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MYBL2 (B-Myb): a central regulator of cell proliferation,
cell survival and differentiation involved in tumorigenesis

Julian Musa1, Marie-Ming Aynaud2, Olivier Mirabeau2, Olivier Delattre2 and Thomas GP Grünewald*,1,3,4

Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these
properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription
factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell
differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is
overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream
transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer
less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological
roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
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Facts

� MYBL2 is a highly conserved member of the MYB family of
transcription factors.

� MYBL2 is an important physiological regulator of cell cycle
progression, cell survival and cell differentiation.

� Deregulation of MYBL2 expression is involved in cancer
initiation and progression.

� High MYBL2 expression is significantly correlated with poor
patient outcome in numerous cancer entities.

Open questions

� What are further players of the MYBL2 downstream
transcriptional network mediating its cancer-promoting
properties?

� How can MYBL2 and players of its downstream transcrip-
tional network be exploited as therapeutic targets to
improve patient outcome?

� Which additional cancer entities are also affected by
MYBL2 deregulation and which patients could specifically
benefit from using MYBL2 as a biomarker or therapeutic
target?

Limitless replicative potential, evading apoptosis, tissue
invasion and metastasis: these classical hallmarks of cancer,
as originally proposed by Hanahan andWeinberg,1 character-
ize the malignant phenotype of a cancer cell. MYBL2
(V-Myb avian myeloblastosis viral oncogene homolog-like 2),

a transcription factor of the MYB family of transcription factors,
contributes to these properties of a cancer cell. MYBL2 is a
physiological regulator of cell cycle progression, cell survival
and cell differentiation, but due to its frequently found
deregulation in cancer, it significantly drives cancer initiation
and/or progression.
The MYB family of transcription factors comprises three

members: MYB (c-Myb), MYBL1 (A-Myb) and MYBL2
(B-Myb). MYB was the first discovered family member and is
the mammalian homolog of the retroviral v-Myb oncogene that
causes acute leukemia in birds and can transform
hematopoietic cells.2,3 MYBL1 and MYBL2 have been cloned
based on the homology to MYB.4 In mammals, MYB
expression is mainly restricted to hematopoietic cells, colonic
crypts and brain,5,6 whereas MYBL1 is expressed in
several regions of the developing central nervous system,
germinal B-lymphocytes and reproductive systems of both
genders.7,8 In contrast, MYBL2 is expressed in basically all
proliferating cells,3 which is a possible explanation for the
lethal phenotype of MYBL2 knockout mice showing early
embryonal death as a result of impaired inner cell mass
formation,9 whereas MYBL1 deletion results in viable mice
and MYB deletion leads to late embryonal death by cause of
lacking erythropoiesis.7,10

According to their tissue-specific expression, MYB and
MYBL1 deregulations have been associated with certain
specific cancer entities: MYB was shown to be involved in
several types of leukemia, colon and breast cancer,11 whereas
MYBL1 has been associated with Burkitt’s lymphoma and
several types of leukemia.12 In contrast, MYBL2 deregulations
occur in a broad spectrum of cancer entities as it is a central
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regulator of cell cycle progression, cell survival and cell
differentiation in many tissue types (see ‘MYBL2 in cancer’
section). In this review, we summarize the physiological roles
of MYBL2 in cell cycle regulation, cell survival and cell
differentiation, and describe its deregulation as well as the
resulting functional and clinical implications in cancer.

MYBL2 in Cell Cycle Regulation

MYBL2 is a cell cycle regulated and a cell cycle regulating
gene. Its expression is controlled by the DREAM multiprotein
complex (Dimerization partner, RB-like proteins, E2Fs and
MuvB core), which is crucial in coordinating cell cycle-
dependent gene expression and represses most cell cycle
genes during cellular quiescence.13 This complex consists of
the dimerization partner (DP1, -2, -3), the RB-like proteins
p130 or p107, E2F (E2F4 or E2F5) and themulti-vulval class B
core (MuvB, itself consisting of LIN9, LIN37, LIN52, LIN54 and
RBBP4).13 Upon cell cycle entry, p130 or p107 dissociate from

the MuvB core and from repressor E2Fs (E2F4, E2F5) due to
loss of DYRK1A-dependent phosphorylation of LIN52, allow-
ing activator E2Fs (E2F1 or E2F2 or E2F3) to transactivate
early G1/S cell cycle genes, including MYBL2.13 Accordingly,
MYBL2 is repressed by the DREAM complex during cellular
quiescence and becomes subsequently expressed in late G1
and in S phase.13 Additionally, at a post-transcriptional level,
MYBL2 expression can be suppressed by microRNAs.14–19

