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ABSTRACT: The structural flexibility of proteins is crucial for
their functions. Many experimental and computational approaches
can probe protein dynamics across a range of time and length-
scales. Integrative approaches synthesize the complementary
outputs of these techniques and provide a comprehensive view of
the dynamic conformational space of proteins, including the
functionally relevant limiting conformational states and transition
pathways between them. Here, we introduce an integrative
paradigm to model the conformational states of multidomain
proteins. As a model system, we use the first two tandem PDZ
domains of postsynaptic density protein 95. First, we utilize
available sequence information collected from genomic databases
to identify potential amino acid interactions in the PDZ1−2
tandem that underlie modeling of the functionally relevant conformations maintained through evolution. This was accomplished
through combination of coarse-grained structural modeling with outputs from direct coupling analysis measuring amino acid
coevolution, a hybrid approach called SBM+DCA. We recapitulated five distinct, experimentally derived PDZ1−2 tandem
conformations. In addition, SBM+DCA unveiled an unidentified, twisted conformation of the PDZ1−2 tandem. Finally, we
implemented an integrative framework for the design of single-molecule Förster resonance energy transfer (smFRET) experiments
incorporating the outputs of SBM+DCA with simulated FRET observables. This resulting FRET network is designed to mutually
resolve the predicted limiting state conformations through global analysis. Using simulated FRET observables, we demonstrate that
structural modeling with the newly designed FRET network is expected to outperform a previously used empirical FRET network at
resolving all states simultaneously. Integrative approaches to experimental design have the potential to provide a new level of detail in
characterizing the evolutionarily conserved conformational landscapes of proteins, and thus new insights into functional relevance of
protein dynamics in biological function.

■ INTRODUCTION
Proteins are flexible biomolecules that can adopt multiple
structural conformations over varied length scales and time
scales.1 The structural dynamics of proteins are often crucial to
their biological functions. Intrinsically disordered proteins and
protein regions represent the extreme of this phenomenon,
often containing no discernible secondary or tertiary fold but
performing varied functions.2−4 Larger proteins often contain
several folded domains connected by flexible disordered
linkers, giving rise to distinct conformations in which the
domains reorient relative to one another5,6 and thus to the
supertertiary structure.7 Such is the case for the post synaptic
density protein of 95 kDa (PSD-95),6 a key protein that
underlies the organization of postsynaptic proteins by bringing
together multiple binding partners. PSD-95 contains five
domains that dynamically exchange between multiple config-
urations.5,6,8 The dynamic behaviors of proteins are
complicated further by the adoption of higher-order protein

complexes.9 Several computational and experimental techni-
ques are available to investigate the structure and dynamics of
protein systems. Molecular dynamics (MD) simulations can
provide an atomistic view into the structural dynamics of
biomolecules. However, computational costs make capturing
large or slow conformational changes challenging or
impractical.10,11 Experimentally, X-ray crystallography12 and
nuclear magnetic resonance (NMR)13 can resolve very high-
resolution, atomistic protein structures. However, ensemble
and time averaging of experimental observables results in loss
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of information about dynamics, or even structures that do not
represent the functional limiting states of a structurally
dynamic protein but instead averages of multiple distinct
conformations.
Single-molecule techniques aim to avoid such ensemble

averaging by probing the characteristics of individual
molecules. Single-molecule Förster resonance energy transfer
(smFRET) can be used to resolve distances between
fluorophores tethered to biomolecular surfaces with Ång-
strom-scale precision.14 Further, smFRET can be used to
characterize both the limiting conformational states of proteins
and dynamic exchange between them when combined with
complementary modeling techniques.15−18 Integrative struc-
tural biology techniques seek to synthesize information from
multiple computational and experimental techniques to obtain
models of biomolecular systems that are consistent across the
time and length scales probed by the individual techni-
ques.19−22 Integration of smFRET with other techniques in
novel integrative approaches has revealed a wealth of
information about dynamic biomolecular systems.16,23−26

Recently, we used structural restraints from FRET experiments
in conjunction with MD simulations to identify two
dynamically exchanging conformations of the PDZ1−2 tandem
of PSD-95 that can explain discrepancies between previously
obtained structures as resulting from dynamic averaging.8

Integrative approaches provide an attractive path forward for
addressing these and other biological questions. Recently, a
database for deposition of biomolecular structures resulting
from hybrid and integrative studies was established as the
wwPDB.27 However, development and implementation of
integrative methodologies present unique challenges for the
accessibility and design of studies and interpretation of results.
Integrative smFRET approaches have been made more
accessible than ever thanks to open science practices in
development of new techniques and open-source platforms for
these studies.15,16,28−30 To further address the challenges
associated with designing and interpreting hybrid smFRET
studies, here we explore the integration of protein sequence
information as a means of predicting structural information for
the design of smFRET experiments that can probe predicted
structural conformations of proteins. We additionally present
this approach as a general workflow and use simulated FRET
data to obtain clearly defined and testable hypothetical results
for the designed experiments.
The amino acid sequences of proteins encode for their

structure, structural dynamics, and functions. Evolutionarily
conserved and coevolving residue positions in protein
sequences belonging to a particular family can thus provide
key insights into the regions of that protein that are relevant to
maintaining its structure and function during evolution. Direct
coupling analysis (DCA) is a technique for quantifying the
degree of direct relationship between pairs of residue positions
in a protein sequence during evolution without influence from
other amino acid positions.31 For each pair of sites, a
theoretical information score for amino acid coevolution, e.g.,
direct information (DI), for each pair of residues can then be
used as predictors for direct contacts and interactions between
amino acids that result both from stable protein native
folds,32−36 multiple alternative protein conformations,11,37,38

and protein−protein interactions.39−42 Here, we combine
DCA-based restraints with coarse-grained physical models of
proteins like structure-based modeling (SBM) simulations to
identify novel potential conformations of the PDZ1−2 tandem

of PSD-95. We further integrate the outcomes of these
simulations into a workflow for design of FRET experiments
through selection of fluorophore labeling sites catered toward
mutually resolving the known and predicted conformations of
the PDZ1−2 tandem. While strides have been made recently,29
the optimal selection of residues for placement of fluorophores
remains an open challenge for design of FRET experiments.
The prediction of novel states, combined with DI from DCA
analysis, allows informed selection of target states as well as
information about amino acids which are important for native
conformations and function, and that should therefore be
avoided in labeling site selection. Thus, the resulting FRET
network, or set of FRET pair labeling sites, should be better
suited both for simultaneously recapitulating the conforma-
tions of interest and for avoiding perturbations to the protein’s
native behavior. Therefore, the synthesis of SBM+DCA with
smFRET may provide a powerful toolset for the identification
and modeling of novel structural conformations and dynamics
in diverse multidomain protein systems.

