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Abstract: Esophageal adenocarcinoma (EAC) is a deadly cancer that is rising rapidly in incidence. The
early detection of EAC with curative intervention greatly improves the prognoses of patients. A scan-
ning fiber endoscope (SFE) using fluorescence-labeled peptides that bind rapidly to epidermal growth
factor receptors showed a promising performance for early EAC detection. Target-to-background
(T/B) ratios were calculated to quantify the fluorescence images for neoplasia lesion classification.
This T/B calculation is generally based on lesion segmentation with the Chan–Vese algorithm, which
may require hyperparameter adjustment when segmenting frames with different brightness and
contrasts, which impedes automation to real-time video. Deep learning models are more robust to
these changes, while accurate pixel-level segmentation ground truth is challenging to establish in the
medical field. Since within our dataset the ground truth contained only a frame-level diagnosis, we
proposed a computer-aided diagnosis (CAD) system to calculate the T/B ratio in real time. A two-step
process using convolutional neural networks (CNNs) was developed to achieve automatic suspicious
frame selection and lesion segmentation for T/B calculation. In the segmentation model training for
Step 2, the lesion labels were generated with a manually tuned Chan–Vese algorithm using the labeled
and predicted suspicious frames from Step 1. In Step 1, we designed and trained deep CNNs to select
suspicious frames using a diverse and representative set of 3427 SFE images collected from 25 patient
videos from two clinical trials. We tested the models on 1039 images from 10 different SFE patient
videos and achieved a sensitivity of 96.4%, a specificity of 96.6%, a precision of 95.5%, and an area
under the receiver operating characteristic curve of 0.989. In Step 2, 1006 frames containing suspicious
lesions were used for training for fluorescence target segmentation. The segmentation models were
tested on two clinical datasets with 100 SFE frames each and achieved mean intersection-over-union
values of 0.89 and 0.88, respectively. The T/B ratio calculations based on our segmentation results
were similar to the manually tuned Chan–Vese algorithm, which were 1.71 ± 0.22 and 1.72 ± 0.28,
respectively, with a p-value of 0.872. With the graphic processing unit (GPU), the proposed two-step
CAD system achieved 50 fps for frame selection and 15 fps for segmentation and T/B calculation,
which showed that the frame rejection in Step 1 improved the diagnostic efficiency. This CAD system
with T/B ratio as the real-time indicator is designed to guide biopsies and surgeries and to serve as a
reliable second observer to localize and outline suspicious lesions highlighted by fluorescence probes
topically applied in organs where cancer originates in the epithelia.

Keywords: cancer detection; CAD; deep learning; real time; segmentation; multimodal fluorescence
endoscopy
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1. Introduction

Esophageal cancer is the eighth most common cancer in the world. With a poor 5-year
survival rate of less than 20%, this cancer ranks sixth in mortality worldwide [1]. Esophageal
adenocarcinoma (EAC), the prevalent subtype of esophageal cancer in developed countries,
is rising in incidence due to increased risk factors such as gastroesophageal reflux disease
and obesity [2,3]. Barrett’s esophagus (BE), a known precursor for EAC, transforms via
low-grade dysplasia (LGD) and high-grade dysplasia (HGD) before progressing to EAC [4].
Due to the lack of an efficient early detection method for Barrett’s neoplasia, EAC is usually
diagnosed at an advanced stage with poor patient prognosis.

Standard endoscopy screening with white light illumination and random, four-quadrant
biopsy is recommended for cancer surveillance in BE patients but is labor-intensive and lim-
ited by sampling error [5]. Novel endoscopic imaging technologies with molecular agents
targeting cancer-specific biomarkers have been developed for early EAC detection [6]. In
our previous studies, a scanning fiber endoscope (SFE) with fluorescence-labeled peptides
has demonstrated feasibility to visualize the expressions of EGFR and ErbB2 for Barrett’s
neoplasia detection [7,8]. To quantify the fluorescence images, target-to-background (T/B)
ratios were calculated. These T/B ratios measured the ratios between the average intensities
of high-contrast fluorescence targets and the neighboring background regions [7]. This
quantitative ratio can be more important for more widespread use of fluorescence molecular
probes during cancer surveillance and screening without an expert endoscopist. In this
case, a computer-aided diagnosis (CAD) system with real-time and automatic T/B ratio
calculation can serve as a reliable trained observer to localize and outline suspicious lesions
for biopsy guidance and cancer detection. This real-time T/B calculation is limited by the
speed of target segmentation. Currently, the Chan–Vese algorithm is applied to segment
the fluorescence targets, with speed limited to only 2–3 frames/s [9]. Since the Chan–Vese
approach evolves the level set iteratively to minimize the energy function, the algorithm
is not easily computed in parallel processing, which impedes real-time computation. In
addition, hyperparameters need to be adjusted for in the Chan–Vese algorithm when the
contrast and brightness of the images change, which makes automatic T/B calculation more
difficult. Moreover, to achieve this automatic CAD system, an automatic frame selection
is needed to reject frames with diverse image artifacts, including (1) saturation, (2) dye
pooling, (3) air bubbles, and (4) instruments (mother endoscope), as well as to select frames
with suspicious lesions for further segmentation and T/B quantification, which has been
performed manually in our previous studies [7,8].