Apart from MYBL2 expression, the transcriptional activity of
MYBL2 is regulated by posttranslational modifications and
protein–protein interactions. During late G1 and S phase,
MYBL2 is phosphorylated by Cyclin A/E-CDK2, which
enhances its transactivation activity, probably by releasing it
from the nuclear receptor co-repressors N-CoR and SMRT,
which maintain MYBL2 in an inhibited state when non-
phosphorylated.20–22 Interestingly, Cyclin A-dependent phos-
phorylation simultaneously reduces MYBL2 protein expres-
sion by facilitating ubiquitin-mediated proteolysis of MYBL2,

Table 1 Selected target genes transactivated by MYBL2

Gene symbol Protein name Reference(s)

Cell cycle regulation
AURKA Aurora A kinase Sadasivam et al.36

CCNA1 (Sp1-mediated) Cyclin A1 Bartusel et al.35

CCNA2 Cyclin A2 Zhu et al.34; Osterloh et al.37

CCNB1 Cyclin B1 Zhu et al.34; Sadasivam et al.36; Osterloh et al.37

CCND1 (Sp1-mediated) Cyclin D1 Bartusel et al.35

CCND2 (repression) Cyclin D2 Papetti et al.38

CDK1 Cyclin-dependent kinase 1 Zhu et al.34; Osterloh et al.37

CDK2 (repression) Cyclin-dependent kinase 2 Papetti et al.38

CDKN2A (repression) p16INK4A Huang et al.110

CENPF Centromere protein F Iltzsche et al.42

CEP55 Centrosomal protein 55 Wolter et al.43

FGF4 Fibroblast growth factor 4 Johnson et al.40

FOXM1 Forkhead box M1 Lorvellec et al.41

KIFC1; KIF2C; KIF4A; KIF14;
KIF20A; KIF23

Mitotic kinesins Wolter et al.43; Iltzsche et al.42

MYB (repression) c-Myb Guerra et al.44

MYBL2 (Sp1-mediated) B-Myb Sala et al.45

MYC c-Myc Nakagoshi et al.46 (activation); Lorvellec et al.41

(activation); Papetti et al.38 (repression)
NUSAP1 Nuclear- and spindle-associated

protein 1
Iltzsche et al.42

PLK1 Polo-like kinase 1 Sadasivam et al.36; Osterloh et al.37

PRC1 Protein regulator of cytokinesis 1 Wolter et al.43

TOP2A DNA topoisomerase IIα Brandt et al.39

Cell survival
BCL2 Bcl-2 Grassilli et al.47

BCL2L11 Bim Greene et al.48

BIRC5 Survivin Knight et al.49

CLU ApolipoproteinJ/Clusterin Cervellera et al.50

FGF4 Fibroblast growth factor 4 Johnson et al.40

MYB (repression) c-Myb Guerra et al.44

MYBL2 (Sp1-mediated) B-Myb Sala et al.45

MYC c-Myc Nakagoshi et al.46 (activation); Lorvellec et al.41 (activation);
Papetti et al.38 (repression)

PLK1 Polo-like kinase 1 Sadasivam et al.36; Osterloh et al.37

VDAC2 Voltage-dependent anion channel 2 Yuan et al.51

Differentiation
NANOG Homeobox protein NANOG Zhan et al.52

POU5F1 Oct-4 Tarasov et al.53

SOX2 Sox2 Zhan et al.52

Invasion/metastasis
SNAI1 Snail (Zinc-finger protein SNAI1) Tao et al.120
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probably to regulate the proper alternation of events during cell
cycle progression.23 p300, a transcriptional co-activating
protein, is also able to stimulate MYBL2 activity by MYBL2
acetylation, depending on its phosphorylation by Cyclin A.24