■ METHODS
Framework. We designed a framework illustrated (see the

“Results and Discussion” section) applied it to the PDZ1−2
tandem. We provide a brief description of the framework and
the details of each of these steps are explained successively.
The MSA of the sequences of protein domain is extracted from
the Pfam database,43 DCA is applied to the MSA to calculate
the parameters eij and hi. These parameters are then used to
score and determine the strong coevolutionary couplings,
which are incorporated into the SBM energy function. The
conformational transitions of a protein from these SBM+DCA
simulations are used to predict the residue positions that could
be involved in the dynamics of a protein. This knowledge is
then applied to FRET network design and experiments.
Data Extraction and Processing. In this study, we

extracted the sequence of the protein from Protein Data Bank
(PDB) (PDB ID: 3GSL) and used it as a seed sequence
(input) for an in-house bash script. Our script uses the input
seed sequence (containing both PDZ1 and 2 domains) and
generates the MSA for both PDZ1−2 based on HMMER44,45
with a 20% gap filtering cut off, i.e., we filtered out the
sequences with more than 20% of the sequence length L of the
protein with contiguous gaps.43 Since we require at least one
structure to run the SBM+DCA model, the crystal structures of
PDZ1−2 tandem of PSD-95 protein with resolution less than 3
Å were obtained from the PDB.46

Direct Coupling Analysis (DCA). PDZ domain family
MSA is arranged in M rows and L columns where M is the
number of sequences and L is the length of each sequence
which is denoted by

= = =A A i L x M(1, ..., ) (1, ..., )i
x

(1)

DCA was applied to the MSA of PDZ domain family using this
mean field version of DCA31 using DCA web-based server or
an in-house MATLAB script to estimate the directly coupled
coevolving residue pairs based on the DI score. DI scores are
estimated based on the effective number of sequences Meff,
which is computed after down-weighting the sequences with
70% identity. These DI pairs from PDZ family MSA were
aligned and mapped back to the residues of the PDZ1−2
tandem protein using an in-house mapping script to visualize
the coevolutionary pairs in the protein structure.
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SBM+DCA Model and Molecular Dynamics (MD)
Simulations. In the SBM+DCA hybrid model, we combined
the SBM energy function from a single experimental structure
of the PDZ1−2 tandem (PDB ID: 3GSL) and incorporated
the DCA couplings into this function.47,48 The equation for
this hybrid method is given by

= + +V V Vtotal b
(SBM)

nb
(SBM DCA)

(2)

Here Vtotal is the summation of energies of local interactions in
the single SBM derived from experimental structure Vb(SBM),
and the second term Vnb(SBM+DCA) in eq 2 includes nonlocal
interactions in the SBM and the DCA and the repulsion
between the nonbonded pairs that are not in contact in SBM
or DCA. The expansion for each term in eq 2 is given below:
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In eq 3 the first and second terms ensure that the bond
distance between two residues (r), angles between three
subsequent residues (θ) of the system at every simulation step
are constrained harmonically with the native structure’s bond
distance, angle value (r0, θ0) by a spring constant Kr = 20 (kJ/
mol. Å2), Kθ = 20 (kJ/mol·rad2). The third term gives the
difference of the dihedral angle between four subsequent
residues along the backbone at the native structure (φ0) and
the system at every simulation step, where the dihedral angle
potential Kφ

(1) = 2Kφ
(3). In eq 4, the first and second terms are

Gaussian attractive potentials for nonlocal interactions
between residues i and j in SBM and DCA, where the
nonlocal contacts of DCA are the top ranked strong
coevolutionary couplings. The third term in eq 4 denotes the
repulsion potential of the nonbonded interactions present
either in SBM or DCA. Here, we use the distance for DCA
pairs (rij)DCA= 7.5 Å. The SBM topology files with potentials
for MD simulations were built using the SMOG server49 based
on eqs 3 and 4, and we used a cut off threshold of 6 Å of
maximum contacting distance +1 Å atom shadowing radius
(standard value used in SMOG server). The potential files for
DCA contacts (eq 4) were generated by the in-house python
package called sbm-tools and integrated into the SBM potential
files.
In this study, we generated C-α models with a Gaussian

contact interaction.50 For all the systems we studied using this
model, we used the number of DCA contacts ranging from 1 to
2 times the number of native contacts. The SBM+DCA
potential input files were used for MD simulations with the
GROMACS software package.51 The simulations were
performed at the temperature T = 70 K (we chose this
temperature to avoid large thermal fluctuations in the
simulation) with 100 million integration steps to sample the
equilibrium conformational ensemble. The simulation trajec-
tory is visualized and analyzed using the VMD52 and
Chimera53 software packages.

FRET Network Design Protocol. FRET network design
proceeded through the following steps (Figure S1):
(1) Target conformational state structures are chosen. The

close-like (CL), open-like (OL), Twisted, and Extended states
were chosen as the target states for design of the FRET
network for the PDZ1−2 tandem. The final FRET network
should mutually resolve the target states.
(2) A candidate list of individual fluorophore labeling sites is

generated. Initially, the list includes all amino acids in the
protein. Then, the top DI pairs from DCA are eliminated along
with all residues that participate in contacts with others in the
target structures. In this work, the top 1000 DI pairs were
removed, and the cutoff for inter-residue contacts was set to 5
Å. This is to ensure that fluorophore labeling does not perturb
native contacts associated with any predicted conformation.
Additional labeling sites can be eliminated based on a priori
information, such as known binding sites not captured through
DCA. For the PDZ1−2 tandem, residues 151−155, constitut-
ing the interdomain linker, were eliminated as the primary
motions of interest are interdomain motions.
(3) Accessible volume (AV) simulations are performed for

all remaining candidate labeling sites to obtain simulated
FRET observables. Details for these simulations are provided
below.
(4) Predicted FRET efficiencies for all pairs of candidate

labeling sites were calculated for all target structures. FRET
efficiency calculations utilized 10000 pairs of points sampled
from the AVs of the fluorophores, from which distances were
calculated and the averages were converted into FRET
efficiency values using

