diverse reactions to PD-CSF treatments revealed by these
comparative studies are important in not only understand-
ing the interactions between cells in neurodegeneration,
but possibly by refocusing research to pathways and
mechanisms that can halt the loss of dopaminergic neu-
rons by looking at other cell types. Sporadic PD has a vari-
able phenotypic expression and rate of progression, no
biological marker exists and as such the diagnosis is made
clinically, being solely dependent on symptoms and signs
of motor dysfunction from striato-nigral failure [33].
Nonetheless, our PD patient population in this study was
at least seven years post their PD diagnosis and in the off
medicine state when CSF was obtained, placing them

uniformly in a moderately severe stage of the disease. In
order to exclude non-specific effects, we used neurological
disease controls or non-PD CSF for comparison, samples
that were harvested and stored similarly.

Conclusion
To summarize, these findings show that not all cell
types in the CNS react in a similar manner to exposure
to CSF from PD patients. The data suggest that a con-
stituent, or constituents, specific to PD-CSF, leads to
cell growth retardation and exerts specific and possibly
unique effects on a-synuclein distribution and densities
in multiple cell types, thus disrupting multiple pathways.
Previous results combined with those presented here,

illustrate the important role a-synuclein plays in the
pathology of PD and the profound changes that occur
due to exposure to PD-CSF and/or cytokines [4,20].
Apparent recovery of the microglia over time suggests
that the cells appear to flirt with a death pathway, but
are able to overcome the low-dose/initial insult of PD-
CSF and cytokine treatments, and return to a robust
growth rate comparable to untreated cells. Whether this
recovery is due to initiation of protective cellular
mechanisms such as the release of GDNF, or to changes
in the binding of toxic agents, needs further studying,
particularly as a possible therapeutic concern [34].
This study reveals different responses to PD-CSF in

each of two CNS cell types, with a-synuclein protein
aggregations and redistribution leading to inevitable,
eventual, cell death following disruptions in cell-cell
communication due to loss of adhesion properties in
microglia. In contrast, astrocytes, whose function is to
provide endothelial support as part of the blood brain
barrier, and transport fatty acids, do not succumb to
PD-CSF exposure in such a deleterious and catastrophic
manner and these diverse cellular responses show trends
that, if properly delineated, might lead to the develop-
ment of neuroprotective therapies, enhancing cell adap-
tation mechanisms and targeting the induction of
protective and recovery pathways for improved cell sur-
vival outcomes. A role for a-synuclein in cell-cell com-
munication and/or adhesion is implied by our findings,
and provides support for the hypothesis of excess or
abnormal accumulation of a-synuclein in the neurode-
generative process leading to disruption of microglia
mediated cell signaling. Astrocytes on the other hand,
appear to be more resistant to PD-CSF treatment, which
may reflect a less critical role of a-synuclein in the nor-
mal functions of these cells, but indicates an important
role in endothelial support.

Methods
Microglia cells (human brain glioblastoma cells; ATCC
Grade III tumor; #HTB15) were cultured and grown to

Figure 7 Microglia models showing a-synuclein locations. 3D
models of stacked deconvoluted acquisitions to show the initial
peripheral localization of a-synuclein in microglia (Image A), which
becomes aggregated and peri-nuclear or juxta-nuclear following
PD-CSF treatment (Image B). Astrocytes (Image C), still demonstrate
peripheral a-synuclein and minimal aggregation, even after seven
days of treatment (Magnification × 900).
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confluency (3-5 days) in Dulbecco’s Modified Eagles
Medium (DMEM) containing 4 mM L-glutamine, 1.5 g/L
sodium bicarbonate, 4.5 g/L glucose, 10% fetal bovine
serum and 1% Penicillin/Streptomycin. Frozen cell stock
was split 10 times and 6 plates from each split were used
per experiment. Human astrocytes were obtained from
fetal brain tissue (Clonexpress, Inc., Gaithersburg, MD)
and grown to confluency (2-5 days) in 50:50 DMEM/F12
containing 5% fetal bovine serum, 1% Penicillin/Strepto-
mycin, and 10 ng/ml of both epidermal growth factor
and basic fibroblast growth factor. Astrocytes were split 5
times from frozen stock and 6 plates per split were cul-
tured. Cells were washed with 1× phosphate buffered sal-
ine (PBS) and isolated with 0.25% trypsin/0.03% EDTA
for subculturing. Cell lines were replenished with fresh
media every 2 days or frozen in complete growth med-
ium with 5% dimethyl sulfoxide for later use.

Cerebrospinal fluid (CSF)
IRB approved informed written consent was obtained for
CSF samples used in this study. CSF was obtained by lum-
bar puncture, collected in 2 ml tubes under sterile condi-
tions, immediately placed on dry ice, then de-identified
and stored at -80°. PD-CSF came from adult men and
women (age range 55-73 years; n = 13; median age
64 years, 10 men and 3 women), who were in the off-med-
icine state (no PD medicines ≥ 12 hours) and who had car-
ried the diagnosis of sporadic PD for over 7 years. The
diagnosis was made by a Movement Disorders specialist
[33]. Disease control CSF came from adult men and
women (n = 5) with an age range of 45-68 year (median
age 62 years; 4 men, 1 woman) who did not have PD and
had no clinical or laboratory evidence of a neurodegenera-
tive disease, or an active infectious, inflammatory process.
Non-PD neurological disease controls included patients
with spastic hypertonia from late stroke, hydrocephalus, or
spinal cord injury (n = 5).

