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Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene
selection methods always focus on identifying differentially expressed gene between case samples and a control group. These
traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic
processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease,
it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In
this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-
related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We
firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of
differential coexpression of genes in coexpression network.Then, we designed twometrics to measure the value of gene differential
coexpression according to the change of local topological structures between different phase-specific networks. Finally, we
conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated
the feasibility and effectiveness of DCGN and the superior performance of DCGNover other popular disease-related gene selection
methods through real-world gene expression data sets.

1. Introduction

High throughput biotechnologies have been routinely used in
biological and biomedical researches. As a result, tremendous
amounts of large-scale omics data have been generated,
providing not only great opportunities but also challenges for
understanding the molecular mechanism of complex dis-
eases. Screening disease-related genes by analyzing gene ex-
pression data represents one of these opportunities and chal-
lenges.

Differentially expressed gene analysis represents one of
themost fundamentalmethods for disease-related gene iden-
tification by using gene expression data. Differentially ex-
pressed gene analysis methods select the genes which give
the greatest contribution to diseases classification by com-
paring the changes of gene expression levels between normal
samples and disease samples [1]. Those selected differen-
tially expressed genes are considered as candidates to play
a pathogenic role, termed disease-related genes or disease

genes. The papers [2–4] firstly conducted gene expression
analysis using statistical test, then ranked the genes in
descending order according to the statistics which define the
degree of gene differential expression, and finally selected the
top genes as disease genes. The papers [5, 6] reconstructed
gene expression data using nonnegative matrix factorization
and conducted analysis of differentially expressed genes ac-
cording to the new constructed matrix. The papers [7, 8]
selected differentially expressed disease-related genes bymin-
imizing the prediction error of classification. The papers [9,
10] obtained different disease-related gene subsets by using
different samples and then got the optimal disease-related
gene subset by integrating multiple disease-related gene sub-
sets. This strategy in [9, 10] improved the correctness and ro-
bustness of disease-related genes.Though differential expres-
sion genes have high correlation with disease phenotypes and
diseases classification, these methods may not fully consider
the changes of interactions between genes in different cell
states and the dynamic processes of gene expression levels
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during disease development and progression for disease gene
selection [11]. It is reported that complex diseases are often
related to the changes of interactions between genes. Thus,
some disease-related genes may not be identified by only
finding differentially expressed genes.

Differentially coexpressed genes (DCG) analysis is differ-
ent from the individual differentially expressed gene analysis
methods. Differentially coexpressed genes are highly corre-
lated under one cell state but uncorrelated under another cell
state [12, 13]. Since the normal functions of genes are
destroyed in disease cell state, the coexpression patterns in
normal cell state are broken down [14]. Differential coex-
pression gene identification is very helpful for discovering
potential biomarkers and understanding the pathophysiology
of complex disease. The existing methods for identifying
differentially coexpressed genes focused on gene-gene coex-
pression analysis or gene coexpression modules analysis. The
earliest related research [15] proposed an additive model and
a stochastic search algorithm to investigate differentially co-
expressed genes.The paper [16] selected pairs of differentially
coexpressed genes using a statistical method. The paper
[17] constructed gene network by measuring the correlation
between genes using mutual information and conducted
clique analysis to get the differentially coexpressed genes.

As the normal interactions between genes would be
greatly affected by abnormal protein in neurodegenerative
diseases, such as Huntington disease, the symptoms of the
disease grow progressively more severe and are debilitated
with time, eventually leading to death.Thedisease gene (IT15)
of Huntington disease which produces the abnormal disease
protein (Htt) has already been discovered [18]. However,
there is still no cure for this disease. In fact, the exact patho-
genesis of Huntington disease has not yet been illustrated
completely.The changes of interactions between genes caused
by the abnormal protein are reflected as the changes of gene
expression level. It is well known that the similar expression
patterns represent the same biological process or function
[19–21]. The changes of interactions between genes can be
reflected by the changes of expression patterns in coexpres-
sion network, as gene coexpression network is constructed
by using gene expression data. Thus, we can identify the
differentially coexpressed disease-related genes by studying
and analyzing the dynamic changes of gene coexpression
patterns in phase-specific gene coexpression networks. This
is of great significance to understand the pathogenesis of
neurodegenerative diseases.

In this study, we developed a differentially coexpressed
disease gene identification method based on gene coexpres-
sion network (DCGN) for identifying differential coexpres-
sion disease-related genes. We firstly constructed a series
of phase-specific gene coexpression networks using gene
expression data of different time points and defined the
conception of differential coexpression of genes in coexpres-
sion network. Then, we designed two metrics to measure
the value of gene differential coexpression according to the
change of local topological structures between different
phase-specific coexpression networks. Finally, we conducted
meta-analysis of gene differential coexpression according
to the rank-product method [22]. This paper provided

a novel framework and a method to evaluate the value
of differential coexpression for each gene rather than gene
pairs or genes modules. Experimental results demonstrated
the feasibility and effectiveness of DCGN and the superior
performance of DCGN over other popular disease-related
gene selection methods through real gene expression data
sets.

