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The endothelium plays a key role in acute and chronic rejection of solid organ transplants.

During both processes the endothelium is damaged often with major consequences

for organ function. Also, endothelial cells (EC) have antigen-presenting properties and

can in this manner initiate and enhance alloreactive immune responses. For decades,

knowledge about these roles of EC have been obtained by studying both in vitro and

in vivo models. These experimental models poorly imitate the immune response in

patients and might explain why the discovery and development of agents that control

EC responses is hampered. In recent years, various innovative human 3D in vitromodels

mimicking in vivo organ structure and function have been developed. These models

will extend the knowledge about the diverse roles of EC in allograft rejection and will

hopefully lead to discoveries of new targets that are involved in the interactions between

the donor organ EC and the recipient’s immune system. Moreover, these models can

be used to gain a better insight in the mode of action of the currently prescribed

immunosuppression and will enhance the development of novel therapeutics aiming to

reduce allograft rejection and prolong graft survival.

Keywords: solid organ transplantation, allograft rejection, endothelial cells, organoids, 3D in vitro models,

organ-on-a-chip

INTRODUCTION

The endothelium has an important role in transplantation. First, a well-functioning endothelium
is crucial for the health of a transplant as it regulates oxygen and nutrient provision to that organ.
Second, endothelial cells (EC) play an active role in allograft rejection (1–3).

The endothelium of the transplant is the first contact site for the recipient’s immune system with
donor cells. This barrier is important as it regulates the flux of immune cells into and out of the
transplanted organ, which is essential for protecting the allograft from pathogens (2, 3). However, in
the setting of solid organ transplantation, the endothelial barrier also facilitates influx of alloreactive
immune cells that can damage the allograft and subsequently lead to allograft rejection (1, 4, 5).
Transendothelial migration of recipient immune cells consists of several steps in which immune
cells are attracted, roll along, adhere, and eventually migrate through the endothelium (2, 6).
In this cascade of events the expression of specific membrane molecules—selectins, integrins,
and cytokine-induced adhesion molecules (CAMs)—on both EC and immune cells play a key
role. Upon activation, EC increase the expression of these membrane molecules, along with the
release of several pro-inflammatory cytokines and chemokines and the loosening of intercellular
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vascular endothelial cadherin (VE-cadherin) junctions (4, 5,
7, 8). In organ transplantation, several pathways can lead to
such EC activation resulting in enhanced influx of (alloreactive)
immune cells.

EC activation takes place during the transplantation
procedure, when EC of the allograft are affected by ischemia and
reperfusion injury (IRI). The temporary absence of circulation
causes hypoxia and leads to activation and injury of the donor
endothelium even before explantation of the organ (9–11).
Upon reperfusion of the donor organ in the recipient, reactive
oxygen species (ROS) are produced causing a second wave of EC
injury. This results in apoptosis, necrosis and autophagy of EC.
Moreover, EC injury and activation leads to a general immune
response and chemotaxis of immune cells (12, 13).

EC activation is also seen in different types of allograft
rejection, in which EC can be both target and stimulator
of the rejection response, i.e., in both cellular and humoral
rejection (1, 5, 14, 15). The earliest rejection event after
transplantation is known as hyperacute antibody mediated
rejection (ABMR), in which preformed donor-specific
antibodies (DSA) recognize human leukocyte antigen (HLA)
or ABO antigens on EC. Resting EC express HLA class I
molecules, but activated EC highly increase the expression
of both HLA class I and HLA class II molecules. Therefore,
during IRI, preformed anti-HLA DSA easily recognize and
subsequently damage the EC and graft. Other than the IRI
pathway, DSA binding itself also triggers the activation
of EC (14, 16, 17). However, such hyperacute ABMR
events are barely seen nowadays, mainly due to improved
pre-transplantation screenings.

At later stages after transplantation acute ABMR can
develop in which de novo anti-HLA DSA or non-HLA EC
targeted antibodies are involved. These antibodies can cause
activation and destruction of the donor endothelium in which
either complement dependent cellular cytotoxicity (CDCC) or
antibody-dependent cell-mediated cytotoxicity (ADCC) occurs
(14, 15, 18, 19).