Deep learning, a machine-learning subfield, has been successfully applied to many ar-
eas of science and technology, including computer vision [10,11], speech recognition [12,13],
games [14], and bioinformatics [15], and has been expanded to the field of medical image
analysis. Recently, there have been significant developments in computer-aided detec-
tion and diagnosis using deep-learning techniques in various medical-imaging modalities,
e.g., MRI, computed tomography, and ultrasounds [16,17]. The main contribution of deep
learning in medical image analysis is mainly around two topics: (1) detection and classifica-
tion, and (2) localization and segmentation.

1.1. Detection and Classification

Convolutional neural networks (CNNs) have become a state-of-the-art tool for medical
image classification and have been widely used for cancer classification. Litjens et al.
used a CNN to detect cancer areas from H-and-E-stained whole slides for prostate and
breast cancer detection. All the slides containing prostate cancer and metastases of breast
cancer could be identified automatically, while 30–40% of the slides containing benign
and normal tissue could be excluded without any human intervention [18]. Ardila et al.
proposed end-to-end lung cancer screening with three-dimensional deep learning on low-
dose chest computed tomography and achieved a state-of-the-art performance, with a
94.4% area under the curve (AUC) on 6716 National Lung Cancer Screening Trial cases [19].
Kooi et al. showed that a CNN model trained on a large dataset of mammographic
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lesions (45,000 images) outperformed a state-of-the art CAD system trained using manually
designed features (respective AUC: 92.9% vs. 90.6%) [20].

Localization and Segmentation

Another contribution of deep learning to the medical-imaging field is the potential to
improve the speed and accuracy of cancer localization and segmentation in clinical settings.
A CNN-based algorithm was applied for the automatic localization and segmentation of
rectal cancers on multiparametric MR imaging, with segmentation results comparable to
those manually labeled by experts and a Dice similarity of 0.70 [21]. A hybrid network that
fused DenseNet and UNet [22] together achieved a competitive performance for liver and
tumor segmentation from 3D CT volumes. Features from both inter- and intraslices were
extracted and jointed together for better 3D segmentation [23]. A two-pathway CNN that
extracted both local and global contexts was applied to segment brain tumors from MRI
scans and showed improved accuracy and speed over other algorithms reported on the
2013 BRATS [24].

There has also been an increasing number of studies that have applied deep learn-
ing to advance endoscopic imaging [25–28]. With the development of massive parallel
architecture, or graphic processing units (GPUs), deep-learning techniques have demon-
strated promising results in real-time endoscopic cancer surveillance [25,26]. Wang et al.
developed a deep-learning algorithm by training it with 5545 colonoscopy images from
1290 patients for polyp detection and localization, with a processing speed of 25 frames
per second. The algorithm achieved 94.38% sensitivity and 95.92% specificity validated
on 27,113 colonoscopy images [25]. Although the segmentation of fluorescence images
remains challenging due to the “patchy” appearance of the fluorescence targets, nonuni-
form intensities in both targets and backgrounds, and losses in contrast and resolution
due to the scattering of light from biological tissue, there have been deep-learning models
showing promising results for nucleus segmentation in fluorescence microscopy [29,30].
The robustness and real-time capability of deep learning allow real-time and automatic
T/B calculation, while the training of deep-learning models generally requires a dataset
with pixel-level lesion labels as ground truth [29].

In this paper, we present the development and validation of our deep-learning-based
pipeline for automatic and real-time T/B calculation with frame-level diagnosis as ground
truth only, which can be embedded in a CAD system for cancer surveillance and screening
using fluorescence endoscopy with molecular agents. The proposed pipeline has two steps,
with real-time and automatic suspicious frame selection in Step 1 and segmentation and
T/B quantification in Step 2. The use of the T/B ratio preserves the clinically validated
quantitative neoplastic lesion analysis for classification, unlike pure “black box” approaches
to cancer detection and classification [31]. In Step 1, the frame-based diagnostic ground
truth is used for training, and predicted suspicious frames in test videos and originally
labelled frames can be combined as a larger segmentation dataset for Step 2. The labels
of the segmentation training set are generated by a manually tuned Chan–Vese algorithm.
The labor is reduced for labelling more nondiagnostic frames by looking into the predicted
suspicious frames only.

The speed of Step 1 in our pipeline reaches 50 fps, and Step 2 is 15 fps. The efficient
frame selection in Step 1 further improves the real-time capability of the T/B ratio diagnosis
compared with the segmentation models in Step 2 only. To the best of our knowledge, there
is no deep-learning-based CAD system for wide-field fluorescence endoscopy to provide
(1) real-time suspicious frame selection or (2) real-time and automatic quantification using
T/B ratios. In the experiment, we validate each step of the system in two clinical studies
using fluorescence-labeled peptides for Barrett’s neoplasia detection.