The rest of this study was organized as follows: the DCGN
was presented in Section 2. Experiments that demonstrated
the performance of DCGN were reported in Section 3. The
overall discussion with some suggestions for future research
was presented in the last section.

2. Method

In this section, we firstly presented the overview of the
novel framework for differentially coexpressed disease gene
identification. The framework was shown in Figure 1.

Next, the gene coexpression network was introduced and
the construction of gene coexpression network by using
WGCNA software package [23, 24] was briefly described.
Then, the conception of gene differential coexpression in
coexpression network was defined and two metrics were
proposed to measure the value of gene differential coexpres-
sion according to the change of local topological structures
between phase-specific networks. Finally, the meta-analysis
of gene differential coexpression based on the rank-product
method was described.

2.1. Gene Coexpression Network. The gene coexpression net-
work is usually constructed bymeasuring the gene expression
similarity, which represents the coexpression relationships
between genes [25]. Each node in the network represents a
single gene. Each edge connecting two genes indicates the
coexpression.

Let 𝑋𝑡 = [𝑥𝑖𝑗𝑡] ∈ 𝑅𝑛×𝑚 denote gene expression data in 𝑡-
phase. 𝑥𝑖𝑗𝑡 represents expression level of gene 𝑖 in sample 𝑗 at𝑡-phase. 𝑛 and𝑚 denote the number of genes and number of
samples, respectively.

In order to study the dynamic changes of interactions
between genes, we firstly constructed phase-specific gene
coexpression network by using the WGCNA software pack-
age [23, 24], ensuring that the network is scale-free [26]. In
the coexpression network 𝐺 = (𝑉, 𝐸), 𝑉 is the set of nodes,
where one node corresponds to a gene. 𝐸 is the set of edges,
showing the mutual interactions between genes. 𝑤𝑖𝑗 is the
weight of the edge connecting nodes 𝑖 and 𝑗, 𝑤𝑖𝑗 ∈ (0, 1). It
should be noted that the stronger the Pearson correlation is,
the larger the weight is. 𝑊 = [𝑤𝑖𝑗] is the weight matrix of
gene coexpressionnetwork.The adjacencymatrix is𝐴 = [𝑎𝑖𝑗],
where 𝑎𝑖𝑗 represents the interactions between nodes 𝑖 and 𝑗.
The calculation of 𝑎𝑖𝑗 is given by

𝑎𝑖𝑗 = {{{
1, if 𝑤𝑖𝑗 ̸= 0;
0, else. (1)
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Figure 1: An overview of the novel framework for differentially coexpressed disease gene identification.

The transition matrix is 𝑀 = [𝑚𝑖𝑗], where 𝑚𝑖𝑗 denotes
the probability of transition from node 𝑖 to node 𝑗. The
calculation of𝑚𝑖𝑗 is given by

𝑚𝑖𝑗 = {{{{{
𝑤𝑖𝑗∑𝑗∈𝑁𝑖 𝑤𝑖𝑗 , if 𝑁𝑖 ̸= ⌀;

0, else. (2)

Here, 𝑁𝑖 is the set of neighboring nodes of 𝑖 in gene
coexpression network𝑊.

2.2. Gene Differential Coexpression Analysis. In this subsec-
tion, according to the change of local topological structures
between different phase-specific gene coexpression networks,
the gene differential coexpression analysis was conducted.
The conception of gene differential coexpression was defined
and two metrics were proposed to measure the value of gene
differential coexpression.

Definition 1. Gene differential coexpression: in gene coex-
pression network 𝑊𝑡, 𝑆𝑊𝑡,𝑘𝑖 represents the 𝑖-centric system,
a subnet including gene 𝑖 and its 𝑘-level neighboring nodes
(nodes that can be reached within 𝑘 steps from node 𝑖).𝑊𝑡1
and 𝑊𝑡2 denote the gene coexpression network in 𝑡1-phase
and 𝑡2-phase, respectively. The differential coexpression of
gene 𝑖 represents the change of topological structures between𝑆𝑊𝑡1 ,𝑘𝑖 and 𝑆𝑊𝑡2 ,𝑘𝑖 .

In this paper, we designed two metrics to measure the
value of gene differential coexpression. The first one is to
evaluate the value of gene differential coexpression based on
the local topological structures similarity. The second one is

to evaluate the value of gene differential coexpression based
on the variation of local topological information.