=
+ ( )

E 1

1 R
R

6
DA

0 (5)

where ⟨RDA⟩ is the mean interdye distance, with a 52 Å Förster
radius (R0), corresponding to the previously used Alexa-488/
Alexa-647 FRET pair.8 The vectors spanning the mean
positions of the AVs for each candidate FRET pair were also
calculated.
(5) For each FRET pair, the observable contrast between

the FRET efficiency for each target state and each other target
state was calculated, using the maximum dynamic shift54 as the
contrast metric. The maximum dynamic shift is calculated via

=S E E
1
2

( 1 1 )1 2
2

(6)

where E1 and E2 are the FRET efficiency values of the
compared conformations for a given FRET pair. The
maximum dynamic shift describes the deviation of FRET
observables from the so-called static FRET line when
transitions between two states with different FRET efficiencies
occur during the observation times of the molecules.
(6) The FRET pair with the highest average maximum

dynamic shift among all target states (P101−Y236 for the
target states used here) was used as the first FRET pair in the
FRET network. Additional FRET pairs are chosen such that
they maximize the product between the average maximum
dynamic shift and the average absolute vectorial cross product
between the candidate FRET pair and all previously selected
FRET pairs added to the network. This ensures that selected
FRET pairs span complementary distances that are likely to be
useful for FRET-guided structural modeling.
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(7) The selection of FRET pairs is terminated. In general,
FRET pair selection can be extended to all possible FRET
pairs, with the result being a ranked list of FRET pairs given
the first chosen FRET pair as a “seed” for the network.
Alternatively, FRET pair selection can be terminated given an
uncertainty threshold within which structures resulting from
modeling with the designed FRET network must fall relative to
the target structures. The resulting FRET network of a chosen
number of FRET pairs can be tested in several ways, such as
simulating FRET observables with AVs and MD simulations in
order to ensure the network can sufficiently reproduce the
target states. Selection of FRET pairs in this work was
terminated when the FRET network contained 10 pairs of
labeling sites for direct comparison to the FRET network used
for previous experiments.
Accessible Volume and Rigid Body Docking Simu-

lations. Accessible volume (AV) simulations were performed
using the AVTraj Python package, available at https://github.
com/Fluorescence-Tools/avtraj. AV simulations of fluoro-
phores are useful for calculating expected FRET observables
from molecular dynamics simulation trajectories or individual
biomolecular structural models and can further be used for
FRET-guided modeling of biomolecular structural conforma-
tions.17 For all AV simulations in FRET network design and
rigid body docking, the AV1 (one-sphere fluorophore) model
was used, with a linker length of 20.5 Å, linker width of 2.5 Å,
and fluorophore radius of 5 Å. The C-α position of each
residue was used as the linker attachment site, with residue side
chains removed. Calculation of the FRET efficiency for each
pair of AVs was performed by sampling 10000 distances
between random points in the donor and acceptor AV clouds.
Rigid body docking (RBD) simulations were performed

using the FRET Positioning and Screening (FPS) software
package, available at https://www.mpc.hhu.de/software/fps.
html. FPS provides a graphical user interface for performing
AV simulations as well as RBD of biomolecular structural
models such that simulated FRET observables from AVs best
satisfy experimental or other distance constraints, thus
producing a structure consistent with experimental observ-
ables.17 For RBD, the PDZ1 and PDZ2 domains of the PDZ

tandem were treated as separate structures, with the linker
residues in the range 151−155 removed from both structures.
Separate RBD was performed for the previously used FRET
network and the FRET network from DCA-guided design. In
each case, RBD was performed using all mean 10 distances
restraints for one of the 4 target state clusters simultaneously.
Thus, eight structures resulted from RBD, one for each target
structure for each of the two FRET networks (Figure S2). For
comparison of the resulting structures to the target structures,
RMSD values were calculated using the CE-Align function of
PyMol.55

Simulation of Single-Molecule FRET Data. Simulations
of single-molecule data are done via Brownian Dynamics.56,57

We assumed a 3D Gaussian distribution for the spatial
intensity distribution of the observation volume (VSize = 5 μm3,
with plane radii w0 = 0.5 μm and axial radius z0 = 2.24 μm.
Each simulation had a total of N 50000000 photons, and a
time step of 0.005 ms. We assumed a Gaussian Instrument
response function with full width half-maximum (fwhm) of 0.3
ns and background scatter in the green channels of 0.5 kHz
and 0.2 kHz in the red channels. Also, we consider a dark
count rate of 0.2 kHz in the green and 0.1 kHz in the red
channels.
We simulated each FRET variant following the pairing sites

of OL, CL, Twisted, and Extended conformations as in Table
S1. In each simulation, we assumed a population fractions 40%
(OL), 30% (CL), 20% (Twisted), and 10% (Extended). These
fractions correspond to an effective number of molecules in the
observation volume (Nfcs) as 0.0012, 0.0009, 0.0006, and
0.0003, respectively, at any given time, thus ensuring single-
molecule detection. The FRET distances and corresponding
count rate for each channel (green and red) assumed a
molecular brightness of the unquenched donor as 200 kcps and
a fluorescence lifetime of 4 ns. We consider a constant
rotational correlation time to 1 ns. Data are saved in Becker-
Hickl SPC132 data format from which they are further
analyzed as experimental data.
Analysis of Time-Resolved Fluorescence Decay Histo-

grams. Analysis of fluorescence decay histograms from FRET
experiments and simulated data with time-correlated single-