2. Materials and Methods

The whole CAD system could be divided into steps: (1) a suspicious frame selection
model and (2) fluorescence target segmentation. The segmented targets were then used
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to generate a 30-pixel-wide background via morphological operations. T/B ratios were
calculated from the mean intensities of each region. The pipeline is shown in Figure 1.
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Figure 1. Overall CAD pipeline for automatic and real-time T/B calculation with two steps:
(1) suspicious frame selection model and (2) fluorescence target segmentation model.

We trained different CNN architectures as backbones to extract features for the fol-
lowing tasks: (1) classification and (2) segmentation. These CNN architectures usually
consisted of the following layers: convolutional layers, batch normalization layers, activa-
tion layers, pooling layers, and skip connection layers. All these layers were assembled to
form different backbone architectures for feature extraction. In this paper, two different
backbone architectures, MobileNetV2 [32] and Xception [33], were used.

2.1. Suspicious Frame Selection Model

Network architectures with Xception or MobileNetV2 backbones, followed by a global
average pooling layer and 2 fully connected layers, were applied for suspicious frame
selection. The whole architecture for frame selection is shown in Figure 2.
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Figure 2. Suspicious frame selection model architecture with MobileNetV2 backbone.

2.2. Fluorescence Target Segmentation Model

Architectures for semantic segmentation usually consist of two parts: an encoder and
a decoder. The encoder compresses the input image into smaller vectors with context
information. On the other hand, the decoder expands the extracted information and
reconstructs an output with the size of the original input image to obtain a pixel-level
classification. In this study, 2 different architectures, UNet and BiSeNet, were evaluated for
fluorescence target segmentation.
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UNet [22] consists of a symmetric encoder and decoder. The encoder extracts feature
vectors from the input images. The decoder combines spatial information from different
levels with up-convoluted context information. In this study, Xception and MobileNetV2
were used as backbones to extract features for the encoder. Figure 3 shows an example of
the UNet architecture with the MobileNetV2 backbone.
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Figure 3. UNet architecture with MobileNetV2 backbone for fluorescence target segmentation.

BiSeNet33 contains two pathways, a spatial path with a small stride to preserve
the spatial information and to generate high-resolution features and a context path as
the encoder to obtain a sufficient receptive field and to extract context information for
segmentation. Xception and MobileNetV2 were used as backbones to extract features
within the context path. An attention refinement module was introduced to refine the
features of the last two stages of the context path. A feature fusion module was introduced
to combine features from the two pathways efficiently. The overall architecture of BiSeNet
is shown in Figure 4.
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2.3. Regularization

Different training techniques were applied to decrease overfitting and to improve the
model performance without sacrificing the training cost. In this study, data augmentation
was applied to increase the variability of the training images. We used 3 different types
of image transformations for augmentation: (1) geometric distortion, (2) brightness and
contrast adjustment, and (3) image blur and noise. For geometric distortion, we used
random scaling, shifting, flipping, and rotating in the full range of 0–90 degrees. For
blur and noise, we used random motion blur, Gaussian blur, and Gaussian noise. All the
augmentation methods mentioned above were pixel-wise adjustments, which retained the
original pixel information. “Early stopping” was applied to avoid overfitting [35]. Models
with the maximum validation accuracy were saved. In addition, we used weights that were
pretrained on the ImageNet data corpus as initialization for our backbone architectures.
Natural images in the ImageNet dataset share fundamental features that can be transferred
to medical images [36].

3. Experiments
3.1. Datasets and Preprocessing

Two datasets from two clinical studies were used for training and testing the deep-
learning models presented in this work:

• The first set contained a total of 15 videos from an in vivo Multiplex imaging study
(NCT03589443) performed in patients with Barrett’s neoplasia. The fluorescence-
labeled peptides of QRH*-Cy5 and KSP*-IRDye800 targeting EGFR and ErbB2, respec-
tively, were topically applied in the lower esophagus. Videos were recorded using
SFE with a resolution of 720 × 720 at 30 Hz. Separate channels were used to record
fluorescence images from QRH*-Cy5 (red) and KSP*-IRDye800 (green), as well as
reflectance (blue). The combined duration of 15 videos was approximately 96 min
(~173,000 frames) [7].

• A separate set contained a total of 20 videos from an in vivo Dimer imaging study
(NCT03852576) performed in patients with Barrett’s neoplasia. Only IRDye800 was
used to label dimer peptide QRH*-KSP*-E3-IRDye800, targeting both EGFR and ErbB2,
and was again topically applied. The NIR fluorescence projected to the green channel
was recorded with reflectance as the blue channel. The combined duration of 20 videos
was approximately 88 min (~158,000 frames) [8].