However, contrary to Cyclin A, Cyclin D1 strongly inhibits
transactivation activity of MYBL2 through direct interaction.25

Mechanistically, it was proposed that Cyclin D1 abolishes the
activating function of p300.24 Several other co-activators, such
as PARP1, ZPR9, TAF(II)250, or co-repressors, such as p107,
p57 or CDK9, were further shown to modulate transactivation
properties of MYBL2.26–33

Early results already showed that MYBL2, when expressed
and activated in late G1 and S phase, directly binds to the
promoters and transactivates genes expressed in G2/M
phase, such as Cyclin B1 (CCNB1),34 CDK1,34 Cyclin A2
(CCNA2)34 (a list of selected MYBL2 target genes34–53 is
given in Table 1). Recently it was shown that the MuvB core,
which dissociates from the DREAM complex upon cell cycle
entry, and FOXM1 cooperate with MYBL2 to transactivate
these late cell cycle genes.13,36 Accordingly, MYB binding
sites (MBS), cell cycle genes homology region (CHR, bound
by LIN54 of the MuvB core) elements and FOXM1 binding
motifs co-occur in the promoters of these genes.13,36 A model
emerged over the years: When DREAM dissociates upon cell
cycle entry, MYBL2 becomes increasingly expressed and
activated, and forms a complex with MuvB in early and mid S
phase. RNAi experiments showed that knockdown of either
MYBL2 or components of the MuvB core complex inhibits
target gene promoter binding of the other.36 Consistently,
depletion of either MBS or CHR motifs in the promoters of
these target genes independently prohibits target gene
promoter binding.49,54 These results clearly indicate a
dependency of both factors to one another in transactivating
late cell cycle genes in early and mid S phase. Afterwards, the

MYBL2–MuvB complex recruits FOXM1 in late S phase,
forming aMYBL2–MuvB–FOXM1 complex.13 MYBL2 increas-
ingly undergoes phosphorylation-dependent proteasomal
degradation in late S phase,23 leading to predominant
MuvB–FOXM1 complex in G2/M phase, whereby FOXM1 is
increasingly activated by phosphorylation.55 Depletion of
FOXM1 did not affect MYBL2 target gene promoter binding,
but conversely, MYBL2 or LIN9 depletion reduced FOXM1
target gene promoter binding, indicating that the MYBL2–
MuvB complex is required for FOXM1 target gene promoter
binding, but not vice versa.36 As the FOXM1 DNA-binding
domain has an extraordinarily low binding affinity to its target
sequence andMBS andCHRmotifs are necessary for FOXM1
to bind the target promoters, it was proposed that the MYBL2–
MuvB complex is needed to increase target specificity for
FOXM1 binding.13 The residual MuvB–FOXM1 complex
dissociates due to increasing APC/C-CDH1-dependent
FOXM1 degradation during M phase56 (Figure 1).
The association between MYBL2 and cell proliferation has

already been described early by Arsura et al.57 Although some
of the pioneering studies indicated a role for MYBL2 in G1/S
progression,58,59 the major role of MYBL2 in G2/M progres-
sion became increasingly clear over the recent years: RNAi-
mediated MYBL2 knockdown in human cell lines and
experiments in Drosophila with knockout of the MYBL2
Drosophila homolog dMyb reduces cell proliferation, expres-
sion of G2/M genes and decreases the amount of cells in G2/M
phase.60,61,37,38,53,62,63 Although dMyb is the only gene of the
MYB transcription factor family in Drosophila, it is functionally
and phylogenetically equivalent to vertebrateMYBL2 and can
therefore be seen as a suitable model.64 The results from
Drosophila experiments are remarkable, as they indicate that
an adequate proliferative capacity mediated by MYBL2 is
necessary to maintain genomic stability.53,65–67 Loss-of-

