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Abstract

Introduction: Interactive game systems can motivate stroke survivors to engage with their rehabilitation exercises.
However, it is crucial that systems are in place to detect if exercises are performed correctly as stroke survivors often
perform compensatory movements which can be detrimental to recovery. Very few game systems integrate motion
tracking algorithms to monitor performance and detect such movements. This paper describes the development of
algorithms which monitor for compensatory movements during upper limb reaching movements in real-time and provides
quantitative metrics for health professionals to monitor performance and progress over time.

Methods: A real-time algorithm was developed to analyse reaching motions in real-time through a low-cost depth camera.
The algorithm segments cyclical reaching motions into component parts, including compensatory movement, and provides
a graphical representation of task performance. Healthy participants (n = 10) performed reaching motions facing the
camera. The real-time accuracy of the algorithm was assessed by comparing offline analysis to real-time collection of data.
Results: The algorithm’s ability to segment cyclical reaching motions and detect the component parts in real-time was
assessed. Results show that movement types can be detected in real time with accuracy, showing a maximum error
of 1.71%.

Conclusions: Using the methods outlined, the real-time detection and quantification of compensatory movements is
feasible for integration within home-based, repetitive task practice game systems for people with stroke.
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Background perform many activities of daily living, which can dra-
matically affect mood and quality of life.* Research indi-
cates a high dosage of repetitive task practice is desirable for
effective rehabilitation,”® driving neuroplastic changes
within the brain which underpin recovery.” Contemporary
healthcare policy encourages early supported discharge
from hospital where appropriate,® resulting in much of the

This paper describes upper limb motion tracking algorithms
which monitor cyclical reaching motions in real-time,
segmenting these complex movements into their component
parts and detecting compensatory movements. The algo-
rithm is embedded within a rhythm and music-based game
system for stroke rehabilitation,'* aiming to provide high
dosage repetitive task practice while monitoring task per-
formance to optimise therapeutic benefit. Glasgow Caledonian University, Glasgow, UK
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rehabilitation programme being conducted at home without
expert supervision. The lack of constant supervision re-
quires motivation and self-management from the stroke
survivor to engage with the prescribed motions. However,
stroke patients commonly experience depression,” and a
lack of professional support to boost confidence means that
some may find it difficult to undertake the prescribed ex-
ercises. These aspects are compounded by the COVID-19
pandemic, which has led to many stroke survivors missing
out on crucial supervised rehabilitation.' There is therefore
an urgent need to develop engaging interventions which the
stroke survivor can perform safely and effectively at home.

Game technology has potential to offer assistance in this
area and has been shown to have a positive impact on
motivation and engagement with upper limb rehabilita-
tion."" Games can be effective for motor recovery as the
high dosage repetitive task practice necessary to facilitate
motor learning can be embedded within an interactive
entertainment platform, keeping the user engaged for
prolonged periods of time and relaying crucial performance
related feedback to the user and health professionals.'
When used as an adjunct to conventional therapy, games
have shown to be beneficial in motor recovery.'* However,
the design of the system is crucial,'® with games which
deliver established neurorehabilitation principles providing
greater positive impact on motor function.'”

Game systems can potentially motivate the user to en-
gage with the prescribed rehabilitation exercises. However,
it is crucial that systems are in place to detect if these
exercises are performed correctly as stroke survivors often
rely upon alternative movement strategies to compensate for
limited functional ability.'® When aiming to reach forward,
these compensatory movements typically include increased
trunk flexion'”'® and rotation'® While such movements can
allow for the completion of a task, they can be detrimental to
recovery as the original impairments (commonly reduced
shoulder flexion and elbow extension) are not
addressed.?%?! Therefore, it is vital that robust motion
tracking algorithms are embedded within game systems to
monitor task performance, detecting compensatory motions
which can hinder progress. However, motion tracking and
analysis is rarely implemented within commercially avail-
able game systems with any degree of sophistication. In a
review of game-based rehabilitation systems, Tamayo-
Serrano et al.?* state that from a total of 32 papers, only
18% of systems did not require the presence of a therapist to
monitor patient progress. This raises the significant concern
that the user may engage with the game system but may not
perform the prescribed motions correctly, limiting the ef-
fectiveness of the intervention and potentially facilitating
harmful activity.