All the images were preprocessed to have the same format before being passed to
the deep-learning models. First, the individual frames were rescaled to a fixed size of
480 × 480 pixels to reduce the number of operations and to increase the model processing
speeds. Then, the values of the pixels in each frame were normalized by dividing by 255.
For the suspicious region detection task, fluorescence was projected to the green channel
with reflectance as the blue channel. Each image from the Multiplex dataset was converted
to two separate images. For the fluorescence target segmentation task, the fluorescence
channels were extracted and converted to greyscale.

3.2. Model Development

We trained and evaluated the suspicious frame selection model and the fluorescence
target segmentation model separately.

3.2.1. Frame Selection Model

The preprocessed images were passed to the frame selection model and were classified
into two classes: (1) frames containing bright, suspicious lesions and (2) frames containing
a normal esophagus or frames with different artifacts, including dye pooling, air bubbles,
saturation, or an instrument (mother endoscope). The datasets from the two clinical studies
were divided into the following categories.
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Training and validation: 3427 images were extracted from 15 videos of the Multiplex
study and 10 videos from the Dimer study. There were 1475 images with suspicious bright
regions and 1952 images with different artifacts. The 3427 images were then split into
training (83%) and validation (17%) groups under random and stratified sampling.

Testing: 1039 images were extracted from the remaining 10 unused videos from the
Dimer study, which contained 443 images with suspicious bright regions and 596 images
with artifacts.

We augmented the dataset by using different combinations of image transformations
during training. We adjusted the batch size and optimized the initial learning rate for
each backbone architecture individually. We employed the same learning rate schedule
(decreasing by 0.8 every 10 epochs) for each backbone. The networks were trained with the
ADAM optimizer [37] to minimize the binary cross-entropy loss.

In terms of evaluation, area under the curve (AUC) values of the ROC curve were
computed and compared for different combinations of backbone and augmentation tech-
niques over the test set, which measured the model performances irrespective of the chosen
classification threshold. The accuracy, sensitivity, specificity, and precision were calculated
for the model with the highest AUC. A gradient-weighted class activation map (grad-CAM)
was applied to visualize the implicit attention of the trained CNN model. The discrimina-
tive features of the objects were highlighted by the grad-CAM, which provided a direct
interpretation of the network when making its classification [38].

3.2.2. Fluorescence Target Segmentation Model

Different model architectures of BiSeNet or UNet with backbones of MobileNetV2 or
Xception were trained and evaluated for fluorescence target segmentation. Only frames
with suspicious regions were selected from the two clinical studies for the model training
and evaluation.

• Training and validation: 1006 images from 11 videos from the Multiplex study were
randomly separated into training (910) and validation (96) groups;

• Testing A: 100 images were extracted from 4 different videos from the Multiplex study;
• Testing B: 100 images were extracted from the Dimer study.

All the images were paired with a pixel-level annotated segmentation map, which
was used as ground truth for segmentation. The annotated segmentation maps were
generated using the Chan–Vese algorithm. We applied the same training protocol for
training the frame selection model. Different combinations of image augmentation were
evaluated. The batch size and optimized initial learning rate were adjusted for each
model and backbone individually. The ADAM optimizer was used to minimize the sparse,
categorical cross-entropy. The performance was measured in terms of accuracy and pixel
intersection-over-union (IOU) and averaged across the 2 classes [39]:

IOU(A, B) =
A ∩ B
A ∪ B

, (1)

where A is the ground truth and B is the segmented fluorescence target.
Herein, we used a Windows computer with an Intel(R) Core(TM) i7-1065G7 CPU,

a Toshiba NVMe KIOXIA 512 GB SSD, and an NVIDIA RTX 2080 SUPER GPU with a
CUDA 10.0 for training and evaluation. All the experiments were implemented using
Tensorflow [40] software library, an open-source deep-learning library.

4. Results
4.1. Suspicious Frame Selection

The suspicious frame selection results are shown in Table 1. Networks initialized
from weights pretrained on the ImageNet data corpus demonstrated better performances
compared to those starting from random weights. Different combinations of image augmen-
tation techniques were evaluated. Networks with geometric distortions surpassed those
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without geometric distortions by a significant margin (one-tailed paired t-test, p-value).
Neither (1) adjusting the brightness and contrast of the image nor (2) adding noise or blur
to the image during training showed an improvement in model performance. Networks
using the Xception backbone performed slightly better than those with the MobileNetV2
backbone (one-tailed paired t-test, p-value of 0.012).

Table 1. Summary of suspicious frame selection results for different architectures (MobileNetV2 and
Xception) and different combinations of augmentation.