Figure 1 Regulation of MYBL2 expression and subsequent association of MYBL2 with its functional binding partners MuvB and FOXM1 during the cell cycle. In G0/G1
phase, the DREAM complex binds the MYBL2 promoter and suppresses MYBL2 expression. In late G1/early S phase, the DREAM complex dissociates due to loss of DYRK1A-
dependent phosphorylation of LIN52 (part of the MuvB core), MYBL2 becomes increasingly expressed (and activated by Cyclin A/E-CDK2-dependent phosphorylation) and
associates with the MuvB core to cooperatively transactivate G2/M genes in early and mid S phase. In late S phase, FOXM1 additionally associates with the MuvB–MYBL2
complex and cooperates in transactivation of these late cell cycle genes. MYBL2 increasingly becomes degraded in late S phase, leading to predominantly persisting FOXM1–
MuvB complexes during G2/M phase, whereby FOXM1 is increasingly activated by phosphorylation. The residual MuvB–FOXM1 complex dissociates due to increasing APC/C-
CDH1-dependent FOXM1 degradation during M phase
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function mutation of dMyb causes abnormal mitoses that are
associated with multiple functional centrosomes, unequal
chromosome segregation, micronuclei formation and failure to
complete cell division.65 These are frequent in the later cell
cycles with resulting nuclei that often show aneuploidy and/or
polyploidy.65 It was also shown that MYBL2 can contribute to
genomic stability by forming complexes with Clathrin and
Filamin.68 This is required for proper localization of Clathrin at
the mitotic spindle and is thereby stabilizing kinetochore
fibers.68 Consistently, in embryonic stem cells (ESC) MYBL2
depletion leads to stalling of replication forks, disorganization
of the replication program and an increase in double-strand
breaks.41 It has been shown that these effects are, at least in
part, mediated by deregulation ofMYC and FOXM1 transcrip-
tion, which are important for normal S phase progression,
indicating that MYBL2 protects cells from genomic damage
during S phase by promoting proper cell cycle progression.41

Chromosomal fragmentation, shorter and thicker chromatids,
end-to-end fusion and chromatid loss upon MYBL2 knock-
down indicates that reduced activity of MYBL2 is also
associated with structural chromosomal instability.69

MYBL2 in Cell Survival

An association between MYBL2 and cell survival has already
been reported in early studies. However, over the years, the
role of MYBL2 in the regulation of cell survival became
increasingly clear and is mainly mediated via transcriptional
regulation of specific target genes, but can also be mediated
by direct protein–protein interaction. The transcriptional
regulation by MYBL2 seems to depend on the cell type: In
most cell typesMYBL2 appears to have pro-survival functions,
whereas it mainly has anti-survival functions in cells of neural
origin when exposed to apoptotic stimuli (Figure 2).

Pro-survival function via transcriptional regulation.
Grassilli et al.47 showed that MYBL2 overexpression in
interleukin 2-dependent murine T cells is associated with
enhanced transactivation of the anti-apoptotic Bcl-2, and
hence diminished cytokine dependence and enhanced
resistance to apoptosis induced by doxorubicin, ceramide
and dexamethasone. Consistently, the transfection of a Bcl-2-
non-expressing human B-cell line with a MYBL2 expression
vector induced the expression of Bcl-2 and vice versa,
antisense depletion of MYBL2 decreases Bcl-2 levels and
enhances apoptosis.70 Furthermore, results of Cervellera
et al.50 indicate that ApolipoproteinJ/Clusterin is a MYBL2
target gene, whose expression mediates resistance to
apoptosis induced by the chemotherapeutic drug doxorubicin
in neuroblastoma. Santilli et al.62 further confirm these
results: under conditions of thermal stress, MYBL2-
dependent ApolipoproteinJ/Clusterin expression is enhanced
due to redox modification of MYBL2 and constitutes a
protective response mechanism to thermal injury in MEFs.
MYBL2 has also been shown to suppress autophagy and to
promote cell survival of ovarian oocytes by binding the
promoter and directly activating the transcription of VDAC2.51