(1) The Value of Gene Differential Coexpression Based on the
Local Topological Structures Similarity. In this subsection, we
firstly defined the conception of the value of gene differential
coexpression based on the local topological structures simi-
larity between two different phase-specific gene coexpression
networks.

Definition 2. The value of differential coexpression of gene 𝑖
based on the local topological structures similarity between
coexpression networks𝑊𝑡1 and𝑊𝑡2 is the topological simi-
larity between 𝑆𝑊𝑡1 ,𝑘𝑖 and 𝑆𝑊𝑡2 ,𝑘𝑖 . The value can be calculated
according to the following equation:

𝑑𝑡1𝑡2,𝑘𝑖 = 1 − 𝑁𝑡1,𝑘𝑖 ∩ 𝑁𝑡2 ,𝑘𝑖 𝑁𝑡1,𝑘𝑖 ∪ 𝑁𝑡2 ,𝑘𝑖  . (3)

Here, 𝑁𝑡,𝑘𝑖 is the set of connections between genes in𝑆𝑊𝑡,𝑘𝑖 .

(2) The Value of Gene Differential Coexpression Based on the
Variation of Local Topological Information. In this subsection,
the information of an edge was firstly described. Then, the
conception of the value of gene differential coexpression
based on the variation of local topological information
between two different phase-specific gene coexpression net-
works was proposed.

In gene coexpression network𝑊𝑡, we designed a function
(shown as (6)) to evaluate the information of an edge. Then,
according to (7), the value of gene differential coexpression
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based on the variation of local topological information can
be calculated.

Definition 3. The value of differential coexpression of gene𝑖 based on the variation of local topological information
between coexpression networks𝑊𝑡1 and𝑊𝑡2 is the total vari-
ation of topological information caused by the topological
structures differences between 𝑆𝑊𝑡1 ,𝑘𝑖 and 𝑆𝑊𝑡2 ,𝑘𝑖 . The value
can be calculated according to (7).

The details of computing the value of gene differential
coexpression based on the variation of local topological
information are shown below.

Step 1. In gene coexpression network 𝑊𝑡, extract submatrix𝑃𝑡 = [𝑝𝑡𝑖𝑗], which denotes the subnetwork 𝑆𝑊𝑡,𝑘𝑖 , from the
transition matrix 𝑀𝑡, 𝑗 ∈ 𝑁𝑡𝑘𝑖 . Here, 𝑁𝑡𝑘𝑖 is the set of genes𝑖 and their 𝑘-level neighboring nodes in gene coexpression
network𝑊𝑡.
Step 2. In subnetwork 𝑆𝑊𝑡,𝑘𝑖 , calculate the maximum proba-
bility of transition from node 𝑖 to node 𝑗 with least steps. We
use 𝑝max
𝑖𝑗 to denote themaximum transition probability, 𝑗 ̸= 𝑖,𝑗 ∈ 𝑁𝑡𝑘𝑖 .

Step 3. Normalize the probability of transition from node 𝑖 to
node 𝑗. The normalized probability of transition from nodes𝑖 to 𝑗 is calculated by

𝑝𝑖𝑗 = 𝑝max
𝑖𝑗∑𝑗∈𝑁𝑡𝑘
𝑖
,𝑗 ̸=𝑖 𝑝max
𝑖𝑗

, 𝑗 ∈ 𝑁𝑡𝑘𝑖 . (4)

After the above three steps, according to the topological
information of 𝑆𝑊𝑡,𝑘𝑖 , we transformed the 𝑖-centric subnet-
work 𝑆𝑊𝑡,𝑘𝑖 into a network𝐷𝑊𝑡,𝑘𝑖 . In𝐷𝑊𝑡,𝑘𝑖 , node 𝑖 connects
to node 𝑗 directly with the transition probability 𝑝𝑖𝑗, 𝑗 ∈ 𝑁𝑡𝑘𝑖 .
It needs to be noted that, in the 𝑖-centric network 𝐷𝑊𝑡,𝑘𝑖 ,
there are no connections between other nodes. To get the
value of gene differential coexpression, we still need to do the
following steps.