Backbone ImageNet Rotation, Shift,
Scale, Flip

Brightness,
Contrast

Blur, Gaussian
Noise AUC

MobileNetV2

4 4 4 0.926
4 4 4 4 0.976
4 4 4 0.973
4 4 4 0.97
4 4 0.969
4 4 4 0.887
4 4 0.953
4 4 0.926
4 0.915

Xception

4 4 4 4 0.989
4 4 4 0.989
4 4 4 0.986
4 4 0.981
4 4 4 0.95
4 4 0.948
4 4 0.966
4 0.928

At a sensitivity level (true positive rate) of 96.4%, the best model using the Xception
backbone with geometric distortion, brightness, and contrast adjustment augmentation
during training (highlighted in bold in Table 1) had a specificity of 96.6%, a precision of
95.5%, and an overall accuracy of 96.8%. The confusion matrix and the ROC of the test
data are shown in Figure 5. As can be seen, there was a reasonably large range of high
sensitivities, high specificities, and high precisions (all greater than 90%).
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Figure 5. The confusion matrix and ROC curve for the best model (Xception backbone with geometric
distortion, brightness, and contrast adjustment augmentation during training) evaluated over test data.

A grad-CAM was applied to visualize the discriminative features detected by the
network. As can be seen in Figure 6a–d, fluorescence-highlighted lesions from different
locations with different brightness and contrasts were detected and used as features for
classification. Figure 6e–g demonstrated that the trained model correctly distinguished
artifacts such as air bubbles, pooled dye, and the mother endoscope and classified these
frames as noise.
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Figure 6. Examples of suspicious frame selection model visualized using grad-CAM. (a–d) Lesions
from different locations with different brightness and contrasts were detected and used as features for
classification. The heatmaps generated by grad-CAM overlaid well with the lesions. (e) Air bubbles were
detected as artifacts and highlighted by grad-CAM. (f) Dye pooling in gastroesophageal (GE) junction
was detected and classified as noise. (g) Image of the inside of the mother endoscope working channel
was classified as artifact frame in spite of the debris in the top left corner appearing as a suspicious
lesion. The model used features from other regions (highlighted by grad-CAM) for classification.
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4.2. Fluorescence Target Segmentation

A total of 1006 images were used to train and validate the model for the fluorescence
target segmentation task. The test set results, as presented in Tables 2 and 3, showed
the following:

(1) Networks with geometric augmentation during training surpassed those without
geometric augmentation by a significant margin (one-tailed paired t-test, p-value),
which was consistent with our findings for the frame selection model;

(2) Neither (a) adjusting the brightness and contrast of the images nor (b) adding noise or
blur to the images during training showed an improvement in performance;

(3) UNet outperformed BiSeNet in segmentation accuracy (one-tailed paired t-test, p-value);
(4) Using pretrained ImageNet weights as initialization did not improve the performance;
(5) BiSeNet models using the Xception backbone outperformed BiSeNet models using

the MobileNetV2 backbone regarding to accuracy and mIOU (one-tailed paired t-test,
p-value).

Table 2. Summary of fluorescence target segmentation results for BiSeNet model (mIOU: mean IOU
over two classes).

Model +
Backbone

ImageNet Rotation, Shift,
Scale, Flip

Brightness,
Contrast

Blur, Gaussian
Noise

Multiplex Dimer

Accuracy mIOU Accuracy mIOU

BiSeNet +
MobileNetV2

4 4 4 4 0.977 0.868 0.959 0.844
4 4 4 0.977 0.869 0.959 0.849
4 4 4 0.976 0.864 0.962 0.858
4 4 0.973 0.848 0.958 0.846
4 4 4 0.972 0.839 0.954 0.824
4 4 0.97 0.828 0.952 0.824
4 4 0.976 0.864 0.956 0.832
4 0.967 0.818 0.952 0.818

4 4 4 0.977 0.871 0.957 0.841
4 4 0.977 0.87 0.959 0.846
4 4 0.978 0.874 0.964 0.865
4 0.977 0.872 0.962 0.858

4 4 0.968 0.819 0.948 0.805
4 0.968 0.826 0.955 0.831

4 0.971 0.836 0.952 0.817
0.969 0.828 0.954 0.829

BiSeNet +
Xception

4 4 4 4 0.978 0.873 0.964 0.864
4 4 4 0.978 0.874 0.962 0.859
4 4 4 0.978 0.878 0.966 0.873
4 4 0.98 0.886 0.965 0.868
4 4 4 0.973 0.841 0.953 0.821
4 4 0.974 0.85 0.954 0.829
4 4 0.975 0.856 0.957 0.837
4 0.975 0.859 0.955 0.831

4 4 4 0.978 0.873 0.963 0.861
4 4 0.978 0.875 0.962 0.859
4 4 0.98 0.885 0.964 0.865
4 0.979 0.88 0.965 0.87

4 4 0.97 0.827 0.956 0.83
4 0.971 0.833 0.951 0.815

4 0.972 0.84 0.956 0.834
0.972 0.845 0.956 0.833
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Table 3. Summary of fluorescence target segmentation results for UNet model.