Anti-survival function via transcriptional regulation.
However, in contrast to these findings, MYBL2 seems to

have a contrary role concerning cell survival predominantly in
neural cells. MYBL2 knockdown protects pheochromocytoma
cells, sympathetic neurons and cortical neurons against cell
death elicited by NGF withdrawal or DNA damage.71 This
indicates a required role for MYBL2 in neuronal apoptosis
after E2F de-repression due to apoptotic stimuli.71,72 A model
has been proposed by which E2F4–p130 protein complexes
protect neurons from cell death by occupying the MYBL2
promoter under basal conditions, whereas under conditions
of cell stress these complexes are lost and replaced by E2F1
transactivating MYBL2 and thus promoting cell death.73 In
neurons, MYBL2 is able to bind the promoter and to
transactivate the pro-apoptotic gene BCL2L11 (Bim).48 The
following interaction of Bim with the cellular apoptotic
machinery leads to caspase activation and apoptotic cell
death.48 MYBL2 was also shown to be required for beta-
amyloid-dependent induction of Bim and cell death, relevant
in Alzheimer’s disease.74 Also in Drosophila, dMyb promotes
the programmed cell death of specified sensory organ
precursor daughter cells.75 However, not only in neural cells,
but also in TGF-β1-treated M1 myeloid leukemia cell lines
overexpressing MYBL2, TGF-β1-induced apoptosis was
found to be accelerated.76

Direct protein–protein interactions. Independent of the
transactivation capabilities of MYBL2, it is further able to
regulate cell survival by direct interaction with the serine–
threonine kinase receptor-associated protein (STRAP), for
which MYBL2 can serve as a positive regulator.77 On the one
hand, MYBL2 can enhance STRAP-mediated inhibition of

Figure 2 MYBL2 in regulation of cell survival. MYBL2 is primarily described to
have pro-survival functions, but also anti-survival functions of MYBL2 were shown.
These effects are mainly mediated by MYBL2 transactivating target genes regulating
cell survival (pro-survival: BCL2, CLU, VDAC; anti-survival: BCL2L11 (Bim)). Pro-
survival functions were described in various cell types, whereas anti-survival
functions were mainly described in cells of neural origin when exposed to apoptotic
stimuli. Apart from transactivation of its target genes, MYBL2 can also regulate cell
survival by direct protein–protein interaction with STRAP. On the one hand, this can
lead to inhibition of TGF-β signaling pathways by inhibiting TGF-β receptor
association with SMAD3 and enhancing TGF-β receptor association with SMAD7,
and thereby prevent translocation of SMAD3 in the nucleus in response to TGF-β1
(pro-survival function). On the other hand, it can result in increased STRAP-mediated
stimulation of p53 nuclear translocation, p53-induced apoptosis and cell cycle arrest
via reduction of p53-MDM2 association
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TGF-β signaling pathways, such as apoptosis and growth
inhibition, by inhibiting TGF-β receptor association with
SMAD3 and enhancing TGF-β receptor association with
SMAD7, and thereby prevent translocation of SMAD3 in the
nucleus in response to TGF-β1 (pro-survival function).77 On
the other hand, co-expression of MYBL2 results in increased
STRAP-mediated stimulation of p53 nuclear translocation,
p53-induced apoptosis and cell cycle arrest via reduction of
p53–MDM2 association (anti-survival function).77

MYBL2 in differentiation and maintenance of stem cell
properties

Several lines of evidence indicate that MYBL2 contributes to
the maintenance of an undifferentiated and/or stem cell-like
phenotype of a cell. Especially in stem cells, the balance
between cellular quiescence on the one hand, and cell division
in order to generate more stem cells (self-renewal) or to give
rise to mature cells (differentiation) on the other hand, is
important for the maintenance of the stem cell pool.78

Early results showed that MYBL2 protein levels decrease
upon differentiation of human myeloid cell lines.79 Later on, in
neuroblastoma cells, MYBL2 expression was found to be
downregulated during retinoic acid-induced neural and glial
differentiation and conversely, constitutive expression of
MYBL2 prevents retinoic acid-induced neural differentiation.80