Various methods of detecting compensatory movement
have been employed throughout the literature. The gen-
erally accepted ‘gold standard’ for measuring and

analysing human movement is through high-resolution
cameras which observe markers placed at key positions
on the human body. While these systems provide the most
accurate results, they are unfeasible for home use as they
are large, expensive, require expert setup knowledge, and
are therefore typically confined to laboratory or clinical
settings. Aprile et al.'® utilised a marker-based system to
measure reaching strategies of stroke survivors. From the
displacement of markers placed at key anatomical land-
marks, each reaching motion was segmented into distinct
components - arm elongation, trunk forward inclination
and trunk rotation. Each component was allocated a per-
centage contribution to reach, allowing for the level of
compensation to be numerically quantified. However, the
method proposed by Aprile et al.'® groups all upper limb
motion under ‘arm elongation’, therefore disregarding
other sources of end effector displacement such as
shoulder rotation. Additionally, the method does not offer
real-time operation which is crucial for integration within
game-based systems to provide motivational and perfor-
mance feedback to the user.'> However, it is acknowledged
that all systems operate with a delay. Classification al-
gorithms which aim to detect and categorise human motion
have been explored.”>*® However, these implementations
do not typically quantify the amount of compensation,
which is crucial for health professionals to evaluate
progress over time. Hand-held game controllers have been
investigated,”® but these only capture the position of the
controller device which some stroke survivors may find the
difficult to grasp.’® By contrast, low-cost depth cameras
such as the Microsoft Kinect®' circumvent these concerns
by providing hands free interaction, capture a variety of
anatomical positions, and omit the need for expert user
knowledge. Implementations utilising depth cameras in-
clude monitoring of correct sitting posture,’* assessment
of joint angles to establish correct movement,*” translation
of movement to game input messages,”* simple reaching
games,” and recognition of actions and the plane of
motion integrating a joint coordinate system.***’ How-
ever, these implementations generally consider single
movements in isolation, use joint angles which are prone to
error in consumer level cameras,*® and do not detect and
quantify the relationship between several compensatory
actions in real-time. Such factors are essential for de-
scribing complex movements, setting rehabilitation goals,
and conducting longitudinal analysis of performance. Yet
low-cost commercially available systems are potentially
affordable for routine implementation in healthcare
systems.

To this end, this paper describes an algorithm which
monitors reaching motions, recorded by a markerless
consumer level motion capture camera®' in real-time, de-
tecting and quantifying the use of various compensation
strategies. The algorithm advances previous work'® by
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further segmenting upper limb motion to include shoulder
rotation and providing real-time operation. The algorithm
has been designed to operate within a repetitive task practice
game system where reaching motions are performed to the
rthythm of self-selected music, i.e. continuously on loop.”
The algorithm observes the displacement of key joints,
segments cyclical movements into discrete actions in real-
time, and uses a series of calculations to establish the type of
movement and level of compensation used to complete the
task. A reaching motion has been categorised into four
movement types — Forward Reach (FR), Trunk Forward
inclination (TF), Trunk Rotation (TR) and Shoulder Ro-
tation (SR), separating the movement into component parts
and allocating each feature a percentage contribution to
reach. This results in a single, dimensionless value for each
movement type, which is subsequently used in simple
graphical plots which aim to provide an easy to understand,
simplified representation of task performance to inform
stroke survivors and health professionals.

The next section of this paper presents the design of the
algorithms in detail. Following this, the accuracy of the
algorithms performance in real-time was tested by recruiting
ten able-bodied study participants to trial the system. Fi-
nally, the potential benefits of the system’s design and in-
tended applications are discussed.

System development

Input and development environment

A real-time algorithm has been developed which takes input
from the Microsoft Kinect V2 sensor.>' As an input device,
Kinect V2 has been shown to provide sufficient accuracy for
clinical measurement of motor function.>® Users interact
with the system by facing a single Kinect camera at an
approximate distance of 1.5 m and 70 cm from the floor
(Figure 1).

The Kinect data is collected at a sampling rate of 30 Hz.
Joint positions are inferred within the Neo-Kinect plugin via
the Unreal Engine game development environment.*’
Within the game system, the primary task is to perform
reaching motions between two or more onscreen target
points in synchronous with an audible rhythm provided by
user selected music.? The positions of the wrist, elbow,
shoulder, and central trunk (termed spine) are collected and
processed (Figure 2). Both the left and right upper limb are
available to use in game.

Algorithm overview

The algorithm monitors the positions of key joints to de-
scribe task performance when reaching. The three-
dimensional location of each joint is compressed and
projected onto the sagittal place to observe displacement in

1.5m
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Figure |. System setup.
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Figure 2. Joints captured via Kinect V2 camera. Both the left and
right upper limb are available to use in game.

an anterior direction. The algorithm segments a reaching
motion into four movement types:

¢ Trunk Forward (TF) — Trunk flexion within the
sagittal plane

¢ Trunk Rotation (TR) — Axial Rotation of the trunk on
the transverse plane

¢ Shoulder Rotation (SR) — Internal/external shoulder
rotation on the transverse plane

® Forward Reach (FR) — Shoulder flexion and elbow
extension on the sagittal plane

By considering only the positions of the hand and trunk,
the combination of ‘forward reach’ (elbow extension and
shoulder flexion in the sagittal plane) and trunk compensation
(leaning with the trunk in an anterior direction) could de-
scribe task performance when reaching forward. For ex-
ample, if a user were to keep their trunk stationary and use
only the upper limb to reach a target point with their hand,
forward reach will account for 100% of the movement.
Conversely, if the user does not extend their arm and reaches
the desired position solely by leaning their trunk forward,
trunk compensation will account for 100% of the movement.
These measurements can be obtained by observing the level
of point-to-point displacement in an anterior direction.