Model +
Backbone

ImageNet Rotation, Shift,
Scale, Flip

Brightness,
Contrast

Blur, Gaussian
Noise

Multiplex Dimer

Accuracy mIOU Accuracy mIOU

UNet
+

MobileNetV2

4 4 4 4 0.98 0.889 0.962 0.857
4 4 4 0.982 0.897 0.962 0.862
4 4 4 0.981 0.891 0.968 0.88
4 4 0.979 0.881 0.963 0.863
4 4 4 0.974 0.847 0.955 0.829
4 4 0.973 0.845 0.955 0.83
4 4 0.976 0.865 0.959 0.845
4 0.97 0.829 0.952 0.816

4 4 4 0.979 0.88 0.963 0.865
4 4 0.979 0.877 0.963 0.86
4 4 0.979 0.882 0.967 0.877
4 0.979 0.881 0.964 0.865

4 4 0.972 0.839 0.949 0.81
4 0.97 0.834 0.962 0.857

4 0.972 0.84 0.958 0.844
0.96 0.797 0.957 0.839

UNet
+

Xception

4 4 4 4 0.982 0.897 0.966 0.872
4 4 4 0.979 0.883 0.965 0.87
4 4 4 0.981 0.892 0.966 0.875
4 4 0.978 0.877 0.964 0.867
4 4 4 0.967 0.823 0.954 0.83
4 4 0.972 0.84 0.957 0.838
4 4 0.976 0.862 0.957 0.838
4 0.972 0.845 0.956 0.835

4 4 4 0.981 0.892 0.964 0.866
4 4 0.981 0.893 0.966 0.875
4 4 0.981 0.895 0.966 0.875
4 0.981 0.891 0.966 0.875

4 4 0.969 0.831 0.96 0.852
4 0.971 0.841 0.958 0.844

4 0.973 0.851 0.96 0.85
0.972 0.842 0.957 0.837

Note: mIOU is the mean IOU over two classes.

The UNet model with the MobileNetV2 backbone, geometric distortions, and image
blur and noise augmentation performed better when segmenting the fluorescence images
(highlighted in red in Table 3) and achieved mIOU values of 0.89 and 0.88 on the Multiplex
and Dimer test datasets, respectively. Figure 7 shows examples of fluorescence target
segmentation results tested on the Multiplex and Dimer datasets.

To better evaluate the accuracy of the whole pipeline for T/B calculation, we compared
the T/B ratios calculated using the deep-learning pipeline with those using the Chan–Vese
algorithm. A total of 58 frames with unique, suspicious bright regions were selected from
31 patient videos from the Dimer study. The average T/B ratios from the segmentation
results of our best model for deep learning and the Chan–Vese algorithm were 1.71 ± 0.22
and 1.72 ± 0.28, respectively, with a p-value of 0.872 calculated using a two-tailed paired
t-test. There was no significant difference when comparing the deep-learning T/B ratios
with the Chan–Vese T/B ratios, which meant our segmentation deep-learning model could
reach the accuracy of the labels we used for training.

4.3. Speed

We achieved average frame-processing times of 20 ms for the frame selection task and
42 ms (UNet with MobileNetV2) for the segmentation task with an NVIDIA RTX 2080S
external GPU. In comparison to the ground truth Chen–Vese method, all the deep-learning
methods increased in speed by≥10×. The total processing time of the CAD system for each
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frame, including frame selection, fluorescence target segmentation, and T/B calculation,
was around 70 ms.
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5. Discussion

In this study, a deep-learning CAD pipeline was developed to achieve real-time and
automatic T/B calculation. This research was an extension of our prior work, where we
have shown that the T/B ratio can be used as a quantitative and accurate indicator for
Barrett’s neoplasia detection and localization [7,8]. When combined with fluorescence
endoscopy (SFE) and fluorescence molecular probes, this deep-learning CAD pipeline
could serve as a reliable observer to localize and outline suspicious lesions for guiding
biopsies, which has the potential to greatly improve routine surveillance for BE patients.
Our study highlighted the development of artificial intelligence in fluorescence endoscopy
undergoing clinical trials, specifically SFE for early EAC detection in a limited subject
population at a tertiary referral hospital.

The reported pipeline consisted of two deep-learning models: (1) suspicious frame
selection and (2) fluorescence target segmentation. Frames with suspicious bright regions
were automatically selected, while frames with normal squamous cells or artifacts, includ-
ing dye pooling, air bubbles, saturation, etc., were rejected in the frame selection model.
A CNN model with an Xception backbone for frame selection achieved a uniform and
consistent high performance with a sensitivity of 96.4%, a specificity of 96.6%, a precision
of 95.5%, an overall accuracy 96.8%, and an AUC of 0.989 (Table 1). This suggests that the
model likely offered sufficient sensitivity for selecting suspicious frames for further T/B cal-
culation. To better unmask the “black box” of deep learning and to better understand how
the models made their decisions, a grad-CAM was applied. The features highlighted by
the grad-CAMs showed consistency with those selected by experienced human observers.
As can be seen in Figure 6e,f, frames with air bubbles and dye pooling in the GE junction
were rejected for further quantification since these features could diminish the robustness
of the T/B ratio in esophageal neoplasia detection. On the contrary, frames with patchy
lesions lightened by fluorescence probes were selected. The models learned these features
for classification by themselves.