Compatible with this, levels of p130, a member of the DREAM
complex (see ‘MYBL2 in cell cycle regulation’ section) that is
able to suppress the MYBL2 promoter upon transfection, was
shown to be strongly upregulated during mid/late differentiation
stages, whereas MYBL2 levels decrease.81 Comparable
results indicating a role for MYBL2 to maintain cells in an
undifferentiated state have also been shown for several different
cell types, such as leukemic cell lines,82 male gonocytes,83

intestinal epithelial cells38 and keratinocytes.84

Mechanistically, for the maintenance of a pluripotent and
undifferentiated phenotype of ESC, it was proposed that
MYBL2 may regulate a transcriptional network that controls
cell cycle progression and cell fate to sustain self-renewal and
pluripotency.52 Especially for the maintenance of pluripotency,
MYBL2 directly regulates the expression of POU5F1, SOX2
andNANOG, which are critical mediators of differentiation and
pluripotency in ESC.52,53,85 Similarly, MYBL2 was shown to
control self-renewal and differentiation of hematopoietic stem
cells, possibly by downregulating ID1 and CEBPα, which
promote cellular differentiation, while upregulating GATA2, a
transcription factor shown to promote proliferation at the
expense of differentiation78,86(Figure 3).
In summary, these studies indicate that MYBL2 helps the cell

tomaintain an undifferentiated, pluripotent, but proliferative state.

MYBL2 in Cancer

The roles of MYBL2 in cell cycle progression, cell survival and
cell differentiation suggest that deregulation of MYBL2 may
has an oncogenic potential. It can contribute significantly to
cancer progression by promoting cancer cell proliferation,
therapy resistance and metastatic spread (Figure 4). Indeed,
MYBL2 is frequently found to be overexpressed in several

cancer entities and associated with poor patient outcome87–93

(Table 2).

Mechanisms of MYBL2 deregulation in cancer. On the
one hand, altered MYBL2 expression can arise from
chr20q13 amplification, which is described for several cancer
entities, for example, breast cancer, colorectal cancer and
ovarian cancer.94–96 On the other hand, it can be caused by
deregulation of DREAM complex assembly, for example, due
to p53 mutation or transformation by the HPV16 E7
oncogene and thereby uncoupling MYBL2 expression from
negative transcriptional regulation and enabling MYBL2 to
increasingly bind to MuvB and FOXM1 (see below).
Additionally, MYBL2 expression can be deregulated at a
post-transcriptional level via deregulation of microRNAs, a
class of small non-coding RNAs often found to be deregu-
lated in cancer97 and of which some were shown to suppress
MYBL2 mRNA expression.14–19

p53 signaling is frequently altered in cancers.98 Physiolo-
gically, p53 directly activates p21, which prevents following
p130 phosphorylation by cyclin-dependent kinases, leading to
a switch from MYBL2–MuvB to DREAM complex by shifting
MuvB-associated proteins from MYBL2 to E2F4/DP1/p130.99

It has been described that the p53-p21-DREAM pathway
represses MYBL2 expression, especially under conditions of
cellular stress, such as DNA damage, which mechanistically
explains MYBL2 deregulation, and thus deregulation of cell

Figure 3 MYBL2 in differentiation and maintenance of stem cell properties. In
various studies, high MYBL2 levels were shown to be associated with cell
dedifferentiation (see ‘MYBL2 in differentiation and maintenance of stem cell
properties’ section). Mechanistically, the role of MYBL2 in regulation of differentiation
was mainly investigated in embryonic stem cells (ESC) and hematopoietic stem cells
(HSC): In ESC, MYBL2 was shown to directly control the expression of POU5F1,
SOX2 and NANOG, which are critical regulators of differentiation and maintenance of
pluripotency. In HSC, MYBL2 was shown to downregulate ID1 and CEBPα, which
promote cellular differentiation, and to upregulateGATA2, a transcription factor shown
to promote proliferation at the expense of differentiation. Thus, MYBL2 helps the cell
to maintain in an undifferentiated, pluripotent, but proliferative state

Figure 4 MYBL2 deregulation in promotion of cancer initiation and/or
progression. Upregulation of MYBL2 is described in numerous cancer entities and
is associated with poor patient outcome (Table 2). It leads to an increase in cell cycle
progression, cell survival and epithelial-to-mesenchymal transition (EMT), thus
promoting cell proliferation, therapy resistance, invasion and metastatic spread
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cycle progression and cell survival in p53-mutated
cancers.100,101 This is in accordance with results from Parikh
et al.102 showing that MYBL2 is disproportionately upregu-
lated in many p53 mutant cancers. MYBL2 has even been
shown to overcome DNA damage-induced G2 checkpoint
arrest in p53 mutant cells103 and constitutive expression of
MYBL2 has been shown to overcome p53-induced G1
checkpoint arrest.59 Furthermore, the oncoviral HPV16 E7
protein is able to deregulate DREAMcomplex assembly and to
thereby drive MYBL2 expression.104 Consistent to this,
HPV16-immortalized cells show upregulated expression of
MYBL2.105 Mechanistically, the HPV16 E7 oncogene can bind
to p130, promote its proteasomal degradation and thereby
disassemble the DREAM complex.106 E7 in addition directly
binds to the MYBL2–MuvB–FoxM1 complex, leading to
cooperative transcriptional activation of mitotic genes.106