Journal of Rehabilitation and Assistive Technologies Engineering

Y

Displacement (cm)
2

T, T, T

Time / Phase

® ©
l*l“

(a) 100} T — Wrist (

Figure 3. (a)—Simulated displacement with no trunk compensation and; (b) - illustration of the movement where the trunk is stationary
and the upper limb reaches forward to complete the motion. The Y axis represents displacement in an anterior direction in
centimetres (100 signifying maximum reach) and the X axis represents the phase of the motion.

A simulation of displacement of the hand and trunk
through a reaching motion on a single axis over time is
modelled below. The X axis represents time, and the Y axis
displays displacement in an anterior direction in centi-
metres. Figure 3(a) (b) shows displacement using only
forward reach and no trunk compensation, whereas
Figure 4(a) (b) shows the same motion, but with trunk
compensation.

In the above example, the task of reaching can be sep-
arated into key phases — the forward motion to reach the
target (To-T)), the instant the hand reaches the target (T;), and
the reversal of the motion and return to the starting position
(T,-Ty). Figure 3 and Figure 4 illustrate displacement con-
sidering only the position of the hand and trunk. However, to
provide a more comprehensive analysis of movement and
give insight into features such as rotation, the position of the
elbow and shoulder must also be considered. The simulation
shown in Figures 2 and 3 show the starting position of each
joint at an arbitrary position. However, as each joint occupies
a unique anatomical position, it is necessary to observe the
starting position for each joint (the position of each joint at
To) and observe its deviation from this position to Tj.
Figure 5 models a movement arc for the wrist, elbow,
shoulder, and spine in the sagittal plane with varying dis-
placement levels for each joint. These values are highlighted
at the beginning (T¢) and peak (T;) of the reach cycle.

By taking the Y axis values at Ty, and T; shown in
Figure 4 and calculating the difference, the total Y axis
displacement of the wrist, elbow, shoulder, and spine is
obtained (Table 1).

The combination of these four displacement values can be
used to calculate contribution in the sagittal plane to the task of
reaching forward with reference to Trunk Forward inclination
(TF), Trunk Rotation (TR), Shoulder Rotation (SR) and
Forward Reach (FR). The key measurement is displacement
of'the end effector in the sagittal plane, which is the wrist in the
above example. All features are calculated relative to this
motion, normalising all values to a scale of 0—1.

Trunk forward inclination

Trunk Forward inclination (TF) is measured by assessing
the relative levels of displacement between the spine and
wrist in an anterior direction This calculation does not
consider the positions of the shoulder and elbow. To
calculate this value, the total spine displacement (ASp) is
divided by the total wrist displacement (AWr), then
multiplied by 100. This results in a value which details the
percentage Trunk Forward inclination when reaching
(Equation (1)).

Equation (1) - Trunk Forward Inclination

ASp
TF (%) =1 —
(%) 00 <AWr>

Using the displacement values shown in Table 1 results in
the following calculation (Equation (2)), revealing that
38.89% of the forward reaching motion shown in Figure 4
was achieved through forward leaning of the trunk.

Equation (2) - Trunk Forward Inclination worked
example

TF(%) = 100+ (%)

TF = 38.89%

Trunk rotation

Trunk Rotation (TR) describes the amount of trunk axial
rotation in the transverse plane performed when reaching. To
obtain this measurement, the movement is not measured on the
transverse plane, but projected onto the sagittal plane and the
relative positions of key joints observed. As greater dis-
placement in an anterior direction seen in the shoulder than the
spine reveals a rotation of the trunk (assuming there is no
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Figure 4. (2) — Simulated displacement with trunk compensation and; (b) - illustration of the movement where the trunk contributes to
the motion through forward leaning. As in Figure 2, the Y axis represents displacement in an anterior direction in centimetres
(100 signifying maximum reach) and the X axis represents the phase of the motion.
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Figure 5. Displacement of joints from non-zero start point in the
sagittal plane.

Table I. Joint positions at Tp and T, and total Y axis displacement
in arbitrary units.

To Y-Axis T, Y-Axis Y Axis displacement
Joint position position (T, - To)
Wrist 38 74 36
Elbow 22 53 31
Shoulder 11 31 20
Spine 5 19 14

shoulder protraction), the difference between shoulder dis-
placement (ASh) and spine displacement (ASp) relative to total
wrist displacement (AW7) in the sagittal plane, details the
contribution of trunk rotation. Therefore, the initial calculation
establishes the difference between shoulder and spine dis-
placements, taking the absolute value to ensure positive
output. Once established, this value is divided by the total

wrist displacement and multiplied by 100 to establish the
percentage contribution of Trunk Rotation (Equation (3)).