Step 4. To ensure that the strong coexpressed interactions
between genes carry larger amount of information, we need
to modify 𝑝𝑖𝑗 as

𝑝𝑡,𝑘𝑖𝑗 = 1/𝑝𝑖𝑗∑𝑗∈𝑁𝑡𝑘
𝑖
,𝑗 ̸=𝑖 1/𝑝𝑖𝑗 , 𝑗 ∈ 𝑁𝑡𝑘𝑖 . (5)

Step 5. In 𝑖-centric subnetwork 𝑆𝑊𝑡,𝑘𝑖 , the information that
represents the connection between node 𝑖 and node 𝑗 is 𝐼𝑡,𝑘𝑖𝑗 .
The calculation of 𝐼𝑡,𝑘𝑖𝑗 is given by

𝐼𝑡,𝑘𝑖𝑗 = − ln (𝑝
𝑡,𝑘
𝑖𝑗 )𝑝𝑡,𝑘𝑖𝑗 , 𝑗 ∈ 𝑁𝑡𝑘𝑖 . (6)

The value of differential coexpression of gene 𝑖 based on
the variation of topological information between coexpres-
sion networks𝑊𝑡1 and𝑊𝑡2 is calculated by

𝐼𝑡1,𝑡2𝑖 = ∑
𝑗∈𝑁
𝑡1𝑘

𝑖
−𝑁
𝑡2𝑘

𝑖

𝐼𝑡1 ,𝑘𝑖𝑗 + ∑
𝑗∈𝑁
𝑡2𝑘

𝑖
−𝑁
𝑡1𝑘

𝑖

𝐼𝑡2 ,𝑘𝑖𝑗 . (7)

The variation of topological information can be also inter-
preted as the total information change when one topological
structure is replaced by another topological structure.

2.3. Meta-Analysis of Gene Differential Coexpression. After
getting the value of gene differential coexpression according
to any two different phase-specific coexpression networks, we
ranked the genes in descending order according to the value
of gene differential coexpression. 𝑟𝑡1 ,𝑡2𝑖 denotes the ranking of
gene 𝑖 based on the coexpression network 𝑊𝑡1 and 𝑊𝑡2 . It
needs to be noted that the larger the value of gene differential
coexpression is, the higher the ranking of gene is.That means
high ranking gene is of large probability of being disease-
related gene. According to the rank-productmethod [22], the
comprehensive ranking of gene 𝑖 is

𝑅𝑖 = ( ∏
𝑡1 ,𝑡2∈𝑇,𝑡1 ̸=𝑡2

𝑟𝑡1𝑡2𝑖 )
(1/𝐶)

. (8)

Here, 𝐶 = 𝑁(𝑁 − 1)/2, where 𝑁 is the number of coex-
pression networks. Then, rank the 𝑅𝑖, 𝑖 ∈ 𝑉, in ascending
order to get the final rank list of genes. It is important to
note that the higher the ranking of gene is, the larger the
probability of differentially coexpressed disease-related gene
is.

3. Experimental Results

In this section, experiments were conducted to verify the
feasibility of the novel framework for disease gene identi-
fication and the effectiveness of DCGN proposed in this
paper. Two time-series real data sets were used in our study,
one is of Huntington disease (HD) and the other one is of
type 2 diabetes mellitus (T2DM). We firstly described the
analysis process by using gene expression data ofHD in detail.
Then, the results in the gene expression data sets of T2DM
were analyzed. Compared with other statistical disease gene
selection methods, the superior performance of DCGN was
illustrated. Finally, to explore the characters of DCGN based
on different measures, a case study was conducted.

3.1. Gene Expression Data of HD. The gene expression data
of HD used in our study was RNA-seq data from http://
www.hdinhd.org/. It was obtained from striatum tissue of
Huntington disease mice. Huntington disease is one kind
of neurodegenerative diseases. It is due to a triplet repeat
elongation in the Huntington gene (IT15), which leads to
neuronal malfunction and degeneration through a large scale
of different interactions between genes and a number of
different molecular pathways. The symptoms of the disease
grow progressively more sever and are debilitated with time,
eventually leading to death.

http://www.hdinhd.org/
http://www.hdinhd.org/
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Figure 2: The distribution of degrees in𝑊2,𝑊6, and𝑊10.

Table 1: RNA-seq data of Huntington disease mice.

Tissue Genotype Age

Striatum

polyQ 92
2-month-old
6-month-old
10-month-old

polyQ 111
polyQ 140
polyQ 175

In the gene expression data, there are 4 genotypes, includ-
ing polyQ 92, polyQ 111, polyQ 140, and polyQ 175. Each
genotype has 8 replications. Thus, the gene expression data
has 32 samples totally. According to the age of experimental
mouse, there are 3 gene expression data sets in different
phases, including gene expression data of 2-month-old HD
mouse, gene expression data of 6-month-old HDmouse, and
gene expression data of 10-month-old HDmouse. In order to
clearly demonstrate the information of the experimental data,
Table 1 was carried out. In order to filter out noise genes, we
conducted a preprocessing step and selected 8815 genes from
the total 23351 genes in the gene expression data. The data of
modifier genes were from [27], which contained 520 genes in
training set, including 89 disease genes and 431 nondisease
genes.