MYBL2 moreover mediates abrogation of DNA damage-
induced G1 checkpoint arrest, via regulation of CDK1
expression in E7 transformed cells107 and was shown
to rescue oncogene-induced cellular senescence,14,108 a
permanent cell cycle arrest that cells must bypass during
cancer development,14,109 probably by suppressing p16INK4A

expression.14,108,110

MYBL2 in deregulation of proliferation. As described for
non-malignant cells (see ‘MYBL2 in cell cycle regulation’
section), MYBL2 has also been shown to drive cell
proliferation and/or cell cycle progression in cancer cells,
such as breast cancer,111 cervical cancer,112 colorectal
cancer,89 hepatocellular carcinoma,91 leukemic cells,15 lung
adenocarcinoma42 and neuroblastoma (in MYCN-amplified
cell lines).113

MYBL2 in cancer therapy resistance. Resistance to
chemo- and radiotherapy is one of the main properties of a
cancer that determines cancer progression and patient
outcome. MYBL2 overexpression in interleukin 2-dependent
murine T cells was shown to be associated with enhanced
resistance to drug-induced apoptosis by doxorubicin, cer-
amide and dexamethasone, due to increased transactivation
of the anti-apoptotic Bcl-2 by MYBL2.47 These results from

Grassilli et al. are in accordance with results from Levenson
et al.,114 showing that MYBL2 is upregulated upon genetic
suppressor element-induced drug resistance to DNA-
interactive agents, such as aphidicolin, hydroxyurea, cytar-
abine, etoposide, doxorubicin and mafosfamide in fibrosar-
coma cells. In neuroblastoma, MYBL2 directly regulates
expression of ApolipoproteinJ/Clusterin and thereby med-
iates resistance to apoptosis induced by doxorubicin.50

However, MYBL2 was not only shown to mediate resistance
to chemotherapeutic agents, but also resistance to DNA
damage, as, for example, caused by radiation. Under
physiological conditions, such as in p53 wild-type cells, DNA
damage results in p53-dependent binding of p130 andE2F4 to
MuvB and the dissociation of the MYBL2–MuvB
complex.99–101 Also, upon ionizing radiation, Cyclin F sup-
presses the MYBL2-regulated transcriptional program by
directly interacting with MYBL2 and thereby suppressing
Cyclin A-mediated phosphorylation of MYBL2.115 On the
contrary, under non-physiological conditions, such as in p53
mutant cells, MYBL2 fails to dissociate from MuvB, which
contributes to increased G2/M gene expression in response to
DNA damage.103 In accordance, DT40 chicken B cells lacking
MYBL2 show increased sensitivity to DNA damage elicited by
UV irradiation and alkylation.116 Consistently, in Ewing
sarcoma cells, MYBL2 can be destroyed quickly upon UV
irradiation, leading to induction of apoptosis,117 whereas this is
not the case in neuroblastoma, where MYBL2 levels do not
change upon irradiation, making the cells resistant to UV-
induced apoptosis.117 Interestingly, in neuroblastoma cells
MYBL2 is found to be hypophosphorylated and overexpres-
sion of a non-phosphorylatable MYBL2 mutant in HEK 293
cells can protect cells from UV-induced apoptotic cell death,
suggesting that decreased Cyclin A-dependent phosphoryla-
tion, accompanied by decreased activation but also
decreased proteasomal degradation, can facilitate the survival
promoting activity of MYBL2.117

Consistent with these results, a pro-survival role for MYBL2
has also been shown in several cancer cell lines, such as
colorectal cancer,89 hepatocellular carcinoma91 and leukemia
cells.118