Also, cytotoxic lymphocytes (CTL) can recognize donor HLA
class I and kill donor EC, which is typically seen in T cell mediated
rejection (TCMR) (2, 18, 20). These CTL can be activated by
antigen presentation of both donor and recipient APCs within
secondary lymphoid organs (18).

Moreover, like professional APC, the endothelium itself is
also capable of initiating alloreactive T cell responses. The
mechanisms through which this occurs are via enhanced
expression of donor HLA class I and II on the EC surface,
provision of costimulatory signals to lymphocytes, and cytokine
production (21, 22). Through direct and indirect pathways EC
can activate CD4 or CD8memory T cells, which can subsequently
result in TCMR (2, 18, 23).

More recently, another form of acute allograft rejection has
been recognized, in which microvascular inflammation is not
caused by classical ABMR or TCMR pathways, but in which NK
cells play a dominant role. HLA-I expression on EC is found to
directly activate recipient NK cells, which subsequently leads to
EC damage (24).

In addition to acute rejection events, it is hypothesized that
subclinical EC activation is involved in the development of

chronic allograft rejection. However, this mechanism is less well-
understood (14, 23, 25).

EC of the transplant receive the first blow during and
after transplantation. However, EC possess a great regenerative
capacity (26, 27). EC of donor origin have the capacity to
proliferate and replace lost or injured cells. In addition to
donor EC, also recipient EC can replace the destructed donor
EC to restore the continuum of the vessel wall, leading to EC
chimerism. It is hypothesized that EC chimerism might lead to
reduced immunogenicity of the endothelium (28–34).

It is clear that EC play a key role in organ transplantation,
but research gaps are still present, including (i) the precise role
of non-HLA endothelial targeted alloantibodies [i.e., MHC class
I related chain A (MICA) and anti-endothelial cell antibodies
(AECA)] and (ii) the incidence and degree of EC chimerism and
relation with immunogenicity.

Much of our current knowledge on the role of EC in
alloreactivity comes from in vitro and in vivo research models.
In this review we discuss the value and limitations of these
research models and introduce novel innovative research models
that may enable us to profoundly explore the interaction of
immune cells with EC in allograft rejection. This will help us
to find new targets to protect the graft EC from damage as well
as to explore novel treatments to reduce allograft rejection and
prolong graft survival.

CONVENTIONAL MODELS FOR STUDYING
THE ROLE OF ENDOTHELIAL CELLS IN
ALLOGRAFT REJECTION

Conventional Models
The most-used in vitro experimental setup to study the
role of EC in allograft rejection is the static 2D co-
culture of human umbilical vein endothelial cells (HUVEC)
with HLA-mismatched immune cells. Functional analyses
are performed by activation, proliferation, transmigration,
suppression, and cytotoxicity assays. In these models, cell
interactions are studied by flow cytometry, immunofluorescence
microscopy, multiplex protein assays, and gene expression
analyses (20–22, 35–60). Several agents that specifically block
HLA molecules, costimulatory molecules or cytokines have
been studied with these methods to investigate their effect on
activation, proliferation, and transmigration of immune cells
(21, 22, 35, 36, 38, 39, 44, 48, 50, 60). Also, the effect of
immunosuppressive drugs on EC and their interaction with
immune cells have been examined with these experimental
models (22, 45, 52, 61–67).

Animal models have been used to study the role of
EC in allograft rejection in a physiological setting. Mostly
rodent models are used to transplant organs between major
histocompatibility complex (MHC)-mismatched rodent strains.
Subsequently, EC—immune cell interactions are studied in blood
samples and harvested organs (e.g., the transplanted organ and
the secondary lymphoid organs) (21, 29, 40, 42, 68–77). Also,
the effect of several immunosuppressive drugs on EC have been
investigated within these models, for example to investigate if
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TABLE 1 | Advantages and limitations among conventional and innovative research models.