3.2. The Topological Information of Gene Coexpression Net-
work. The gene coexpression network was constructed by
using theWGCNA software package [23, 24].𝑊𝑡 denotes the
gene coexpression network constructed with gene expression
data of 𝑡-month-old HDmouse.The topological information
of the three phase-specific networks is shown in Table 2.
As shown in Table 2, there exist big differences between the

Table 2: Topological information of gene coexpression networks.

Network 𝑊2 𝑊6 𝑊10
Nodes number 8815 8815 8815
Edges number 7797404 1433744 628150
Average degree 1024.09 168.08 89.58
Average weight 0.423 0.339 0.336
Scatters number 1201 285 803

topological structures of the three gene coexpression net-
works though we used the same standard to construct these
networks.

To illustrate differences of the three networks, we ana-
lyzed the distribution of degrees, weighted degrees, and
weights in each gene coexpression network.

Investigating the similarity between different coexpres-
sion networks, we can know that the similarity between 𝑊2
and𝑊6 is only 0.032, the similarity between𝑊2 and𝑊10 is
0.042, and the similarity between𝑊6 and𝑊10 is 0.111.

From Figures 2, 3, and 4, we can get the following
information and conclusions. Firstly, for𝑊2, there are denser
connections (Figures 2 and 3) and the degrees of hub nodes
in 𝑊2 are about 3000 while most nodes have large degrees
(Figure 2). At the same time, the connections between genes
are also stronger (Figure 4). The above topological infor-
mation of 𝑊2 suggests that the interactions between genes
are very active in 2-month-old Huntington disease mouse.
Secondly, for 𝑊6, compared with 𝑊2, 𝑊6 has quite sparse
connections (Figures 2 and 3) and the degrees of hub nodes
in𝑊6 are about 800 while only few nodes have large degrees
(Figure 2). Moreover, the most connections between genes
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Figure 3: The distribution of weighted degrees in𝑊2,𝑊6, and𝑊10.
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Figure 4: The distribution of weights in𝑊2,𝑊6, and𝑊10.

are not strong (Figure 4).This topological information of𝑊6
suggests that the interactions between genes in 6-month-old
Huntington disease mouse are greatly changed. Thirdly, for𝑊10, the connections in𝑊10 are sparser and weaker (Figures
2, 3, and 4), indicating that the interactions between genes in
10-month-old are not obvious.

The differences between the topological structures of𝑊2,𝑊6, and𝑊10 stem from the fact that the expression of most
genes has been affected by the Huntington disease as time
goes on. The big differences between phase-specific gene
coexpression networks indicate that the analysis of differ-
entially coexpressed gene according to the changes of the

topological structures of different networks may be helpful
for understanding the changes of interactions between genes
as the disease gets worse.

3.3. Performance Analysis of DCGN. According to Definition
2, we denoted the identification of differentially coexpressed
genes based on the topological structure similarity by using
(3) as DCGN-S. According to Definition 3, we denoted the
identification of differentially coexpressed genes based on the
variation of topological information by using (7) as DCGN-I.
There is a parameter 𝑘, the level of the neighboring nodes,
which needs to be preset in practice. In our paper, we set𝑘 = 1, 𝑘 = 2, and 𝑘 = 3 to test the performance of
DCGN with different measures to evaluate the value of gene
differential coexpression, including DCGN-S and DCGN-I.
The following criteria were used to evaluate the identification
accuracy of disease-related genes: the true positive rate
(TPR), which is defined as the ratio of correctly predicted
disease genes to all disease genes, and the false positive rate
(FPR), which is defined as the ratio of incorrectly predicted
disease genes to all nondisease genes. The receiver operating
characteristic (ROC) curve was created by plotting TPR
versus FPR. The area under the curve (AUC) [28] was also
used as a measure of the identification accuracy.

As illustrated in Figure 5, with different 𝑘 (the level
of neighboring nodes), the ROC curves of DCGN-S with
different 𝑘 are approximate. From Figure 6, it is clear that the
ROCcurves ofDCGN-Iwith different 𝑘 are also approximate.
These results suggest that the performances of DCGN-S and
DCGN-I are insensitive to 𝑘. From Table 3, it can be seen that
the AUCs of DCGN-S and DCGN-I with 𝑘 = 1 are better
than 𝑘 ≥ 2. This indicates that we may introduce redundancy
information when 𝑘 ≥ 2. Thus the performances of DCGN-
S and DCGN-I get poor when 𝑘 ≥ 2. In addition, this also
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Table 3: The AUC of each experiment.