Figure 1. DCA uncovers the experimental contacts of PDZ1−2 tandem. (A) Domain representation of the 724-residue long full-length PSD-95
protein and the 196-residue long truncated tandem PDZ1−2 domains. (B) C-α representation of two different X-ray crystallography-derived forms
of PDZ1−2 tandem (PDB ID: 3GSL a/b, BA1- blue, BA2- black) with an RMSD of 3.8 Å relative to one another. (C) Experimental contacts of
BA1 (blue) and BA2 (black) of PDZ1−2 tandem are illustrated in a contact map with distance cut off 10 Å and the top 400 DI pairs (red) are
overlaid on top of BA1’s contacts with the gray box highlighting the interdomain residue pairs from coevolution.
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photon counting (TCSPC) were performed as previously
described8 using the ChiSurf software package available at
https://github.com/Fluorescence-Tools/chisurf. Fit models of
experimental data consisted of states corresponding to three
Gaussian-distributed interdye distances plus a donor-only
fraction for each FRET variant. The donor-only fraction and
fluorescence lifetime, as well as the Förster radius were fixed
according to the values used in the previous study.8 The
population fractions for all three Gaussian-distributed states
were set as global parameters among the globally fit
fluorescence decay curves. For each of the twisted and
extended states, previously used FRET variants were chosen
for analysis based on meeting the criteria that the expected
interdye distance for the representative structure deviated by at
least 15% from all previously determined FRET-derived
distances for a given variant, on the basis that fitting to the
unexplained third state may have previously obscured evidence
of these structures. 15% is well beyond the expected
uncertainty in the FRET-derived interdye distances in confocal
experiments.14 For the Twisted state, variants E135-Y236 and
S142-M159 were globally analyzed, while for the Extended
state, variants Q107-Y236, D91-Y236, and M149-A230 were
globally analyzed.
For simulated single-molecule FRET data, we considered a

multiexponential form

=
i
k
jjjjj

y
{
zzzzzF t x

t
( ) exp

i
i

i
norm

3 or 4

DA, (7)

with three or four different FRET quenched fluorescence
lifetimes, each corresponding to a conformational state.

■ RESULTS AND DISCUSSION
SBM+DCA Recapitulates Conformations of PDZ1−2

Tandem of PSD-95. PSD-95 is a dynamic, multidomain
protein that consists of five subdomains−three PDZ domains

in tandem, an SH3 domain and a Guanylate Kinase like
domain which are involved in protein interactions at excitatory
synapses58 as shown in Figure 1A. The three PDZ domains
bind to important synaptic proteins linked to synaptic
activity.59 In this study, we mainly focused on studying the
conformational dynamics of PDZ1−2 tandem, which are
targets for designing drugs for ischemic stroke.60,61 The
PDZ1−2 tandem protein is 196 residues in length with the
PDZ domains consisting of 86 residues and separated by a
flexible linker. The crystal structures of two states of PDZ1−2
tandem of PSD-95 derived from X-ray crystallography (PDB
ID: 3GSL) Bioassembly 1 (BA1, color: blue) and Bioassembly
2 (BA2, color: black) of the organism Rattus norvegicus are
displayed in Figure 1B. The PDZ tandem has about 34000
sequences, after filtering sequences with long gapped regions
and reweighting sequences with more than 70% identity. We
performed DCA on this family of sequences and identified
coevolving sites that can be used as a proxy for contact maps
for both BA1 and BA2 (see Figure 1C). The experimental
contacts of BA1 and BA2 are highlighted in blue and black, and
the top 400 DI pairs, or coevolving coupled sites, are overlaid
in red on top of the BA1 contacts (C-α distance = 10 Å) as
shown in the contact map in Figure 1C. In Figure 1C we can
see that these DI pairs covered most of the intradomain
regions, while the clusters present in between the two domains
are hypothesized to represent the interdomain contacts
(highlighted in the squares of Figure 1C) of the multiple
functional conformations of PDZ1−2 and transition states
between them. The states corresponding to these contacts can
be further analyzed using the SBM+DCA methodology. This
illustrates that the collection of sequences in the PDZ family
have enough diversity and coevolutionary information to
provide insights about the distinct structures and dynamics of
these proteins. As a reference, we have also analyzed the single
PDZ domain family and shown the top 90 DI pairs in Figure

Figure 2. SBM+DCA captures the crystal structures of PDZ1−2. (A) RMSD of trajectory frames with respect to BA1. (B) Structures of the
predominant frames in the simulation trajectory with the lowest RMSD with respect to BA1 and BA2 were aligned with the corresponding crystal
structures. The hybrid model simulations captured the conformation of the human form of PDZ1−2 which was aligned with experimental structure
(PDB ID: 3ZRT) as shown in (C).
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S3D. Although the single domain analysis has better predicted
contacts, it misses important interdomain interactions.
To explore the conformational space of the PDZ family

using coevolution, we applied the SBM+DCA model47 (see
details in the “Methods” section) to the PDZ1−2 tandem of
PSD-95 protein. In this methodology we run C-α simulations,
by using the structure parameters of the BA2 as the initial
topology, and the top 400 coevolutionary couplings shown in
Figure 1C were integrated into the model to drive the
simulations to explore the conformational landscape of PDZ1−
2 tandem. The root-mean-square deviation (RMSD) plot for
the entire SBM+DCA trajectory with respect to BA1 in Figure
2A shows that the state PDZ1−2 BA1 was visited. We also
used a template modeling score (TM score) to estimate
topological differences between two protein structures. This
TM-score gauges the global fold similarity between the
structures by assigning stronger penalties for smaller distance
errors than the larger distance errors between the structures
and hence it is considered as an alternative metric to RMSD
that we used in our study to compare and measure the folds of

two protein structures.62 In our simulation trajectory, more
than 20% of the structure frames had at most 3 Å RMSD with
respect to BA1 and BA2 (Figure S4). We aligned the frames
(with least RMSD and TM score) with the X-ray crystallo-
graphic PDZ1−2 BA1 and BA2 structures. The RMSDs and
TM scores of the structures aligned with respect to the
experimental BA1 were 1.6 Å and 0.91, and these were 0.9 Å
and 0.97 with respect to BA2, as illustrated in Figure 2B.
Although the initial structure used in the simulation was BA2,
we can see that the DCA-predicted couplings were sampling
the BA1 conformation accurately. We can see that the states
BA1 and BA2 are not considerably different (RMSD 3.8 Å),
but it is not trivial enough to ignore the difference between the
states and call them alike. In addition, the SBM+DCA
simulations also captured the conformation of the human
form of PDZ1−2 tandem and the cluster centroid structure
shown in Figure 4A was aligned with crystal structure (PDB
ID: 3ZRT, here called the Extended conformation) as shown
in Figure 2C, resulting in an RMSD and TM score of 3.3 Å and
0.7. These findings suggest that the combination of coevolu-