Conventional models

Static 2D in vitro models Animal models

Advantages • Easy to perform

• Well-established

• Physiological aspects

• Allows transplant procedures

Limitations • Cell lines differ from patient derived cells

• Lack of glycocalyx

• 2D condition and lack of flow highly influences EC morphology and function

• Lack of interaction with other cell types

• Genetic, immunological, and pharmacokinetic differences compared to

humans

• Surgical differences and difficulties compared to human transplantation

• Emerging ethical concerns

• Time-consuming

Innovative models

2D dynamic models Humanized rodent models Organ-on-a-chip models Organoids

Advantages • Continuous flow of medium,

supply of O2 and growth

factors, and removal of waste

• Allograft from human origin

• Study interaction of human

EC and human PBMC

• Incorporation of diverse cell

types

• Various methods to create 3D

vascularization mimicking in

vivo perfusion

• Possibility to connect multiple

organs on a chip

• High-complex organ-like structures

that closely resemble in vivo organs

• Possibility to connect multiple

organoids on a chip

Limitations • 2D condition influences EC

morphology and function

• No organ-like architecture

• No solid organ model

available

• Translation from skin and

aorta models to solid organs

is limited

• Requires high surgical skills

• Medium-high complexity (to

perform)

• Organ architecture is still

simplistic

• Time-consuming

• High complexity (to perform)

• Vascularization is not

well-developed yet

• Tumor/teratoma formation

• Immature (i.e., fetal) organs

• Time-consuming

these drugs can protect EC from IRI injury and reduce EC
activation and immune cell infiltration (29, 69, 71, 75).

Limitations of Conventional Models
Despite the breakthroughs that have been achieved with
conventional experimental models, novel models that better
mimic the human EC—immune cell spatiotemporal interaction
in the allograft are needed in the search for effective therapies
as conventional models have some limitations: Although easy
to work with, HUVEC are not per se the best cell type to study
allograft rejection in vitro as EC of different origin are very
heterogeneous and differ in their shape, cell-cell connections,
membranemolecules and permeability. Especially macrovascular
EC, like HUVEC, and microvascular EC are highly divergent.
Among EC of different organs—and even within an organ- many
differences exist as well (8, 78–83). Also, EC from patients may
be affected by their condition (for example aging, comorbidity,
and drugs) and therefore behave differently than EC derived
from healthy controls. For specific research aims, this issue can
be bypassed by using patient derived EC. For example, an EC
crossmatch model to study ABMR has been established with the
use of transplant donor derived EC and corresponding recipient
sera (59, 84).

Furthermore, 2D monolayer cultures lack spatial interaction
with other neighboring cell types such as pericytes and smooth
muscle cells (SMC) which should also be included in the
experimental setup (85). Moreover, the EC glycocalyx protects
EC from interaction with immune cells, but the glycocalyx is not
represented well in conventional static 2D models (86, 87).

Another issue is that static 2D culture conditions lack
physiological perfusion and vessel resistance. The importance

of mimicking a physiological perfusion of EC is emphasized
by the fact that the level of shear stress along with the flow
pattern (laminar or disturbed) highly influences ECmorphology,
migration, proliferation, gene expression, and permeability (88,
89).

Lack of flow and lack of multicellular spatial interaction
are not an issue in animal models. However, limiting factors
of animal models are the huge genetic, immunological, and
pharmacokinetic differences between animals and humans (37,
90–96). Also, many differences between human and animal
surgical transplantation procedures exist (97–100). Therefore,
results from these animal models cannot be fully translated to
human solid organ transplantation. Also, the ethical dilemmas
about animal models are growing worldwide and ethical
approval for animal studies has become much stricter in
most countries.

Recently, novel innovative models for studying tissue and
immune interactions in vitro have been developed. These models
may overcome several of the limitations of conventional models
and could also be useful for studying the role of EC in allograft
rejection. Below an overview of the most promising models is
provided.Table 1 summarizes advantages and limitations of both
conventional and novel models.