Method 𝑘 = 1 𝑘 = 2 𝑘 = 3
MFSN-S 0.7118 0.7062 0.7083
MFSN-I 0.7101 0.7081 0.7094
RP-FC 0.5856
RP-𝑡 0.5513
Note. Bold indicates the best values.
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Figure 5: The ROC curves of DCGN-S with different 𝑘.
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Figure 6: The ROC curves of DCGN-I with different 𝑘.

increases the computational complexity of DCGN when 𝑘 ≥2. Therefore, we suggest to use 𝑘 = 1 in other experiments.
Comparing Figure 5 with Figure 6, it can be clearly seen

that the ROC curves of DCGN-S are greatly different from
DCGN-I. As illustrated in Figure 5, DCGN-S can distinguish
disease genes from nondisease genes accurately for high
ranking genes. We checked the rank lists and found that
these high ranking genes share the same ranking in rank
list, which means the values of differential coexpression of

Table 4: The number of overlapped genes (the degree of overlap)
between different rank lists in the same ranking range.

Ranking range DCGN-S DCGN-I RP-FC ∩ RP-𝑡
Unit: 103 𝑘 = 1, 2, 3 𝑘 = 1, 2, 3 —[0, 1] 489 (0.49) 926 (0.93) 325 (0.33)[1, 2] 153 (0.15) 830 (0.83) 186 (0.19)[2, 3] 118 (0.12) 809 (0.81) 169 (0.17)[3, 4] 86 (0.09) 830 (0.83) 224 (0.22)[0, 2] 1269 (0.63) 1896 (0.95) 991 (0.50)[0, 3] 2242 (0.75) 2904 (0.97) 1913 (0.64)[0, 4] 3152 (0.79) 3919 (0.98) 2768 (0.69)

Table 5:The number of overlapped genes (the degree of overlap) by
using different methods.

Ranking range DCGN-S DCGN-S DCGN-I
Unit: 103 ∩ DCGN-I ∩ RP-FC ∩ RP-𝑡 ∩ RP-FC ∩ RP-t[0, 1] 1 (0.001) 4 (0.004) 13 (0.013)[0, 2] 5 (0.003) 48 (0.024) 78 (0.039)[0, 3] 164 (0.055) 232 (0.077) 278 (0.093)[0, 4] 509 (0.013) 637 (0.016) 743 (0.019)

these genes are equal. It suggests that DCGN using the
topological structure similarity can not precisely reflect the
dynamic changes of the interactions between genes. As shown
in Figure 6, though DCGN-I can hardly distinguish disease
genes from nondisease genes for high ranking genes, the
accuracy is greatly improved when FPR in [0.2, 0.4]. Though
the nodes with large degrees are prone to get a higher rank
by using DCGN-I (the analysis is shown in Section 3.6),
DCGN-I fails to accurately distinguish disease genes from
nondisease genes for high ranking genes. This suggests that
there is no strong and significant correlation between hub
nodes and disease genes. However, the ratio of disease genes
to nondisease genes in training set is approximate 1 : 5. The
ratio of TPR to FPR in hub nodes (high ranking genes) is
approximate 1 : 1. It demonstrates that the hub nodes aremore
likely to be disease genes.

3.4. The Performance Comparison of DCGN, RP-FC, and RP-𝑡. To illustrate the effectiveness of ourmethods, we compared
it with a rank-product method based on fold-change criteria
[22], denoted as RP-FC, and a rank-product model based on𝑡-test, denoted as RP-𝑡 [4].The comparison of ROC curves of
DCGN-S, DCGN-I, RP-FC, and RP-𝑡 is shown in Figure 7.
We also investigated the differentially coexpressed genes
obtained by using DCGN and the differentially expressed
genes obtained by using RP-FC andRP-𝑡, and the comparison
results are shown in Tables 4 and 5. We used the following
criteria to compare the results of different methods and to
evaluate the performance of different methods: the number
of overlapped genes between different rank lists in the same
ranking range, which was used to test the robustness of the
results, and the percentage of overlap, which is defined as the
ratio of the number of overlapped genes in the same ranking
range to the length of the ranking range.
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Figure 7: Performance comparison between RP-FC, RP-𝑡, DCGN-
S, and DCGN-I.

As illustrated in Figure 7, the AUCs of DCGN, including
DCGN-S and DCGN-I, are far better than RP-FC and RP-𝑡. From Table 3, it can be known that the AUC of DCGN-I
with 𝑘 = 1 is improved by more than 21.2% compared with
the AUC of RP-FC. This indicates that the accuracy of the
differentially coexpressed disease genes obtained by using
DCGN is much better than that of differentially expressed
genes obtained by using RP-FC and RP-𝑡. Thus, the results
of experiments verify the effectiveness of DCGN.