Table 2 MYBL2 deregulation associated with patient outcome in different cancer entities

Tumor entity MYBL2 deregulation Association with patient survival References

Acute myeloid leukemia Overexpression MYBL2 expression is an independent prognostic factor for
disease-free survival and cumulative incidence of relapse

Fuster et al.17

Bladder carcinoma Overexpression (amplification) Overrepresentation of amplicons in high-grade and recurrent
cases

Nord et al.87

Breast cancer Overexpression Overexpression is associated with short overall patient
survival and short disease-free survival

Inoue and Fry88

Colorectal cancer Overexpression Overexpression is correlated with worse disease-free survival
and MYBL2 is an independent prognostic factor for poor
patient survival

Ren et al.89

Esophageal squamous cell
carcinoma

Overexpression (amplification) High MYBL2 expression and high MYBL2 copy-number are
associated with poor patient survival

Qin et al.90

Hepatocellular carcinoma Overexpression, high
phosphorylation levels

High levels of total and phosphorylatedMYBL2 and high levels
of LIN9–MYBL2 complex in HCC with poorer outcome

Calvisi et al.91

Neuroblastoma Overexpression MYBL2 expression is associated with increased risk of death
and worse overall survival

Raschellà et al.92

Renal cell carcinoma Positivity Positivity for MYBL2 expression is significantly correlated with
clinical stage III and IV

Sakai et al.93
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MYBL2 in invasion and metastasis. Early results of Iwai
et al.58 have shown that the introduction of an inducible
dominant interfering Myb protein into ESC lead to dissocia-
tion of ESC colonies into dispersed single cells and to
reduced adhesion of the ESC to the culture dish. Cell
adhesion analyses have shown that MYBL2 suppression
decreased the adhesion with extracellular matrix proteins,
such as Laminin, Collagen and Fibronectin, probably due to
reduced cell surface expression of Beta1 Integrin.58

However, in contrast to these early findings, a role for MYBL2
in epithelial-to-mesenchymal transition (EMT), a process in
which epithelial cells lose their polarity and gain migratory and
invasive properties,119 has been proposed: In breast cancer
cells, MYBL2 knockdown is able to restore the expression of the
epithelial marker E-Cadherin, the formation of cell–cell junc-
tions and to suppress cell invasion, anchorage-independent
growth and tumor formation.120 Conversely, MYBL2 over-
expression decreased the expression of the E-Cadherin, but
increased expression of mesenchymal markers.120 Mechan-
istically, it was proposed that MYBL2 upregulates the expres-
sion of the major EMT regulator SNAIL, thereby mediating
activation of EMTand cancer cell invasion.120

In accordance with this, MYBL2 protein levels have been
shown to be significantly upregulated in matched breast
cancer metastases compared to the primary tumor.111 Similar
results were shown for prostate cancer and renal cell
carcinoma: MYBL2 is overexpressed in prostate cancer
(xenograft) metastases,121 whereas in renal cell carcinoma
MYBL2 was found to be expressed in metastases from
primary tumors being MYBL2 negative.93

Conclusions

MYBL2 is a central regulator of cell cycle progression, cell
survival and cell differentiation. Deregulation of MYBL2
expression can contribute significantly to cancer progression
by promoting cancer cell proliferation, therapy resistance,
metastatic spread and is correlated with poor patient outcome
in several cancer entities. Therefore, MYBL2 and/or players of
its downstream transcriptional network could serve as
effective targets for cancer treatment. Although no direct
MYBL2 inhibitor is available yet, CDK2 inhibition could be
used to reduce MYBL2 activity in MYBL2 high-expressing
cancers. Yet, highly specific CDK2 inhibitors are lacking, but
several more or less specific CDK inhibitors have already been
in clinical trials for cancer treatment.122,123 Also, several
inhibitors interfering with players of the downstream transcrip-
tional network of MYBL2, such as inhibitors against Aurora
kinases,124 FGF receptors,125 Kinesins,126 Bcl-2127 and
BIRC5 (Survivin)128 have already been in clinical trials and
may serve as an effective, more specific and less toxic future
anti-cancer therapy in cancers highly expressing MYBL2.
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