Cell Growth, treatment, and cell count measures
Cells were split and grown to confluency in petri dishes
containing glass cover slips, moved to dishes containing
fresh culture medium and CSF was added to media at a
ratio of 1:6, (1 ml CSF plus 6 ml media). On specified days,
cover slips were removed from each treated group together
with one untreated control, photographed using a Nikon
Labphoto-2 microscope equipped with a MotiCam (Motic,
Richmond, BC, Canada) at a magnification of 160× and
placed on ice. Cell count stereology was via Microsoft
Paint (Microsoft Corp., Redmond, WA, USA). Three fields
from each treatment were imaged per experiment.

Fluorescent staining
Cover slips were probed with Texas Red for a-Synuclein,
DAPI for nuclei and FITC for actin (Invitrogen-

Molecular Probes, Eugene, OR, USA). Immunofluores-
cence staining involved fixation in 3.7% formaldehyde,
rinsing in 1× PBS, permeabilization in 0.5% Triton,
followed by a 1× PBS rinse. The cover slips were incu-
bated with 10% goat serum at 37°C for 45 minutes to
decrease non-specific antibody binding. Samples were
subsequently incubated with a-synuclein antibody in
10% goat serum for 30 minutes at 37°C. Secondary anti-
body, either a Rabbit polyclonal or a Mouse monoclonal
((Santa Cruz Biotechnology, Santa Cruz, CA, USA;
Abcam, Cambridge, UK) was added to 10% Goat Serum
in 0.05% Tween and incubated with the samples for
30 minutes at 37°C. Finally, the cover slips were counter-
stained with DAPI/FITC for 5 minutes.

Deconvolution fluorescence microscopy
Deconvolution fluorescence microscopy and 3D image
reconstructions of a-synuclein, actin and nuclei were
generated as previously described [4,20,35]. Images were
saved as TIFF files and treatment comparison statistical
analyses (1 way ANOVA) of both cell count and
a-synuclein densities (pixel numbers) were made using
Corel ((Ottawa, Ontario, Canada) and SigmaStat soft-
ware (SPSS, Chicago, IL, USA).

Western blot analysis
Approximately 2.0 × 106 Human Astrocytes (Cat# HAST
040, Clonexpress, Gaithersburg, MD) and Human Glial-
blastoma cells, U-118 MG (Cat# HTB-15, ATCC, Mana-
ssas, VA) were treated with 300 μl of 1× sample buffer
(2X = 10.0 ml of 10% SDS, 4.0 ml 1 M Tris-Cl pH = 6.8,
7.5 ml Glycerol and 45.5 ml ddH2O) diluted 1:1 in 1× PBS
and boiled for 5 minutes. Samples were sonicated for
20 minutes then centrifuged for 10 minutes at 2000 rpm
(Approximately 650-850 × g). Supernatant was collected
and the pellet discarded. Protein concentrations were mea-
sured with a Pierce BCA Protein Assay Kit on a Molecular
Devices Spectra Max 250 (Molecular Devices, Sunnyvale,
CA) reading at 562 nm. Samples were separated on a 10%
polyacrylamide gel (BioRad, Hercules, CA) in a BioRad
Criterion apparatus, in 1× running buffer (10X = 30 g/L
Tris, 144 g/L Glycine and 10.0 g/L SDS) at 60volts for
20 minutes, another 20 minutes at 80volts, and then
100volts for 1.5 hours on ice. Proteins from the gel were
transferred to a PVDF membrane (BioRad) in 1× transfer
buffer (10X = 30 g/L Tris and 144 g/L Glycine) at 60volts
for 1 hour on ice. The membrane was blocked with casein
(Rockland Blotto Dry Milk, Gilbertsville, PA) in 1× TBS
buffer (10X = 2.0 g/L KCL, 30.0 g/L Tris Base) with
1.0 ml/L Tween-20 (TTBS) overnight at 4°C with shaking.
The primary antibody, Mab for Alpha-Synuclein, clone-
3H2897 (Cat# sc-69977, Santa Cruz Biotechnology, Santa
Cruz, CA) was diluted 1:1000 in powdered milk/TTBS
and incubated with the membrane on a rocker for 3 hours
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at 4°C. The membrane was washed 4 times in TTBS for
10 minutes with shaking then the secondary antibody,
Goat anti-Mouse IgG-HPR (Cat# sc-2005 Santa Cruz Bio-
technology) was diluted approximately 1:5000 in Casein/
TTBS and incubated for 1.5 hours with shaking at 4°C.
The membrane was again washed 4 times in TTBS for
10 min. with shaking, blotted dry and incubated in Pierce
ECL Western Blotting Substrate (Product #32209, Thermo
Scientific, Rockford, IL) at a 1:1 ratio of Luminol Enhan-
cer:Peroxide Solution for 2 minutes, blotted dry and
placed in a plastic bag. The membrane was exposed to
Fisher B Plus Full Blue photographic film (Fisher, Hanover
Park, IL) for 10 minutes, and then developed on a Kodak
OptO Max 2000 Developer (Kodak, Rochester, NY).
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