Figure 3. SBM+DCA visits states identified by smFRET experiments. (A) and (C) RMSD trajectory plots from SBM+DCA simulations with
respect to experimental OL and CL states from smFRET experiments. (B) and (D) Predominant frames of OL state (purple) and CL state (green)
from SBM+DCA simulations were aligned with their respective experimental structures (OL-pink, CL-orange) The RMSD values and TM-scores
are indicated in the figures, respectively. (E) Interdomain contacts (highlighted in pink) of OL and CL states of PDZ1−2 tandem from SBM+DCA
simulations matched with OL and CL states from smFRET experiments (C-α distance cut off:10 Å).
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tionary information and coarse-grained models like SBMs can
sample different conformations of PDZ1−2 tandem including
those derived from different organisms with high accuracy.
SBM+DCA Uncovers States Identified by smFRET

Experiments. In an earlier study, we showed that discrete
molecular dynamics (DMD) simulations and single-molecule
fluorescence resonance energy transfer (smFRET) studies on
PDZ1−2 tandem identified two low energy states: an OL state
and a CL state.8 We examined if these sampled states were also
captured by coevolution. We found that our SBM+DCA
simulation trajectory, in fact, visited the OL and CL states.
Figure 3A,C shows RMSD simulation trajectory plots with
respect to these states. The structures of the principal frames
with lowest RMSD values from the simulations relative to the
aligned structures obtained from screening of simulation
structures against smFRET-derived distance restraints are
shown in Figure 3B,D. These simulated states had an RMSD
of 1.8 and 1.9 Å with respect to smFRET OL and CL
structures and TM-scores of 0.90 (OL) and 0.93 (CL)
respectively. To better understand the spectrum of conforma-
tional states, we analyzed the differences in their interdomain
contacts. The contact maps in Figure 3E show the unique set
of interdomain contacts formed in each conformation (purple,
contacts of OL state from DCA simulations; cyan, contacts of
CL state from DCA simulations). Interestingly, we found that
most of the interdomain contacts highlighted in this figure for
both OL and CL conformations of PDZ1−2 were present in
the regions similar to the interdomain contacts of the states
predicted by smFRET experiments.8 Among those contacts,
113−186, 113−178, 113−222, and 151−186 in the OL and
97−182, 113−183, 99−183, 99−184, and 114−208 in the CL
showed perfect alignment with the efficiency interdomain
contacts in the FRET-derived structures as shown in Table S2.
Thus, the SBM+DCA protocol in predicting successfully
predicts all the experimentally derived structures of PDZ1−2
tandem.
Coevolution Predicts an Unidentified Conforma-

tional State of the PDZ1−2 Tandem. Interestingly, when
we performed RMSD clustering analysis with respect to the
smFRET OL and CL states, we found that the SBM+DCA
methodology predicted a unique cluster: an intermediate
twisted PDZ1−2 conformation, with an RMSD of about 8 Å
with respect to smFRET OL structure and 13.5 Å compared to

the smFRET CL structure as illustrated in Figure 4A. We
selected one of the representatives from this most populated
cluster to visualize the structure and we found that one of the
PDZ domains was twisted in relation to the other domain as
shown in the last structure on the right (in red) in Figure 4B.
From the simulation trajectory, we found that the twisted
conformation was an intermediate state taken by PDZ1−2
tandem when transitioning between the OL and CL states.
Additionally, the interdomain contacts of this twisted state are
illustrated in the Figure S3A and this state had a distinct set of
interdomain contacts (highlighted in green boxes) except for a
few regions that matched the OL and CL states. There were six
DI pairs that exactly matched the interdomain contacts of the
twisted state and 25 DI pairs in close proximity to them
(brown boxes in the Figure S3B) that may have driven the
simulations toward this twisted state. The SBM+DCA
simulation trajectory revealed five different experimentally
determined states of PDZ1−2 tandem: BA1, BA2, OL, CL and
Extended (human) as shown in Figure 4A,B. Each of these
states is represented as a cluster in Figure 4A, and the
frequency is the count of structure frames in the trajectory for a
specific RMSD coordinate. Out of these states, OL and CL
states, obtained from FRET-derived restraints, have about a 10
Å RMSD difference between each other as shown in Figure
4A,B. BA1 And BA2, obtained from X-ray crystallography, fall
within the OL cluster as seen in Figure 4A. Apart from the five
states, the simulations proposed a sixth state, the twisted state,
that may be a functional intermediate state but that requires
further experimental validation. Although the cluster near 13 Å
RMSD relative to OL and 15 Å relative to CL is not a well-
separated basin, the centroid corresponds closely to the
extended conformation of human form PDZ1−2. This
extended conformation exists within a large, dispersed cluster
population that is not driven by interdomain interactions, as
almost no interdomain contacts exist (Figure S3B). As a
control, we ran simulations without any enrichment from
coevolution (Figure S5A) and with the same number of
integrated pairs used before but chosen randomly (Figure
S5B). As expected, we observe no further exploration of
relevant conformations in this control simulation. Agreement
between the SBM+DCA structures and those derived from X-
ray crystallography but previously not identified via smFRET
served as a motivation to synergize SBM+DCA with smFRET

Figure 4. Elucidation of an unidentified twisted state of PDZ1−2 tandem from coevolution. (A) RMSD clustering of the SBM+DCA trajectory of
PDZ1−2 tandem shows the clusters for six different states: Bioassembly 1 (BA1), Bioassembly 2 (BA2), open-like (OL), closed-like (CL), Twisted
and Extended (Human) PDZ1−2 states with arrows pointing to the centroid of each state. (B) SBM+DCA methodology proposed structures
(BA1- green, BA2- orange, OL- purple, CL- cyan, Extended (Human)- yellow, Twisted- red).
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to further probe the PDZ1−2 tandem twisted and extended
(human) states.
Coevolution and FRET-Network Design Using Pre-

dicted States. The ability of SBM+DCA to recapitulate and
predict novel conformational states of proteins makes it well-
suited to use in designing experiments that might confirm
these states. In particular, SBM+DCA provides two crucial
outputs for the design of experiments which rely on targeted
labeling of proteins for resolution of distinct conformations,
such as in single-molecule FRET experiments that require
attachment of fluorophore labels to the protein surface.11 First,
DI pairs provide information about amino acid positions
which, based on evolutionary pressures, may be involved in the
adoption of a particular state and which may not otherwise be
documented in the literature. Such amino acid positions
should be avoided in labeling to avoid perturbing the native
behaviors of proteins. Second, the predicted states provide