ADVANCED EXPERIMENTAL MODELS TO
STUDY THE ROLE OF ENDOTHELIAL
CELLS IN ALLOGRAFT REJECTION

2D Microfluidic Culture Systems
When using a 2D co-culture model with an endothelial cell
line and immune cells, a few adjustments can highly improve
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FIGURE 1 | 2D microfluidic in vitro models. (A) Culture well with HUVEC or

organ-specific EC (red). The well is connected with a pump (not shown) and

flow tubes. Alloreactive lymphocytes (blue) are perfused through the well. (B)

2D Microfluidic chip that can be connected to a pump (not shown) and flow

tubes. EC (red) are perfused through the system and cells attach to the

bottom of the chip. Next, alloreactive lymphocytes (blue) are perfused through

the system.

the system. A great step forward toward more physiological
conditions can be made when changing from static to dynamic
co-culture to mimic vessel perfusion. Conventional culture plates
or microfluidic chips can be connected to peristaltic or pulsatile
pumps to create a continuous flow of cell medium, serum
or plasma (Figure 1) (101–103). These dynamic flow systems
have already been successfully used for studying endothelial
and immune cell interactions (101, 104, 105). In addition to
simulating physiological perfusion, such systems allow studying
the effects of abnormal flow, for example to investigate the
effect of discontinued flow which occurs in organs during the
surgical transplant procedure (102, 103, 106). Other important
steps to improve the 2D co-culture system are choosing the
microvascular endothelial cell line of the organ of interest and
including neighboring cell types in the system, like pericytes or
SMC, through a 2D two-layer design (107).

Humanized Rodent Allograft Models
Humanized rodent models can be a great improvement of the
more conventional rodent models as these humanized models
can overcome some of the translational problems that come
with differences among species. The definition of a humanized
rodent allograft model is that human immune cells are injected
and human tissue is transplanted in immunodeficient mice

(108–110). For studying the role of EC in transplantation it is
important that both EC and immune cells are of human origin
to closely resemble human transplantation conditions. With this
assumption, a few interestingmodels can bementioned; First, the
transplantation of human skin onto immunodeficient mice and
subsequent injection of human peripheral blood mononuclear
cells (PBMC) (21, 70, 71). This model is suitable for studying
human EC and human immune cells in an in vivo condition
and especially the administration of immunosuppressive drugs
and its effect on the EC—immune cell interaction would be
intriguing to study within this model. However, an important
limiting factor of this model is that vascularization of skin
transplantation is incomparable with solid organ transplants, as
skin transplant vascularization is approximately achieved after
48 hours and completed after 8 up to 21 days (97, 98, 111).
Also, vascularization in skin allografts is dominated by recipient
neoangiogenesis and regression of donor vasculature, in contrast
to human solid organ transplants in which the donor vasculature
remains largely intact (111). Another interesting model is the
transplantation of human aorta segments into immunodeficient
mice and subsequent injection of human PBMC (68). As
described above, microvascular EC of solid organs greatly vary
from macrovascular EC of an aorta segment. Likewise, the
aorta model does not allow for studying the interaction and
transmigration of immune cells through microvascular graft EC.
Combined transplantation of human skin and human coronary
artery in immunodeficient mice has also been performed. In this
study subsets of immune cells have been injected to study the
effect of specific immune cell populations on the allograft (112).

3D Culture Systems: Organs on a Chip and
Organoids (on a Chip)
Organ on a Chip
Another promising transition is the switch from 2D to 3D
models. In parallel with the upcoming 3R movement—i.e.,
reduction, refinement, and replacement of animal models—the
bioengineering industry has made big steps forward in producing
3D in vitro models that closely resemble organ function, the
so called organ-on-a-chip models. The most developed “organ”
on a chip is the vessel-on-a-chip (113, 114). In this model a
silicon-based—Polydimethylsiloxane (PDMS)—mold is used in
which channels are artificially created with a biopsy punch. The
channels are then perfused with EC that will grow into 3D
vessel-like structures (Figure 2A) (113, 115–118). PDMS-based
molds have limitations however, as this material can absorb
certain small molecules, including oxygen and drugs, leading
to distorted results (119, 120). Coating the PDMS membrane
with a lipid-based solution, before adding the EC, has overcome
this problem (119). Recently, the introduction of hydrogel-based
molds, the addition of surrounding cells (pericytes or SMC) and
the use of the 3D printing technique has resulted in even more
realistic vessels in which the effect of shear stress, neighboring
cells, and extracellular matrix (ECM) can be studied (121–
126). Even naturally occurring neo-angiogenesis and sprouting
resulting in self-structured vessels has been made possible (124,
127). These self-structured vessels however, are yet in an early
stage as perfusion in self-formed vessels and branches cannot
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FIGURE 2 | 3D in vitro models. (A) Vessel-on-a-chip model. EC (red) are