In an attempt to segment the fluorescence target, UNet and BiSeNet architectures with
Xception and MobileNetV2 backbones were evaluated on two different datasets from two
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clinical studies. Different combinations of augmentation methods were tested to improve
the model performance. As shown in Table 3, the best model, UNet with the MobileNetV2
backbone with added geometric distortions and image blur augmentation during training,
achieved mIOU values of 0.89 and 0.88, respectively, for the Multiplex and Dimer studies.
The T/B ratio calculated from the segmentation results had 1% difference compared with
that calculated from the manually tuned Chan–Vese method, which generated training
labels for our segmentation learning. The segmentation models trained only using images
from one clinical study showed comparable performances to the images from the other
clinical study. This finding demonstrated that the models could be generally applied to
studies using SFE with different molecular probes for cancer detection in the esophagus,
and most likely in the oral cavity [41], bladder [42], and colon [43,44], where topically
applied fluorescence probes demonstrate early detection in the epithelia.

In our training dataset, we only had frame-based diagnostic labels without pixel-level
lesion masks from pathologists. To leverage the classification labels thoroughly and embed
them into the loss function, the suspicious frame selection model was separated. In the
supervised training of the segmentation model, the labels were generated with a manually
fine-tuned Chan–Vese algorithm for different frames. Continued improvements would
be fusing the two-step model into one model for both Barrett’s neoplasia detection and
localization when segmentation labels from pathologists are available. In this case, the
segmentation models can be trained directly on the video frames. Architectures such
as Mask R-CNN [45] and YOLACT [46] could be applied to localize each object in the
image, including EAC and HGD lesions, dye pooling, and forceps. Instance segmentation
masks could also be generated for each neoplasia lesion for T/B calculation. However, this
task would require a relatively large volume of patient data to train the models, which
could eventually be fulfilled when the technique is utilized in a multisite clinical trial
for BE surveillance. Obtaining the pixel-level object masks as data annotations is labor-
intensive, and label noise is a common feature of medical image datasets. The major
sources of label noise include interobserver variability, human annotator error, and errors
in computer-generated labels [47,48]. In addition to changing the network architectures
for noise-labeling specifically [49,50], a large number of studies have kept the original
network and only modified the loss functions [51,52], learning to reweight training data
based on their noise levels [53], exploit data and label consistency [54], and optimize
training procedures [55,56]. In a future study with obtained segmentation labels, further
explorations should be conducted to train with noisy labels.

Regarding the speed of the deep-learning models, we achieved averages of ~20 ms
for suspicious frame selection and ~42 ms for fluorescence target segmentation on images
of 480 × 480 pixels using a single-threaded PC with an NVIDIA RTX 2080S external GPU.
This is comparable to studies where deep learning has been investigated with endoscopic
imaging for real-time cancer detection. By using a multithreaded processing system,
Wang et al. could process at least 25 frames per second (fps) to localize polyps during
clinical colonoscopies [25]. Byrne et al. developed an AI model to differentiate diminutive
adenomas from hyperplastic polyps, with a frame-processing time of 50 ms [57]. Our
CAD system could achieve 50 fps for frame selection. Once the frame was selected for
T/B calculation, additional time was needed for fluorescence target segmentation. The
whole pipeline, including both frame selection and target segmentation, dropped the speed
to ~15 fps. A real-time assistant software should operate at a speed of at least 25 fps
according to PAL and NTSC standards, where video encodings are standardized to 25 or
30 fps [58]. A multithreaded system could be implemented to accelerate the processing
speed. Each thread processed one image at a time. To further accelerate the speed, the input
image could be down-sampled. The models with input images of 224 × 224 pixels could
achieve an average of ~16 ms for suspicious frame selection and ~26 ms for fluorescence
target segmentation, which decreased the processing time by 40%. We believe that future
advances in computer hardware and deep-learning architecture can allow for the use of
even larger input images while preserving real-time capabilities.
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Several training techniques were investigated to improve the model performance.
Weights pretrained on the ImageNet data corpus were used as initialization for the back-
bone architectures, which improved the performance for the frame selection models but not
for the fluorescence target models. The input images for the fluorescence target models con-
tained only a fluorescence channel, while the input images for the frame selection models
contained both fluorescence and reflectance channels. Weights transferred from ImageNet
could be applied to the reflectance channel but not to the fluorescence channel. Different
augmentation techniques were tested, including (1) geometric distortions (2) brightness
and contrast adjustments, and (3) image blur and noise. Looking at Tables 1 and 2, there
was no common combination of augmentations that was optimal for both datasets and
tasks. Only models with geometric distortion augmentation during training demonstrated
significantly improved performances in both suspicious frame selection and fluorescence
target segmentation for both datasets. These geometric distortions overcame the positional
and dimensional biases. On the contrary, (a) adjusting the brightness and contrast of
the image and (b) adding noise or blur to the image during training showed negligible
improvement in performance. However, we did not perform a search for augmentation
hyperparameters. Further optimizations may further improve model performance.