targets for informed selection of labeling sites. Labeling sites
are chosen such that they maximize the ability of changes in
the state of the labeled molecule among the target states to be
observed via experimental observables. Thus, we propose a
simple workflow for design of FRET networks or sets of
labeling site pairs which are measured in separate FRET
experiments, for mutually resolving multiple target states
simultaneously. Data from multiple experiments with different
labeling sites in a FRET network can be analyzed together to
model the limiting conformational states of dynamic
proteins.8,17 The designed protocol is summarized in Figure
5. First, a protein of interest is identified (in this case PDZ1−2
tandem), and a database of sequences for evolutionarily related
proteins is compiled. Next, these sequences are aligned along
the regions of interest prior to DCA. The direct couplings
(pairs with high DI) resulting from DCA are then used to
impart additional potentials on the amino acids involved in DI

Figure 5. DCA + smFRET Workflow: The MSA of the sequences of PDZ family from the Pfam database is extracted, and DCA is applied to the
MSA to calculate the parameters eij and hi. These parameters are then used to score and identify strong coevolutionary couplings, which are
incorporated into the SBM energy function. The conformational transitions of a protein from these SBM+DCA simulations are used to predict the
residue positions that could be involved in the dynamics of a protein. Further, representatives for each major basin from simulations, as well as
DCA-predicted contacts were used as inputs for the design of a FRET network targeted at maximally resolving four distinct conformations of the
PDZ tandem. The FRET network was optimized for resolvability of structures via modeling with FRET observables while avoiding perturbations to
residue−residue interaction sites predicted via DCA. These labeling sites were tested in silico, using simulated FRET observables for all SBM+DCA
structures, to verify that predicted experimental observables could reproduce the target structures. Finally, while not performed for this study,
variants of the PDZ tandem could be produced for each FRET pair in the FRET network and measured experimentally to probe for the predicted
conformations.
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pairs for SBM+DCA simulations. These potentials drive the
protein toward conformations that satisfy the contacts
predicted by DCA. Thus, SBM+DCA is well-suited to
obtaining representative structures for limiting states like
those modeled via FRET networks while cutting down on the
computational cost associated with transitions through
transient intermediate states. Next, clustering or similar
analysis techniques are used to select centroid or representative
structures for the conformational states of interest that will
serve as target states for FRET network design. Then, the DI
and target structures from DCA are combined with simulations
of FRET observables to design a FRET network to mutually
resolve the target states. FRET network design proceeds as
described in the “Methods” section.
To test the ability of the designed FRET network to model

the distinct protein conformations, we performed accessible
volume (AV) simulations and calculated predicted FRET
observables for all structures from SBM+DCA simulations.
The simulated FRET observables are then used as restraints for
rigid body docking simulations to model the distinct
conformations corresponding to the FRET observables for
the target state basins from SBM+DCA simulations. Here, we
defined these basins via RMSD clustering of simulation
structures against the target states. Finally, if positive results
are obtained via modeling with simulated observables, then the
labeled protein samples for the designed FRET network can be
produced, measured, and analyzed for cross-validation of
predicted structures and quantification of the dynamics of
conformational exchange for the protein.
We previously integrated results from smFRET experiments

and discrete molecular dynamics (DMD) simulations to
identify the distinct OL and CL conformations of the
PDZ1−2 tandem.8 Further, we determined that previous
conformations identified via NMR and TIRF-based smFRET
were compatible with apparent dynamic averaging of the OL
and CL states. While the conformations from crystal structures
(3GSLa,b) had associated interdomain distances slightly
beyond those corresponding to the OL and CL structures,
the simulated interdye distances were similar to those for the
OL state. Further, the RMSD analysis in Figure 4A indicates
that these structures are within the OL ensemble. In modeling
the OL and CL states from smFRET data, a three-state global
model was used for determination of interdye distances for all
10 used FRET pairs simultaneously. Two of the sets of 10
distance distributions resulted in the OL (for the dominant
population fraction) and CL (for the middle population
fraction) states, respectively, from screening of FRET-derived
distances against expected interdye distances for all structures
from DMD based on accessible volume (AV) simulations of
the fluorophores (examples shown for OL and CL states in
Figure S6). These two major populations agreed with the
major populations from DMD simulations. The third set of
distances did not produce a model that satisfied all distance
restraints simultaneously. Additionally, the DMD simulations
produced a significant third population (though less populated
than the OL and CL basins) of structures with interdomain
distances beyond those for the OL and CL states, but for
which predicted FRET observables had significant overlap with
either one or both of the OL and CL states for several FRET
pairs, presenting a barrier to resolving these structures via the
used FRET pairs. Furthermore, distances obtained for the third
set of distance restraints were not globally consistent with any
of the three major populations from DMD, while the OL and

CL distances were consistent with the respective basins.
Meanwhile, the predicted interdye distances for some FRET
pairs associated with the Twisted and Extended states
identified with DCA are distinct from those assigned to the
CL and OL states. Thus, we identified five of the previously
used FRET pairs for which either the Twisted (two pairs,
E135-Y236 and S142-M159) or Extended (three pairs, Q107-
Y236, D91-Y236, and M149-A230) state distances differed
significantly from those for OL and CL, based on the lowest
relative percent difference between the predicted distance and
all 3 previously identified distance populations, and reanalyzed
the fluorescence decay histograms for these samples. This
analysis was performed using a three-state model with global
population fractions for each subset of FRET pairs. The
distances resulting from this analysis are provide in Table 1.
The results of these fits were compatible with the presence of
Twisted state as a minor population for S142-M159, while for
E135-Y236 the expected Twisted state distance was not
apparent. M149-A230 exhibited a major population compatible
with the extended state. Overall, the results of these fits suggest
that these states may exist, but that the presence of other states
with similar interdye distance distributions in the 10-variant
global modeling may have obscured them. While this analysis
does not confirm these states, the expected overlap among
simulated FRET distances for the DMD basins suggests this
may result from the FRET network not being optimally
designed for resolving these states, even if they are present.
DCA-Guided Design of FRET Network. We used the