perfused through a PDMS mold channel. When confluent, alloreactive

lymphocytes (blue) are perfused through the vessel. (B) Glomerulus-on-a-chip

(Continued)

FIGURE 2 | model. EC (red) are perfused through the upper channel and

podocytes (brown) are perfused through the lower channel. The two cell layers

are separated by a membrane that imitates the glomerular basement

membrane. Next, alloreactive lymphocytes (blue) are perfused through the

upper channel. Non-migrated lymphocytes are collected from the upper

channel and migrated lymphocytes are collected in the lower channel. (C)

Kidney-organoid model. iPSC are induced with growth factors to differentiate

into a 3D multicellular structure. (D) Complex structure formation can be

monitored with light microscopy. (E) Histological H&E staining of a

kidney-organoid shows tubular (black arrow) and glomerular structures (red

arrow).

always be assured. Depending on the research purpose either
the guided vessel formation or the self-structured vessels may
be the best model to choose. These vessel-on-a-chip models
can be perfused with cell medium, drugs, serum, plasma or
even whole blood to study for example, thrombosis and drug
pharmacokinetics and -dynamics (Figure 2A) (114, 115, 123,
128–130). Oxygen can also be added to the perfusion fluid (131).
One research group designed a vessel-on-a-chip system as a
model for xenotransplantation. Microfluidic chips containing
microchannels were constructed with the use of PDMS and
mold needles. The channels were perfused with porcine aortic
endothelial cells (PAEC) and confluency was confirmed with
confocal microscopy. Next, PAEC vessels were perfused with
human serum. Confocal microscopy and protein assays were
used to investigate the effect of the human serum perfusion
on PAEC and complement activation (123). 3D vessel-on-a-
chip models would also be a great step forward in the research
to the role of EC in allograft rejection for example to study
(i) the effect of induced hypoxia and reperfusion on EC (ii)
the interaction of EC and alloreactive immune cells (iii) the
effect of immunosuppressive drugs on EC activation and on
transmigrating immune cells, (iv) EC chimerism.

Other than vessels, many organ-on-a-chip models have been
generated, including kidney, liver, lung, heart, brain, skin, gut,
and lymph nodes (130, 132). Pre-differentiated cells—cell lines
or human pluripotent stem cell (hPSC) derived cells—are used in

these models. In some of these organ-on-a-chips an endothelial
barrier is incorporated in the model and is therefore interesting

for studying the role of EC in allograft rejection. For example,

a glomerulus on a chip was generated with hPSC-derived
podocytes, glomerular microvascular endothelial cells (GMEC)
and a glomerular basement membrane (GBM)-like structure

(133). Figure 2B shows an example of a glomerulus-on-a-chip
model. Also, a 3D vascularized proximal tubulus chip has been

established in which a tube formed by proximal tubular epithelial
cells (PTEC) and a second tube formed by GMEC are separated
by an ECM-like membrane (134). Both glomerulus- and tubulus-
on a chip systems have been able to simulate glomerular filtration
(133–136). These models would be very interesting in studying
the role of EC in transplantation. For example to study (i)
how alloreactive immune cells that transmigrate through the
endothelium have an effect on the tubular cells or podocytes
and by which mechanisms (ii) to discover new drug targets that
could interfere with this process (iii) to investigate the effect of
currently used immunosuppressive drugs (iv) or to investigate if
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alloreactive immune cells have a different effect on glomerular EC
compared to tubular EC.