Equation (3) - Trunk Rotation

(|ASh — ASp|))

TA(%) = 100 ( NT

Using the displacement values shown in Table 1 results in
the following calculation (Equation (4)), revealing that
16.67% of the forward reaching motion was achieved
through rotation of the trunk.

Equation (4) - Trunk Rotation worked example

6
TA(%) = 100 (36>

TA = 16.67%

Upper limb contribution

Describing the contribution of the upper limb to reaching
brings greater complexity due to the shoulder. As the position
of the hand can be changed through internal and external
rotation of the shoulder, shoulder rotation must be factored into
any calculations. By observing the shoulder, elbow and wrist’s
relative displacement in an anterior direction, the contribution
of the upper limb can be segmented into two key movements:

® Shoulder Rotation - Internal and external shoulder
rotation in the transverse plane

e Forward Reach - Shoulder flexion and elbow ex-
tension in the sagittal plane

In summary, displacement in an anterior direction of both
the elbow and wrist indicates Forward Reach, whereas
displacement in an anterior direction of the wrist with less or
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Figure 6. (a) — Wrist displacement by forward reach only. (b) - Wrist displacement by shoulder rotation only. (c) — Wrist displacement

by a combination of shoulder rotation and forward reach.

no displacement of the elbow indicates shoulder rotation.
Figure 6 shows three scenarios of wrist displacement in an
anterior direction - forward reach only (Figure 6(a)),
shoulder rotation only (Figure 6(b)), and a combination of
both forward reach and shoulder rotation (Figure 6(c)).

Shoulder rotation

Shoulder Rotation (SR) describes internal and external
shoulder rotation in the transverse plane, and observes the
positions of the wrist, elbow, and shoulder for all calcu-
lations. As the wrist and elbow are connected through a rigid
body which links their position (the forearm), it is appro-
priate to conclude that if displacement of the wrist in an
anterior direction is observed with less or no displacement
of the elbow, shoulder rotation has occurred. Therefore, to
assess what displacement can be attributed to shoulder
rotation, it is necessary to ‘remove’ any displacement of the
wrist caused by displacement of the elbow.

Subtracting the difference between shoulder (AS%) and
elbow (AEI) displacement from the difference between
shoulder and wrist (AWr) displacement removes any
displacement of the wrist caused by displacement of the
elbow. Once displacement of the wrist caused by

displacement of the elbow is removed, it can be concluded
that any remaining wrist displacement is caused by
shoulder rotation and not forward reach. The absolute
value of each calculation is taken, and the total multiplied
by 100 to obtain the percentage contribution of shoulder
rotation (Equation (5)).

Equation (5) - Shoulder Rotation

(|AWr — ASh|) — (JASh — AEI))
Awr )

SR = 100*(

Using the displacement values shown in Table 1 results in
the following calculation (Equation (6)), revealing that
13.88% of the reaching motion was achieved through ro-
tation of the shoulder.

Equation (6) - Shoulder Rotation worked example

R — 100 (136 =20) = (20~ 31])
36
16 — 11
SR =100
(%)
SR = 13.88%
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Forward reach

Forward Reach (FR) is a combination of shoulder flexion
and elbow extension in the sagittal plane, and observes the
positions of the wrist, elbow, and shoulder for all calcu-
lations. As with shoulder rotation, the position of the elbow
is critical in determining the level of forward reach that has
occurred. In summary, if the wrist is displaced in an anterior
direction through displacement of the elbow, it is concluded
that forward reach has occurred.

As the difference between wrist (AWr) and elbow (AEI)
displacement denotes the level of shoulder (ASh) rotation
that has occurred, subtracting this value from the difference
between wrist and shoulder displacements removes dis-
placement of the wrist caused by shoulder rotation.
Therefore, the remaining value is the level of wrist dis-
placement caused by displacement of the elbow, revealing
the level of forward reach. The absolute value of each
calculation is taken, and the total multiplied by 100 to obtain
the percentage contribution of forward reach (Equation (7)).

Equation (7) - Forward reach

((|AWr — ASh|) — (|AWr — AEI|)))
AWr

FR = 100*(

Using the displacement values shown in Table 1 results in
the following calculation (Equation (8)), revealing that
30.56% of the reaching motion was achieved through
forward reach.

Equation (8) - Forward reach worked example

PR 100 ((|36 —20]) — (136 —31|)>

36
FR = 100 (16_5>

36
FR = 30.56%

Data presentation

The previous calculations reveal that for the example shown
in Figure 4, trunk forward inclination contributed 38.88%,
trunk rotation contributed 16.67%, shoulder rotation con-
tributed 13.89% and forward reach contributed 30.56%,
totalling 100% (Table 2).