previously described protocol to generate a FRET network of
10 distinct FRET pairs that would mutually resolve four target
conformations of the PDZ1−2 tandem (OL, CL, Twisted, and
Extended). The four target representative conformations were
chosen because they represent conformational basins that are
well separated from each other in Figure 4. Thus, the goal of
the DCA designed FRET network is to maximally resolve these
distinct basins. The proximity of the 3GSLa (BA1) and 3GSLb
(BA2) structures to the CL basin suggest that they may appear
as part of the OL basin when modeling with experimental
constraints because experimentally derived constraints are
subject to dynamic averaging when they are in fast exchange.
The Extended and Twisted states were included as they are
well-separated from the OL and CL basins in SBM+DCA
simulations and further were not found in the previous
experimental work. We chose to terminate the FRET network
at 10 FRET pairs so that we could directly compare the
outputs of the design protocol against a previously used FRET
network for the same protein.6 Representative structures for
the four target states from DCA simulations used in FRET
network design are shown in Figure S7. First, residues
appearing in the top 1000 ranked DI pairs or with contacts
apparent in the target states were removed from the list of
candidate labeling sites for FRET pair selection. Additionally,
candidate sites appearing in the interdomain linker between
the domains were excluded from consideration. Next,
accessible volume (AV) simulations of the fluorophores were
performed for all remaining labeling site candidates (Figure
S6), and AVs were sampled to compute expected interdye
distances for all possible pairwise combinations of labeling
sites. The final FRET network was generated by first selecting
the candidate FRET pair which maximized the average
difference in FRET efficiency among all four target states.
Additional labeling sites were selected by maximizing the
average change in FRET efficiency times the average vectorial
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cross product between the candidate FRET pair’s interdye
distance vector and those for all previously selected FRET
pairs. This additional cross product factor was used to
minimize the redundant information provided by the addition
of new FRET pairs considering previously selected sites. This
procedure was repeated until the designed FRET network
consisted of 10 distinct FRET pairs. Both the previously used
and newly designed FRET networks are represented in Figure
6 and Tables 2 and S3.
To evaluate the performance of the FRET network resulting

from DCA-guided design relative to the previously used FRET
network in resolving the four target states, we simulated
accessible volumes (AV) from which we computed FRET
observables for all FRET pairs from both FRET networks for
all structures from DCA-guided MD simulations. All structures
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Figure 6. Graphical representations of FRET networks from previous
work and DCA-guided design. (A) Set of FRET labeling sites for ten
FRET variants used in previous work for determination of two
dynamically exchanging conformations of the PDZ tandem (open-like
and closed-like states). The ten pairs of labeling sites constitute a
FRET network which was analyzed globally. (B) FRET network
resulting from DCA-guided empirical design, in which structures from
DCA as well as DCA-predicted contacts provided inputs for selection
of labeling sites. All sites were screened for labeling sites that provided
the best mutual contrast among all four target structures. Labeling
sites with high DI based on DCA analysis were avoided in labeling site
selection in order to avoid perturbing native contacts. Labeling sites
were chosen iteratively based on highest average contrast among all
states while maximizing the magnitude of the cross product,
computed using the vectors between labeling sites, between additional
and previously chosen site pairs. Additionally, labeling sites within two
or fewer residues of previously chosen sites were merged into the
previous sites. (C, D) Alternative representations from networks from
(C) previous work and (D) DCA-guided FRET network design.
Circles represent linear sequences of the PDZ1−2 tandem, with
PDZ1 colored green, PDZ2 colored red, and the interdomain linker in
black.
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from DCA-guided MD were clustered into either the CL, OL,
Twisted, or Extended state based on a 6 Å RMSD cutoff with
respect to the target structure used in FRET network design.
The resulting clusters are represented in histograms of AV-
simulated interdye distances for all structures in Figure S10.
The mean and standard deviation of the interdye distance
distributions were calculated for each cluster (Tables S3 and
S1 and Figure S10) and used for further analysis. Here, we use
the mean distance corresponding to each cluster for analysis
because the exact interdye distance distributions corresponding
to individual conformations are experimentally inaccessible
even for single-molecule techniques. This approach is
analogous to using interdye distances derived from time-
resolved FRET experiments, as is presented below, in which
the distances correspond to the means of limiting state
distance distributions and the widths of these distributions
result from intrinsic fluorophore dynamics and extremely fast
exchange processes. Because the design protocol discussed
here seeks to maximize apparent contrast between target
conformations, it is also applicable to techniques more prone
to ensemble and time averaging, such as ensemble, intensity-
based FRET. However, the distances derived from exper-
imental techniques likely correspond to averages among the
underlying conformations rather than to individual limiting
states. While the widths of the individual clusters differed
between the FRET networks, the average widths of the entire
distance distributions were similar for both networks.
However, the standard deviations among the means of the
distributions were increased, on average, for the network from
DCA-guided design (4.6 Å) when compared to the previously

used network (3.8 Å), indicating that the observed mean
interdye distances for each cluster are more separated and thus
provide greater contrast between the states as observed by
FRET. The spread about the mean of the entire distance
distribution was also increased for simulated distances for the
newly designed network (Figures S8 and S9). We additionally
used the sets of mean cluster RDA values as distance restraints
for rigid body docking (RBD) simulations to see how well the
obtained distances reproduce the target structures, as would be
performed in experiment. The resulting structures for each
state are shown in Figure S2. To evaluate the accuracy of each
structure, we calculated the RMSD for each structure resulting
from RBD simulations with the target structure as reference.
For the CL, OL, and Extended states, the FRET network from
DCA-guided design outperformed the previously used net-
work. The old network reproduced the Twisted state with
slightly higher accuracy (3.3 Å vs 4.4 Å). Overall, the mean
RMSD of resulting structures from the new network was more
than halved when compared to the old network (7.8 Å for the
old vs 3.5 Å for the new).
To evaluate how time-resolved FRET data can be used to

generate structural models of the CL, OL, twisted and
extended conformers, we simulated single-molecule FRET
data considering a heterogeneous mixture of these conforma-
tions with population fractions of 40%, 30%, 20%, and 10%,
respectively (see the “Methods” section). Single-molecule
events were then selected by burst analysis, and the photon
arrival times corresponding to the donor fluorescence were
binned into histograms to build time-resolved fluorescence
decays for all the FRET variants in the old and new DCA-