The choice for a specific EC cell source in an organ-on-a-
chip model comes with certain advantages as well as limitations.
Primary EC most closely resemble in vivo conditions, but are
limited in culture time as they lose phenotype and functional
characteristics after a few passages. Also inter-individual
variation occurs within primary cells (137). Immortalized EC cell
lines can, in contrast to primary cells, be kept in culture for long
term and do not have the issue with between-donor variation.
These EC cell lines, however, generally do not resemble well in
vivo conditions (137, 138). Circulating progenitor endothelial
cells (EPC) have occasionally been used for in vitro differentiation
into mature EC, but are limited in their use due to the low
yield and the controversy about their identification (139, 140).
hPSC have been used for cell differentiation of many different
cell lineages, including EC. The ability to expand these stem
cells for long term is a great advantage, but a limitation is their
immaturity and their phenotypic instability after differentiation
(137, 141, 142). Moreover, developed differentiation protocols
are generated with the use of a few stem cell lines and
application by researchers with other stem cell lines often leads
to reproducibility problems.

A new concept of organs-on-a-chip is the connection of
individual organ-chips to create a body-on-a-chip (143–145).
Especially for drug development and for in vitro modeling of
diseases that affect multiple organs, body-on-a-chips would be
very useful. The current challenge for this model is to enhance
vascularization and innervation of all the organs in the system
(143). Also, defining the proportional size of each organ in the
system and facilitate maturation of all organs at the same time are
remaining challenges (143, 146). Connecting only a few organs
instead of creating a whole-body-chip might be sufficient for
some research purposes and could reduce some of the described
challenges. For studying the role of EC in allograft rejection, it
would be interesting to connect a kidney-, liver- or heart-on-a-
chip with a lymph-node-on-a-chip and generate vascularization
and lymphatic drainage. In cancer research a vascularized and
lymphatic drained tumor-on-a-chip has already been developed
(147). With such a system, in which the organ-on-chip and
lymph-node-on-chip are alloreactive to each other, it would be
possible for example, to study the difference between alloreactive
T cells that are either activated by the endothelium or activated
by DCs in the lymph node and subsequently, if the effect between
these two populations within the organ is distinctive. Also, it
is well-known that upon damage, EC can detach and circulate
through the blood (148, 149). If these circulating endothelial cells
(CEC) are also capable of antigen presentation in the circulation
or within the lymph node is unknown, but it may be possible to
investigate this with such a model as well.

Organoids (on a Chip)
A more complex model of an organ in vitro has been achieved
by the establishment of the organoid technology by which
hPSC- including induced pluripotent stem cells (iPSC) and
embryonic stem cells (ESC)- or adult stem cells (ASC) can be
induced to grow into multicellular self-organized 3D organ-like

structures (150). Organoids are compared to organs-on-a-chip
a more advanced model of true organs as organoids have a
higher complexity of (organ) structure and function. Specific
signaling molecules of the embryonic development are needed
for the differentiation of stem cells into organ-like structures,
corresponding to the organ of interest (150–152). Depending
on whether hPSC or ASC are used, organoids resemble a
fetal-like organ or a matured adult-like organ (151, 153, 154).
Other important differences between the various sources of stem
cells are: (i) ASC are multipotent and can therefore not be
differentiated in all cell types, in contrast to the pluripotent hPSC.
(ii) ESC availability is limited as these cells are derived from
human embryos, which also gives rise to ethical concerns. (iii)
For modeling of genetic diseases the use of iPSC is specifically
interesting as iPSC can be derived from patients with the disease
of interest (137, 150, 152).

Various types of organoids have been developed, including
brain, gut, liver, pancreas, lung, heart, and kidney organoids
(150, 152). Figures 2C–E shows an example of kidney organoid
formation with iPSC. Diverse platforms for the generation of
organoids are used, ranging from culture on a solid ECM
base, culturing in suspension with or without ECM proteins, or
culturing with an air-liquid interface (151).