As illustrated in Table 4, when identifying differential
coexpression genes by using the measure of the variation
of topological information, the degree of overlap between
different rank lists in the same ranking range is more than
80%, which is much higher compared to the results by other
methods. It suggests that the result of DCGN-I is robust.
When identifying differential coexpression genes by using
the measure of topological structure similarity, the degree
of overlap between different rank lists in the same ranking
range is poor. It indicates that the rank of gene differential
coexpression is greatly affected by parameter 𝑘. However,
the fluctuation of the ranking of a gene is mostly controlled
within 500. When identifying differentially expressed genes
by using RP-FC and RP-𝑡, respectively, the degree of overlap
between the two rank lists in the same ranking range is
very poor. It indicates the poor robustness of differentially
expressed genes obtained by different methods.

We conducted further analysis of the overlapped genes in
the same ranking range. As shown in Table 5, the degree of
overlap between the differentially coexpressed genes obtained
by using DCGN-S and the differentially coexpressed genes
obtained by using DCGN-I is very poor. It illustrates that
there exist big differences between the differentially coex-
pressed genes by using different measures to evaluate the
value of gene differential coexpression. The degree of overlap
between the differentially coexpressed genes obtained by
using DCGN-S or DCGN-I and the differentially expressed
genes obtained by using RP-FC and RP-𝑡 is also very poor.

Table 6: Topological information of spatial-specific gene coexpres-
sion networks for T2DM.

Network 𝑊4 𝑊8 𝑊12 𝑊16 𝑊20
Nodes number 5555 5555 5555 5555 5555
Edges number 1712916 1656238 1312428 1167228 1104506
Ave degree 308.4 298.2 236.3 210.1 198.8
Ave weight 0.660 0.655 0.650 0.646 0.644
Scatters number 0 0 0 0 0

Table 7: The similarity of topological structures between any two
phase-specific gene coexpression networks for T2DM.

Network 𝑊8 𝑊12 𝑊16 𝑊20𝑊4 0.029 0.037 0.037 0.034𝑊8 0.035 0.029 0.025𝑊12 0.031 0.036𝑊16 0.030

It suggests that there exist big differences between the dif-
ferentially expressed genes which derived from the changes
of gene expression levels and the differentially coexpressed
genes which derived from the changes of gene coexpression
networks.

3.5. Results in Type 2 Diabetes Mellitus Gene Expression Data.
To test the feasibility and effectiveness of DCGN, we con-
ducted experiment by using another time-series gene expres-
sion dataset of type 2 diabetes mellitus (T2DM) [29, 30]. The
gene expression data was obtained from the Gene Expres-
sion Omnibus database (GSE 13271) of National Center for
Biotechnology Information (NCBI). It was obtained from the
white adipose tissue of disease rats aged from 4 weeks to 20
weeks, and the time interval was 4 weeks.There are 5 samples
in each time point. In order to filter out noise genes, we
conducted a preprocessing step and selected 5555 genes from
the total 31099 genes in the gene expression data.

The T2DM related genes were downloaded from http://
rgd.mcw.edu/wg/home. Totally, 202 disease-related genes
were used, which were part of gene expression data in our
experiment.

It is important to be noted that as there are only 5 samples
in every time point, we improved the threshold to filter out
large amount of false positive connections in the construction
process of phase-specific gene coexpression networks. The
topological information of the networks is shown in Table 6.
The similarity of topological structures between any two
networks is shown in Table 7.

Two rank lists of gene differential coexpressions were
obtained by conducting gene differential coexpression analy-
sis based on DCGN-I and DCGN-S with 𝑘 = 1, respectively.
Two rank lists of gene differential expressionwere obtained by
conducting gene differential expression analysis based onRP-
FC and RP-𝑡, respectively. It needs to be noted that the high
ranking of a gene in the rank list represents high probability
of being a disease-related gene. We analyzed the distribution
of rankings of disease-related genes in the training set, and
the results are shown in Figure 8. From Figure 8, it can be

http://rgd.mcw.edu/wg/home
http://rgd.mcw.edu/wg/home
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Figure 8: Boxplot of the rankings of disease-related genes.

seen that the average ranking of disease genes in training
set by using DCGN-I is much higher than that by using
other methods. From Table 5, the average degree of each
gene coexpression network is in the range of [190, 310], indi-
cating that there are dense connections in those networks. For
networks with such feature, DCGN-I is more suitable than
DCGN-S for analyzing those networks (the analysis is shown
in Section 3.6). Experimental results also show that the ef-
fectiveness of DCGN-I is much better compared to DCGN-S.