This information can be presented graphically, providing
an easy to understand visual representation of user per-
formance. Figure 7 shows the numerical information in
Table 2 displayed in a stacked bar plot - Forward Reach (FR)
is displayed in green, Shoulder Rotation (SR) in light blue,
Trunk Rotation (TR) in dark blue, and Trunk Forward (TF)
in red. Presenting the information in this manner negates the

need for the therapist to interpret large amounts of numerical
data. For example, if an increase in forward reach and a
decrease in trunk forward inclination is set as a performance
goal, it is desirable to see larger areas of green (FR) than red
(TF) in any plots. By observing a series of reach cycles, or
taking the mean of several cycles, changes in performance
over time can be illustrated. For example, Figure 8 shows a
series of reach cycles with minimal compensation, whereas
Figure 9 shows a series of reaching motions with increased
compensation.

Segmenting reach cycles in real-time

As the algorithm is embedded within a game which involves
moving the hand between onscreen target point in syn-
chronous with an audible rhythm,l’2 accurate, real-time
gathering of joint displacement values is essential. As the
user is tasked with repeating the reaching motion on loop,
they are placed in a constant state of assessment as they are
continuously repeating the exercise. Therefore, it is crucial
that cyclical motions can be accurately segmented into
discrete actions in real-time, clearly defining the start and end
points of the cycle with accuracy. Expanding upon the single
reach cycle seen in Figure 4, a more representative data
stream may appear as modelled in Figure 10. For simplicity,
only the wrist position is displayed. However, while repre-
sentative of a cyclical reaching motion, the movement of
stroke survivors will generally be less smooth than presented.

As the system utilises a motion capture camera for user
input, there is no physical contact point to signify the start and
end points of the motion. Therefore, a method of defining the
beginning and end of the reach cycle must be achieved. From
within the game system, successful arrival at an onscreen target
point could signify the start and end points of the movement
cycle. However, each user will have differing functional
ability, with the possibility of some users failing to reach any of
the target points within the prescribed timeframe. While
reaching the target point is a game play goal, the movement
itself is of utmost importance and it is therefore crucial that
attempts towards the goal are observed and analysed.
Therefore, to capture all relevant movements and signify the
start and end points of a cycle, a threshold level which signifies
the user’s arrival and return points is established. This
threshold value is a percentage of the user’s total reach. In
summary, if the user’s wrist crosses and returns to within a
given percent of the minimum and maximum reach, an attempt
at a reaching motion is signified and further analysis defines
the start and end points of the cycle (Figure 11).

Using the concept outlined above, a real-time algorithm
has been developed to segment movement data into reach
cycles and collect key data required to calculate each
movement type’s contribution to reach. The algorithm
observes the position of all joints during movement, per-
forming a local minima and maxima search to gather their
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Table 2. Percentage contributions to reach.

Movement type

Contribution, %

Trunk forward inclination 38.89
Trunk rotation 16.67
Shoulder rotation 13.88
Forward reach 30.56
Total 100
100 |
01 I3
sR
80 TR
R FrR
70
c
S 60
2
5 501
8
e %0
30 f
20+
10
0

1
Reach cycle

Figure 7. A single reach cycle showing Trunk Forward (TF),
Shoulder Rotation (SR), Trunk Rotation (TR) and Forward

Reach (FR).
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Figure 8. Minimal trunk compensation.
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Figure 9. Increased trunk compensation.

position and time at the beginning and peak of each reach
cycle.

The algorithm begins by establishing the user’s maxi-
mum elbow flexion through measuring the maximum
achievable distance between the wrist and ipsilateral
shoulder. This value is used to establish thresholds as il-
lustrated in Figure 10. The threshold level is established by
obtaining a percentage of the user’s maximum reach
(Equation (9)).

Equation (9) - Threshold calculation
Threshold = MaxArmExtension x 0.x

Using the threshold value, minimum and maximum threshold
‘zones’ are set. A baseline position is then established for the
wrist, elbow, shoulder, and spine through zeroing the coor-
dinate position of each joint. No specific posture is required.
However, to ensure consistency, the participant was asked to
sit comfortably with their dominant hand on the closest target
and this process was triggered by the researcher. These values
are stored and used to calculate displacement in an anterior
direction by measuring deviation from this point.

Through a series of conditional statements, the position
of the wrist is monitored for entering and leaving the
threshold zones in sequential order. Upon the wrist entering
a threshold zone, the location of each joint (J) is stored in
discrete arrays (denoted Jyax / Jmin) @along with the time the
value was captured (Thjax/Tmin)- Once a complete reach
cycle is detected, the values in all arrays are passed on to
establish key data to detect and quantify compensatory
movement (Algorithm 1).
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Figure 10. Modelled displacement of the wrist on the anteroposterior axis over multiple reach cycles.
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Figure 1. Modelled displacement of the wrist on the anteroposterior axis with threshold levels.