Table 2. Interdye Distances from Single-Molecule Simulationsa

aThe distances were computed from the determined fluorescence lifetimes in Table S1 using

=
i

k

jjjjjjjjj

y

{

zzzzzzzzz
R R 1

1
1 (8)DA 0

1/6

DA

D(0)

where the fluorescence lifetime of the donor in the absence of acceptor (τD(0)) was set to 4 ns, and the Förster radius (R0) was 52 Å. The error in
accuracy relative to the expected distance from the target structure (Table S2) are shown in parentheses. Rigid body simulations used these
distances from either the old (normal text, top half) or new (bold text, bottom half) DCA-guided FRET network simultaneously as distance
restraints to test how well the obtained distances could recreate the target structure.
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guided FRET networks (Figure 7). The time-resolved
fluorescence decays for each FRET network were processed
exactly as experimental data, for which we globally fit the
FRET induced decays to determine the number of states and
the corresponding limiting FRET distances. This analysis
showed that using a four-state model best fit the FRET
network in each case with average χ2 values of 1.76 for the old
network and 1.88 for the DCA-guided FRET network. When

using a three-state model, χ2 increased to 1.9 and 2.1,
respectively. Moreover, 92.7% of the recovered FRET
distances for both the old and DCA-guided networks were
within the expected 7% accuracy of the target distance (Table
2). Only 7.5% of distances showed a larger deviation.
Next, we used the distances and associated uncertainties

from the time-resolved decays (RDA,Bur, Table 2) as distance
restraints for rigid body docking (RBD) simulations as

Figure 7. Time-resolved fluorescence decays for simulated single-molecule FRET data. Time-resolved decays for the old (salmon) and DCA-
guided FRET network variants (blue) are shown. The instrument response function is shown in black, and the donor-only fluorescence decay is
shown in gray. Raw histogram data are shown as points, with fits overlaid as colored lines. FRET quenches donor fluorescence, which reduces the
lifetime and introduces curvature into fluorescence decay. The presence of more than one underlying state with different FRET efficiencies results
in multiexponential fluorescence decays. A four-state model provided the best global fit for the 10 FRET variants in each network. Derived
distances associated with the four states are found in Table 2. Details of the simulated data and fit model can be found in the “Methods” section.

Figure 8. Structures resulting from rigid body docking of PDZ2 to PDZ1 based on simulated single-molecule experiments. Structures from
distances in Table 2 corresponding to both the FRET network from the previous study (deep salmon) and the DCA-guided FRET network (deep
blue) are shown for the OL (A), CL (B), Extended (C), and Twisted (D) conformations. Structures in black represent the target states from DCA-
guided simulations that were used for FRET network design. RMSD values for each structure resulting from rigid body docking are shown below
each set of structures. RMSD values were calculated using C-α positions with the CE-Align function in PyMol. The DCA-guided FRET network
shows a significant improvement in using FRET-derived distance restraints to resolve four distinct target structures.
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previously done with the clustered DCA structures (Figure 8).
We used the RMSD as a measure of the accuracy in resolving a
structural model for each conformational state. Overall, the old
network showed an average RMSD of 8.4 Å for all structures,
while the DCA-guided FRET network design improved the
average RMSD to 5.0 Å. Even when both networks are meant
to represent the same structural models, the DCA-guided
FRET network is better suited for resolving all four target
states simultaneously. This is independent of the accuracy of
the distances but rather specific to the selection of the site for
the FRET labeling.

■ CONCLUSIONS
In this study, we combined coarse-grained protein models,
coevolutionary information, and simulated and published
smFRET data to explore the conformational landscape of the
PDZ1−2 tandem and to guide smFRET experimental design.
We identified at least six different states of the PDZ1−2
tandem selected by evolution since DCA was able to efficiently
capture the residue contacts of PDZ1−2 tandem that provide
information about its dynamics and the unique set of
interdomain contacts that stabilize these states from different
organisms. The SBM+DCA methodology not only captures
the compact states with sufficient interdomain contact
information but also predicts a potential transient state with
no interdomain contacts, found previously for the PDZ1−2
tandem in humans. Of the six states identified, Twisted and
Extended (human) states that were not observed in the
previous smFRET study were found to be compatible with
results from reanalysis of a subset of the FRET variants from
the prior study, which previously resulted in an unexplained
third set of interdye distance restraints that could not be
explained by a single structural model. Thus, SBM+DCA was
able to provide structural models that may resolve the
conformations which previously gave rise to the unexplained
distance restraints. However, the previously available FRET
distances when used as restraints are not sufficient to fully
model the predicted conformations. This, combined with the
similarity in predicted interdye distances for different basins
from previous DMD simulations, suggests that the previous
FRET network may not be optimal for resolving all these states
simultaneously. These observations have implications in
designing smFRET networks, for which DCA provides two
key pieces of information. First, SBM+DCA provides target
structures of interest, driven by evolutionarily predicted
contacts. We combine these resulting structures with
techniques for simulating FRET observables to select FRET
pair labeling sites which maximize contrast between the target
structures. We also note that the use of a one-bead model SBM
+DCA simulations accelerates the inclusion of DCA-based
restraints. Thus, reducing the computation time associated
with obtaining these structures is of interest, whereas
traditional all-atom MD simulations require greater computa-
tional costs and explore the biomolecule’s conformational
landscape thoroughly. However, it is primarily the limiting
conformations that are of interest for modeling via FRET.
Second, the degree of coevolution and conservation in a
protein family identified via DCA indicate the optimal residue
positions and amino acids that may be important to the native
conformations and the function of the protein of interest. This
knowledge provides information about amino acids that should
be avoided in labeling site selection to avoid perturbing the

native conformations of the protein through attachment of the
fluorophores.
To validate our approach, we simulated FRET induced

fluorescence decays that compare two FRET networks even
when both networks provide distances from the structural
models. However, due to the sparse information that can be
collected from FRET and optimized network is required for
recovering structural models that are consistent with the target
structures. By either clustering DCA simulated structures or
simulating smFRET experimental data for the target structures,
we found a significant improvement in the rigid body docked
models that take into consideration solely the FRET derived
distances for the four conformational states. Thus, the synergy
between DCA and smFRET studies in guiding FRET network
design paves a way to automation, to obtain the positions
favorable for smFRET dye-coupling for several protein systems
which can be beneficial to the smFRET community at large.
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