Single-channel fluorescence images containing informative molecular expressions
that were endoscopically invisible with conventional reflectance imaging were used in our
segmentation. However, full-color images do contain important supplementary structural
information on tissues and tumors that can contribute to computer-aided diagnosis and
tumor segmentation. In our future work, full-color and single fluorescence channels are
coregistered during imaging with a multimodal scanning fiber endoscope (mmSFE) [59]
and generate four-channel 30 Hz videos with the same field of view of a 70–100 degree cone
angle, which produces varying spatial resolutions across the depth of focus of 3 to 50 mm
(15 microns to submillimeters, respectively) [60]. Due to the extremely high sensitivity of
photomultiplier light detection on each of the four channels, the total laser power can be
kept below 5 mW to reduce laser safety requirements for the clinical staff.

Adapting state-of-the-art segmentation networks from three-channel to four-channel
input is straightforward by changing the convolution kernel size, but we could not di-
rectly take advantage of transfer learning from large, natural datasets, which increase the
performance when the target dataset is small [61]. Applying transfer learning from an
RGB dataset to a multichannel dataset is not trivial in the sense that additional channels
cannot benefit from the same training as the RGB channels if no large, annotated dataset
with the same additional channels exists [62]. In addition, target lesions from different
modalities can have different characteristics that require feature fusion for more accurate
segmentation. Working with multichannel data has been studied, and different ways
of merging features have been proposed for natural images [63,64]. Segmentation using
multimodality consisting of fusing multiple pieces of information to improve segmentation
in medical fields is also under exploration, where fusing multiple modalities is the key
challenge. According to the fusion strategies, network architectures can be categorized into
input-level (feature level) fusion networks, layer-level (classifier level) fusion networks, and
decision-level fusion networks [65]. Input-level fusion networks are adopted by most exist-
ing multimodal medical image segmentation networks. In this case, multimodality images
are directly integrated in the input space to learn a unified feature representation, which
contains the intrinsic, multimodal representation of the data [66,67]. It is used to support
the learning of a traditional segmentation network. In a layer-level fusion network, images
of each modality are used to learn separate feature sets of their own. These single-modality
features are concatenated and fed to the decision layer to obtain the final segmentation
results [68–70]. Like layer-level fusion, decision-level fusion segmentation networks use
each modality image as the input of the single segmentation network, while in this case
the final outputs of the individual networks are integrated to obtain the segmentation
result. The single network can better exploit the unique information of the corresponding
modality independently, which benefits when multimodal images have little direct com-
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plementary information in their original image spaces due to different image acquisition
techniques [65]. Most of the fusion strategies in this category are based on averaging and
majority voting [71,72]. Decision-level fusion was investigated to achieve a better perfor-
mance on brain tumor segmentation among different fusion strategies because it could
learn complex and complementary feature information from different modalities compared
to input-level fusion networks [73]. To take advantage of different fusion schemes, some
recent works have adopted three schemes simultaneously on the same dataset [66,74].

Despite the promising performance of our CAD system with real-time and automatic
T/B ratio calculation, there were several limitations in this study. One limitation was that
4466 frames from only 35 patient videos were applied for training and testing the models,
which limited the robustness of the models. However, we did not directly classify each
frame as Barrett’s neoplasia or not. Instead, suspicious frames were selected for further T/B
calculation, which did not require a relatively large volume of data containing neoplastic
lesions with various appearances. For the segmentation task, the single foreground object
class (fluorescence) and the high tolerance of the segmentation performance diminished the
effect of the small dataset. In addition, we applied different techniques to further minimize
the effect of the small dataset, e.g., image augmentation and ImageNet pretrained weights
as initialization. Another limitation was that images used for model development were
from patients with advanced BE or a history of neoplasia. A paucity of normal esophagus
tissue limited the generalization of our model to a larger population. In addition, race
and ethnicity could potentially introduce biases to machine-learning models [75]. Future
studies should require larger and more-balanced datasets to assess model robustness
against different medical centers, patient populations, and patient races and ethnicities.

6. Conclusions

We reported the successful development of a deep-learning-based CAD system for
automatic and real-time T/B calculation. This accelerated CAD system based on T/B quan-
tification provided similar high accuracy and faster processing speed (15 fps) compared
with clinical studies using manual post-processing protocols without the use of pixel-level
segmentation ground truth for training. Thus, this demonstration of a potentially more
consistent analysis should be useful in clinical settings in three ways. First, it may serve as
a reliable second observer to guide biopsies with the T/B ratio as a real-time indicator of
lesion extent. Second, the system may be suitable for routine screening or surveillance using
unsedated transnasal or capsule endoscopy, especially in under-served or under-developed
areas where there is a lack of experienced clinicians. Third, it can be integrated into surgical
procedure to provide real-time feedback during treatment. Further clinical studies should
be conducted to determine if Barrett’s neoplasia detection rates may be increased and made
more consistent with the assistance of a real-time CAD system.
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