Input: MinThreshold, MaxThreshold, Joint (J)
Positions
» initialise threshold Booleans
OverMax « False
UnderMin « False
» performed on each frame of game play
for each frame
» has the wrist crossed the max reach threshold?
if WristPosition > MaxThreshold
OverMax « True
» while over the max threshold, store each
Jjoint s position and time in discrete arrays
Store all joint positions and time [Jygax, Thiax]
end if
» has the wrist crossed the min threshold and
previously crossed the max threshold?

if WristPosition < MinThreshold &&
OverMax = True
UnderMin « True
» while under the min threshold:
Store all joint positions and time [Jnin, Tinl
end if
» Finally, when the wrist has advanced beyond
the minimum threshold, reset Booleans
if WristPosition > MinThreshold &&
UnderMin = True
» pass on all joint position and time arrays
for further processing
Export joint position and time arrays [Jyjax,
JMina TMaxa TMin]
OverMax «— False
UnderMin « False
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end if
end for

Algorithm 1 — Capture of minimum and maximum joint
displacements and times

Wrist displacement

To obtain the position of wrist at the beginning of the reach
cycle (WrTy), the minimum value of the array gathered
when the wrist was under the minimum threshold (WRys;,)
is found. Similarly, to gather the position of the wrist at the
peak of the reach cycle (WrT;), the maximum value of the
array gathered when the wrist was over the maximum reach
threshold (WRy.y) is found.

There is potential for the minimum value of the array
gathered at minimum extension (WrTy) to be negative as the
wrist may be retracted beyond the initialisation position. To
ensure only positive values are used, the position of the
wrist at the beginning of each reach cycle is checked for
native values and the absolute value taken if found to be
true. This value is stored (WRgset) then added to the
maximum displacement value (WrT;). The minimum dis-
placement value (WrT)) is then set to zero, which maintains
overall displacement and shifts data into a positive range
(Algorithm 2).

WrTy «— min(WRy,) » get minimum of array
WrT; «— max(WRyax) » get maximum of array
if WI'T() <0
WRoffset — |WI'T0|
WI'T] — WI'T] + WRoffset
WrTy <« 0

end if

Algorithm 2 - The position of the wrist at minimum
(WrTp) and maximum (WrT)) of the reach cycle is found
and displacement values are shifted into a positive
range.

Proximal joint displacement

As the collection of positional information for the wrist,
elbow, shoulder, and spine is triggered by the wrist en-
tering and leaving the threshold zones, data for all joints
are gathered simultaneously. Therefore, the array indices
of the minimum and maximum wrist displacement are
used to obtain the position of all proximal joints at these
times. From this, elbow, shoulder, and spine

displacements are gathered, and the data checked for
negative values (Algorithm 3).

Input: Joint arrays [Jnin, Jmax], Wrist positions
[WI'T(), WI'T]]
for each joint (J)
» get displacement of joint at wrist Ty & T;
indices
Ty «— Jnin[1dx(WrTg)]
JTl — Jmax[idx(erl)]
if JTo <0
Joffset — |JT0|
JT ) = JTy + Jogrset
JTo <0
end if
end for

Algorithm 3 — Proximal joint displacement.

The positions of the wrist at minimum and maximum teach
are used to locate the position of all proximal joints at the
point in time.

From the minimum and maximum values gathered
through algorithms 2 and 3, joint displacement is calculated,
and compensatory motion is detected and quantified in
relation to TF, TA, SR, and FR as previously outlined.

In game filtering

The raw data generated by Kinect contains a significant
amount of noise. Therefore, real-time data smoothing
within the game engine is essential to minimise potential
for data used to segment reaching motions to be influenced
by noisy sensor input. If a tracking error caused a signal
spike in opposing directions for two significant joints, the
relative displacement of (or, distance between) these joints
would be recorded as greater than occurred in practice.
This would cause the real-time local maxima and minima
search to report incorrect displacement values, resulting in
system error. Therefore, trajectory data is smoothed in real-
time within the game engine to ensure all data gathered to
calculate compensatory movement is as accurate as
possible.

If sensor data is filtered offline (i.e. not in ‘real-time’),
aspects such as processing latency introduced by compu-
tationally expensive filtering algorithms are of no concern.
However, for real-time data smoothing, a balance must be
drawn between the method of smoothing employed and the
latency incurred. The data is therefore processed using a
moving average filter as it offers effective real-time
smoothing, incurs minimal latency, and is computation-
ally inexpensive. Equation (10) shows the calculation
performed on Kinect input data on each frame of gameplay,



Averell et al.

where out is the smoothed output, prev is the previous
smoothed output, b is the scaling factor (a value between
0 and 1), and raw is the raw input data. For the experimental
setup, the scaling factor » was set at 0.5 to prevent biassing
in either direction.