In total, by analyzing local topological structures of gene
coexpression networks, DCGN-I can screen differentially
coexpressed genes. Compared with traditional differentially
expressed gene identification methods, DCGN-I can effec-
tively improve the accuracy of disease-related genes selection.

3.6. A Case Study. In order to analyze the characters of gene
differential coexpression by using differentmeasures, we con-
ducted a case analysis in this subsection. Figure 9 illustrated
the topological structure changes of a node, which has a
larger degree in comparison with the node in Figure 10, from
networkW1 to networkW2. Figure 10 showed the topological
structure changes of a node with small degree from network
W1 to network W2.

By using DCGN-S, we obtained that the value of differ-
ential coexpression of node 1 in Figure 9 is 𝑆121 = 0.719 and
the value of differential coexpression of node 1 in Figure 9 is𝑆121 = 0.813. 𝑆121 < 𝑆121 means that node 1 in Figure 10 is of
larger probability of being differentially coexpressed disease
gene compared to node 1 in Figure 9.

By using DCGN-I, we obtained that the value of differ-
ential coexpression of node 1 in Figure 9 is 𝐼121 = 998.6 and
the value of differential coexpression of node 1 in Figure 10
is 𝐼121 = 310.6. 𝐼121 > 𝐼121 means that node 1 in Figure 9 is of
larger probability of being differentially coexpressed disease
gene compared to node 1 in Figure 10.

In gene coexpression network 𝑊𝑡, if the degree of node𝑖 is large, the probability of transition from node 𝑖 to its
most neighboring nodes will be getting small. This is because∑𝑗∈𝑁𝑡𝑘

𝑖

𝑝𝑖𝑗 = 1. Since the information of an edge (see (6)),
which is used to evaluate the information of a connection
between nodes, is a monotone decreasing function, thus the

changes of connections between large degree nodes could
generate a greater value.Therefore, the identification of differ-
entially coexpressed genes based on the variation of topolog-
ical information is prone to give nodes with large degree (e.g.,
hub nodes) larger differential coexpression values. So, we can
conclude that the nodes with significant network property
of hub nodes are more likely to be screened as differentially
coexpressed disease-related genes by using DCGN-I. The
above characters ofDCGN-Imay contribute to improving the
identification accuracy of disease genes [31]. From the above,
the identification of differentially coexpressed genes based on
the variation of topological information is more suitable for
disease gene analysis of highly connected network.

From the case study it can also be seen that, for nodeswith
small degree, slight differences in two networks may generate
large differential coexpression value when screening differen-
tially coexpressed genes by using the measure of topological
structure similarity, while, for nodes with large degree, great
differences in two networks only generate small differential
coexpression value. The above characters of DCGN-S may
result in low accuracy of the identification of disease genes. It
can be concluded that the identification of differentially coex-
pressed genes based on the topological structure similarity
is more suitable for gene differential coexpression analysis of
sparsely connected network.

In brief, the DCGN can effectively improve the accuracy
of disease gene selection, while there exist large differences
between the selected differentially coexpressed genes by using
different measures to evaluate the value of gene differential
coexpression. From the above analysis, it is also clear that
DCGN-S and DCGN-I can be used to analyze networks with
different topological structures.

4. Conclusion

Existing disease gene prediction methods mostly focus on
cancer diagnosis and classification. For complex diseases
with complex etiology, such as neurodegenerative diseases
and diabetes mellitus, it is hard to find disease-related genes
by traditional computing methods, making it difficult to
discover and understand the development mechanism of
these diseases.

In this paper, we designed a novel framework to identify
disease-related genes and developed a differential coexpres-
sion analysis method by using time-series gene expression
data. Compared with traditional analysis methods for differ-
ential expression disease-related genes, the effectiveness of
DCGN for differential coexpression disease-related genes is
verified.

It is reported that there usually exist a lot of false con-
nections in gene coexpression network; thus the simulation
results of coexpression network may have a great departure
from real situation [32]. Therefore, constructing gene net-
works which accurately reflect the interactions between genes
will greatly improve the performance of DCGN. In addition,
the robustness of differentially coexpressed genes may be
improved by integrating other information, such as weights
of edges or the properties information of nodes, owing
to the low percentage of overlap between the differentially
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Figure 9: The topological structure changes of a node with large degree fromW1 to W2.
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coexpressed genes obtained by using DCGN-S and the
differentially coexpressed genes obtained by using DCGN-I.
As the percentage of overlap between the differentially coex-
pressed genes obtained by using DCGN and the differentially
expressed genes obtained by using RP-FC and RP-𝑡 is poor,
the identification accuracy of disease genes may be greatly
improved by integrating the differential expression informa-
tion of nodes into the process of differential coexpression
analysis.We will conduct relevant studies about the strategies
mentioned above.
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