For the use of organoids as a platform to study the role
of EC in allograft rejection, it is important whether or not
EC are present in the organoids. It has been shown that
EC can be represented within organoids, but spontaneous
development of vascular networks in vitro is absent (155–
159). Vascularization has, however, been achieved by the
transfer of in vitro grown organoids into immunodeficient
mice (152, 157, 158, 160). As animal models are unwanted,
it has been suggested that combining the organ-on-a-chip
technology with organoids could be an attractive approach
to realize in vitro vascularized organoids (161–163). Several
attempts to reach this goal have been performed. One
study generated kidney organoids on a scaffold in a 3D
microfluidic system. This resulted in the outgrowth of organoid-
derived EC into a perfusable vascular network within the
organoids (164). However, the success of this vascularization
and perfusion has been questioned by other researchers (165).
Also, vascularization of brain organoids in vitro has been
reported but the possibility of in vitro perfusion of the
organoid-infiltrating vessels has not been investigated (159).
Another reported method to perfuse organoids is the use
of 3D printing to create a channel network within cardiac
organoids. The channels can be connected to a pump and
perfused with oxygenated cell medium. However, the perfusion
of HUVEC in the channels to mimic blood vessels resulted
in incomplete coverage of the channels (166). Liver organoids
with incorporated EC have been generated by co-culturing
hPSC-derived pre-hepatic cells together with EC. Although
in vitro vascular networks did not occur, hepatic function of
the organoids improved by the presence of EC (156–158).
This is an intriguing finding and suggests that studying EC
function in organoids is worthwhile despite the lack of real
vascular networks. Therefore, this model allows the study of the
immunogenicity of EC in organoids against alloreactive immune
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cells by co-culturing alloreactive immune cells with the EC-
containing organoids.

Ideally, in vitro vascularized organoid models to study the
role of EC in allograft rejection should include organ specific
EC. For such models, EC originating from the organoid itself,
organ specific primary EC or organ specific EC differentiated
from hPSC could be used (159, 164). Organoid vascularization
with non-organ specific EC, like HUVEC, may not resemble
organ function properly (156–158, 166). For example, glomerular
EC have specific characteristics to support filtration which can
not be substituted by HUVEC (8). Technical challenges however,
could hamper the practical feasibility of such elegant models that
include organ specific EC.

Some other limitations of the organoid methodology makes
their use as a research model a challenge. First, remaining
undifferentiated hPSC within the organoids can transform into
tumors/teratomas (167, 168). Second, some organoids, including
brain and liver organoids, can be cultured for a long term
(up to several months), but other organoids, including kidney
organoids, cannot be maintained in culture for more than a few
weeks. This could make certain research aims difficult to fulfill
(152, 169). Third, the immaturity of hPSC derived organoids
could also be a limiting factor (151, 153). Finally, organoids
are highly heterogeneous and variation in organoid quality is
seen between experiments, between hPSC lines, and between cell
batches (169–171).

Despite of these limitations, in vitro perfusable vascularized
organoids are a promising research platform to investigate
the role of EC in allograft rejection, but optimization of
vascularization is needed first. Also, in accordance to the body-
on-a-chip development, investigation of connecting multiple
organoids-on-a-chip is in progress as well. Such systemic models
with various organs represented is a hopeful model for many
research areas, including drug development, and transplantation
research (162, 172).

Isolation and Characterization of EC for
Use in Advanced Experimental Models
Various sources of EC have been used in the above described
advanced experimental models. The degree of complexity of
isolation and characterization methods differs between various
EC sources and may therefore influence the choice for a
certain EC source to be used in an advanced experimental
model. Primary EC can be commercially purchased or isolated
from explanted tissue of biopsy material. Especially in models
with disease specific EC, isolation from patient derived tissue
is preferred and one should consider which method is
most appropriate.