Equation (10) - Moving average filter

out = prev — (b (prev — raw))

Accuracy of real-time displacement
measures

Real-time capture of joint displacement values carries risk
of inaccuracy created by aspects such as processing latency
or noisy sensor data. By contrast, offline processing does
not carry these risks as displacement values can be obtained
through robust, replicable methods. As joint displacement is
the critical data used to detect and describe movement
(including compensatory movement), it is essential that all
values captured in real-time are accurate and reliable.
Therefore, to explore the accuracy of displacement values
captured in real-time, which in turn dictate the accuracy of
movement detection, it is necessary to compare real-time to
offline calculated data for error.

To generate a dataset, 10 able bodied study participants
were recruited from the Glasgow Caledonian University staff
and student community to perform reaching motions facing
the Kinect camera. Ethical approval was granted by Glasgow
Caledonian University School of Health and Life Sciences
ethics committee (reference: HLS/PSWAHS/19/001). In-
clusion criteria stated all participants must be 18 years or
older, capable of providing informed consent and performing
the required upper-limb movements as per self-report. Ex-
clusion criteria stated participants must not have a history of
or any ongoing neurological pathologies, musculoskeletal
pathologies, or any consideration which would potentially
influence the performance of upper body movements.
Written informed consent was obtained from all participants
prior to data capture. Participants (female = 3, male = 7) were
aged between 19 and 51 years of age (mean = 31) and of
mixed arm dominance (left = 2, right = 8, as per self-report).

The Kinect camera was set to operate at a sampling
frequency of 30 Hz. From an upright, seated position,
participants were tasked with reaching between three target
points. The target heights and positions were adapted based
on each participant’s anthropometry. Target one was placed
at the height of each participant’s shoulder (min = 95 cm,
max = 108 cm, mean = 103 cm) approximately 30 cm in
front of the dominant hand. Targets two and three were
placed at shoulder height, shoulder width apart at arm’s
length on the ipsilateral and contralateral side of the
dominant hand. Participants alternated reaching patterns

between target one and two, then target one and three. A
total of 2813 reaching motions (mean = 281 per participant)
were captured in real-time and exported from the game
engine for analysis. From these data, two categories were
established and compared for error:

1. Movement (TF, TR, SR, FR) calculated through
offline analysis

2. Movement (TF, TR, SR, FR) calculated through real-
time capture

For the offline data category, raw trajectory data which
bypasses the real-time moving average filter was exported
from the game engine. These data are filtered using a second
order Butterworth filter at 2 Hz and a local minima and
maxima search on the wrist trajectory is employed within
MATLAB*! to determine the beginning and end of each
reach cycle. A time stamp is established and used to locate the
position of all other joints at this time. These data are used to
establish joint displacement, allowing for contribution to
reach to be calculated for the offline data category. To es-
tablish the real-time data category, the real-time generated
timestamps which denote the beginning and end of each
reach cycle are imported into MATLAB and used to locate
the relevant positions of the wrist, elbow, shoulder, and trunk.
From this, displacement values for each joint are calculated
and contribution to reach is assessed. The data from all reach
cycles for each feature in each category are summed, and the
mean value for each movement type is obtained. To establish
error, a simple calculation was performed (Equation (11)).

Equation (11) - Error calculation
error = |real time mean — offline mean|

Table 3 shows reported mean values for all reach features
using real-time capture and offline analysis. The highest
mean error was observed to be 1.71% for trunk forward
inclination, with lowest error at 0.51% for trunk rotation.
These results indicate that although differences may exist
between real-time and offline measurement, the low error
indicates the real-time collection of displacement measures
is comparable to offline methods.

Discussion

The algorithm presented in this paper analyses reaching
motions in real-time and provides quantitative outcomes
which aim to describe task performance in the sagittal plane.
The algorithm makes steps towards a more comprehensive
description of upper limb motion than previous work'’
through the inclusion of shoulder rotation and offers real-
time operation through a low-cost, markerless motion
capture camera. The real-time collection of displacement
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Table 3. Real-time algorithm versus offline analysis error.

Offline (mean %) Absolute error

Movement Real-time (mean %)
Trunk forward (TF) 17.94
Shoulder rotation (SR) 16.33
Forward reach (FR) 47.43
Trunk rotation (TR) 19.44

19.65 1.71
15.08 1.25
46.24 1.19
18.93 0.51

measures was compared to offline measurement and shows
minimal error, indicating movements can be detected in
real-time with sufficient accuracy for clinical practice.
Microsoft Kinect was employed as an input device.
However, the algorithm itself is independent of the sensor
and can operate with any input device which can capture the
positions of the wrist, elbow, shoulder, and spine, allowing
the algorithms to be integrated into other game systems
designed for upper limb rehabilitation. Research into re-
habilitation games often focuses on engagement'? or effects
via pre and post intervention testing. A systematic review of
randomised controlled trials which utilised games as an
intervention aimed to establish if a significant difference in
motor function was seen when stroke survivors used game
systems that were specifically designed for upper limb
rehabilitation versus systems which were not designed with
rehabilitation in mind."> The review concluded that systems
specifically designed for rehabilitation had a greater effect
on recovery than those that did not. Only one game system
satisfied all rehabilitation criteria outlaid by the authors,
indicating there is a significant gap in research in this area.

The four movement types (TF, TR, SR, FR) are detected
and quantified in relation to each other. In complex motions
such as reaching, this can be beneficial as there may be a
multitude of different motions which combine to form the
complete action. Therefore, these motions should not be
considered in isolation, but as intrinsically linked features
which combine to describe task performance. Recent work
has developed multi-label classification algorithms with
some success.”” However, the user and health professional
are only informed that each compensatory motion was
present. This results in ambiguous output as no insight into
the amount of compensation or the relationship between
each motion is reported. By contrast, the algorithm pre-
sented in this paper detects each movement and furthers this
by quantifying and aggregating the contribution of all
features to provide an overview of the complete motion.
This high-level aggregate information is essential to guide
the motor learning process and thereby optimise rehabili-
tation outcomes from playing the game.

Analysis of compensatory movement has been investi-
gated, yet there currently remains no consensus on the most
effective means of detecting and quantifying these move-
ments within a game context. Common metrics seen in the
literature are joint angles**** which can be prone to error in

consumer level depth cameras®® and require the interpre-
tation of numerous angles to describe a complex motion
such as reaching. Therefore, it could be argued that three-
dimensional reconstruction of joint angles - although the
gold standard in biomechanics - is impractical and arguably
yields an excessive amount information for use within a
home-based rehabilitation game, with minimal supervision
from a therapist. To offer a pragmatic alternative that can be
implemented in routine rehabilitation practice, the algo-
rithm presented simplifies all motion and allocates a single
percentage value for each movement type. This negates the
need to interpret multiple joint angles and allows for simple,
graphical presentation of data, examination of longitudinal
trends, and easily adapted in-game feedback systems to
motivate and engage the stroke survivor. Although this
method does not produce the level of detail and accuracy
seen in marker-based kinematic analysis, the simplified
representation and dimensionless quantification may be
sufficient for home use due to the accessible means of data
presentation, low costs, and reasonable tracking accuracy
found in consumer level motion capture cameras.>” How-
ever, further research is required to assess the feasibility of
such systems.

The algorithm tailors to the user’s current motor function
by establishing their comfortable level of elbow extension.
This calibration can be performed in seconds, allowing the
system to evolve with the ability of the user and requires no
downtime for recalibration, permitting continuous use
which is appropriate and safe. Moreover, as the algorithm
utilises the relative positioning of joints for all calculations,
the detection of new motions can be easily incorporated as
each calculation need only consider which joints are rele-
vant to the specific measure and how the relationship be-
tween these joints quantifies the motion. As these
calculations are all relative to the comfortable level of elbow
extension, they evolve with the user, meaning all output
measures and in-game feedback related to movement is
accurate and evolves as motor function improves.

Game-based rehabilitation systems rarely offer com-
prehensive motion analysis and clinically relevant metrics
related to compensatory tasks.”” Consequently, there is
currently no standard toolkit for the detection of compen-
satory movement which offers an easy to understand,
gameplay independent indicator of task performance. To
advance development in this area, it is intended that the
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presented algorithms might be used as a basis for future
development of game-based repetitive practice systems
involving reaching tasks. Furthering the work presented in
this paper, the system will be expanded to include a larger
variety of compensatory motions (such as elevation of the
shoulder girdle, trunk lateral flexion, and assisting with the
less affected arm) then seek to package all algorithms within
a distributable toolkit for easy integration into home-based
rehabilitation systems. Future work should explore robust
testing of the algorithms with stroke survivors with upper
limb impairment to assess the accuracy and suitability for
home-based, unsupervised use.

Conclusion

This paper presented an algorithm which analyses cyclical
upper limb reaching motions in real-time and segments the
action into its component parts with reference to trunk
forward inclination, trunk rotation, shoulder rotation and
forward reach. The real-time operation of the algorithm was
tested for accuracy by comparing data collected in real-time
to offline analysis of trajectory data. Results indicate that the
algorithm can operate in real-time with accuracy, showing a
maximum error of 1.71%. Future work will extend the
system to provide further analysis of trunk and upper limb
motion and create a distributable toolkit for the detection
and quantification of compensatory movements.
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