Isolation of conventionally used HUVEC is relatively easy
compared to microvascular EC (173, 174). The inner lining
of umbilical veins is enzymatically digested with collagenase
treatment or mechanically scraped and results in a substantial
yield of EC and relatively low contamination with other cell
types (173, 175). Isolation of microvascular EC from solid
organs requires enzymatic digestion of tissue resulting in a lower
degree of EC purity and therefore subsequential EC purification

is needed (174, 176, 177). Within an organ, different types
of microvascular EC can be present and it may be useful to
separate those depending on the research question (8, 178).
For example, within the kidney, separation of glomerular and
tubulo-interstitial EC can be performed by collagenase treatment
of renal cortex and next passing the obtained cell suspension
through different pore size sieves, which will separate glomerular
EC from tubulointerstitial EC (174, 179). After enzymatic
digestion, the obtained cell suspension is often added to a gelatin-
coated culture flask to allow for EC adhesion, expansion and
purification. Non-adherent cell types are removed upon the first
cell culture medium refreshment (173, 175–177, 179). EC can
be visually recognized by their typical cobblestone appearance,
which allows for EC purification by manual weeding (173–
175). Another method that can be used to remove fibroblasts
and mesenchymal cell contamination is with a DiI-conjugated
acetylated low-density lipoproteins (DiI-AC-LDL) assay. EC take
up DiI-AC-LDL whereas fibroblasts and mesenchymal cells do
not. After incubation of cell cultures with DiI-AC-LDL, uptake
assessment and EC purification can be performed by fluorescence
microscopy along with manual weeding or by flow cytometric
cell sorting (176, 179). A third EC purification method is based
on positive or negative cell selection with the use of magnetic
beads, for whichmost often anti-platelet endothelial cell adhesion
molecule (PECAM) beads, anti-von Willebrand factor (vWF)
beads or Ulex europaeus agglutinin-1 (UEA-1) beads are used.
This magnetic purification step can be performed immediately
after enzymatic tissue digestion before the cells are added to a
culture flask or the purification can be done or repeated after a
certain period of cell culture (174, 176, 177, 179). The obtained
primary EC can be used in an experimental model or can be
transformed into immortalized EC lines by viral transduction
and subcloning. Immortalized EC should then be assessed for
the persistence of EC characteristics, as the immortalization
process often leads to diminished expression of EC membrane
molecules (180–182).

EC can also be acquired through differentiation of hPSC.
The protocol for EC differentiation most often includes bone
morphogenic protein-4 (BMP4), fibroblast growth factor 2
(FGF2) and vascular endothelial growth factor (VEGF) (141,
142, 159, 183, 184). During the differentiation process, it may be
required to perform a purification step based on the expression of
EC specific markers, for example PECAM, VE-cadherin, kinase
insert domain receptor (KDR) and neuropilin-1 (NPR1) are used
(141, 142, 184). However, it has been reported that the generation
of a high purity EC population is possible without cell sorting
(159, 183). Successful EC differentiation can subsequently be
confirmed by assessment of general EC characteristics, including
cobblestone appearance, DiI-AC-LDL uptake and expression of
PECAM, VE-cadherin, and vWf (141, 142, 183).

CONCLUSION

We have provided an overview of innovative research models
that will greatly improve the study of EC in solid organ
transplantation. The first step in improving the relevance
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of research models is the transition from 2D static to 2D
dynamic culture models and from conventional animal models
to humanized rodent models. Further progress can be made with
the implementation of 3D in vitro research models. Substantial
translational limitations of both 2D models and animal models
can be overcome with the use of these models. Implementation of
the 3D models will therefore lead to increased knowledge about
the role of EC in allograft rejection and to the discovery of new
targets for drug development. Moreover, new insights about the
effect of currently used immunosuppressive drugs on the EC-
immune system interaction can be obtained.

Although some 3D models are still in early developmental
stage, their upcoming use in various research fields will

soon redress current restraints. Other research areas
focusing on EC will also benefit by using these models,

for example the study of EC in cardiovascular diseases.
Further, the proposed models are likewise feasible for wider
applications, including transplantation research in general
and other research areas (e.g., immunology, cancer, and
pharmacology research).
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