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Shared genetic components between metabolic syndrome and
schizophrenia: Genetic correlation using multipopulation
data sets
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Aim: The genetic relationship between schizophrenia (SCZ)
and other nonpsychiatric disorders remains largely unknown.
We examined the shared genetic components between
these disorders based on multipopulation data sets.

Methods: We used two data sets for East Asian (EAS) and
European (EUR) samples. SCZ data was based on the Psychi-
atric Genomics Consortium Asia with our own genome-wide
association study for EAS and Psychiatric Genomics Consor-
tium for EUR. Nonpsychiatric data (20 binary traits [mainly non-
psychiatric complex disorders] and 34 quantitative traits [mainly
laboratory examinations and physical characteristics]) were
obtained from Biobank Japan and UK Biobank for EAS and
EUR samples, respectively. To evaluate genetic correlation, link-
age disequilibrium score regression analysis was utilized with
further meta-analysis for each result from EAS and EUR sam-
ples to obtain robust evidence. Subsequent mendelian randomi-
zation analysis was also included to examine the causal effect.

Results: A significant genetic correlation between SCZ and
several metabolic syndrome (MetS) traits was detected in the
combined samples (meta-analysis between EAS and EUR data)
(body mass index [rg = �0.10, q-value = 1.0 � 10�9], high-den-
sity-lipoprotein cholesterol [rg = 0.072, q-value = 2.9 � 10�3],

blood sugar [rg = �0.068, q-value = 1.4 � 10�2], triglycerides
[rg = �0.052, q-value = 2.4 � 10�2], systolic blood pressure
[rg = �0.054, q-value = 3.5 � 10�2], and C-reactive protein
[rg = �0.076, q-value = 7.8 � 10�5]. However, no causal rela-
tionship on SCZ susceptibility was detected for these traits
based on the mendelian randomization analysis.

Conclusion: Our results indicate shared genetic compo-
nents between SCZ and MetS traits and C-reactive protein.
Specifically, we found it interesting that the correlation
between MetS traits and SCZ was the opposite of that
expected from clinical studies: this genetic study suggests
that SCZ susceptibility was associated with reduced MetS.
This implied that MetS in patients with SCZ was not associ-
ated with genetic components but with environmental fac-
tors, including antipsychotics, lifestyle changes, poor diet,
lack of exercise, and living conditions.
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Schizophrenia (SCZ) is a common disorder with a complex patho-
physiology. Although numerous studies have aimed to elucidate the
biological causes,1–7 little evidence has been available so far. One rea-
son is the ambiguous diagnostic boundaries between SCZ and other
psychiatric disorders8 given that current diagnostic systems have
mainly been based on descriptive criteria proposed by psychopathol-
ogy. Although such criteria, e.g., the DSM or ICD systems, provide a
consensus to some extent, classical epidemiological studies have esti-
mated the shared genetic liability among psychiatric disorders.9–12

To support this, recent advances in genomic analysis have provided
important insight that would help address whether a genetic cause is
shared between SCZ and other psychiatric disorders or whether it is
unique to each disorder, based on data from association results of whole-
genome single nucleotide polymorphisms (SNPs). Specifically, the cross-
disorder group of the Psychiatric Genomics Consortium (PGC) reported a
significant genetic overlap among them based on genetic correlation anal-
ysis and polygenic risk score analysis.13–15 Interestingly, the genetic

component of SCZ is close to that of bipolar disorder, of which contribu-
tion is larger than that of the relationship between bipolar disorder and
major depressive disorder.6,8,14,15

To determine the pathophysiology of SCZ and promote
genome drug discovery, as well as prioritize the possible causality,
understanding the genetic correlation between psychiatric disor-
ders and/or other nonpsychiatric traits (disorders and quantitative
traits) is crucial.16 Specifically, nonpsychiatric traits can help
uncover relationships that have yet to be reported or have been
overlooked. For instance, several studies have reported that the
genetic component for lower body mass index (BMI) correlated
with that for susceptibility to SCZ.16–18 Moreover, genetic variants
associated with high C-reactive protein (CRP) level (an instrumen-
tal variable) as a modifiable exposure to SCZ showed significant
causality through mendelian randomization (MR) analysis, which
is usually applied with genetic correlation analysis,19–21 although
some studies did not show a causal relationship.22,23
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Here, we examined the genetic relationship between SCZ and
other nonpsychiatric disorders based on linkage disequilibrium score
regression (LDSC) analysis, which is suitable for examining disorders
with polygenic architecture.16 Furthermore, we included subsequent
analysis for the causal relationship between significant instrumental
variants in nonpsychiatric traits and SCZ based on MR analysis.24

The current study highlights the analyses using data from multiple
populations. Although previous studies have mainly analyzed data
based on European (EUR) populations, multipopulation analysis can
provide more robust results. Therefore, we used data based on East
Asian (EAS) populations in addition to that of EUR populations and
finally assessed LDSC results using meta-analysis to enhance statisti-
cal power.

Methods
Genome-wide association study results in EAS and EUR
samples
For EAS samples (a total of 24,504 patients with SCZ and 42,770
controls), we used SCZ results based on the meta-analysis from our
previous study (Japanese SCZ: 1,726 patients with SCZ and 7,408
controls)6 and the PGC Asia (PGC EAS SCZ: 22,778 patients with
SCZ and 35,362 controls),25 as well as nonpsychiatric data from the
JENGER database (40 binary traits and 63 quantitative traits: Supple-
mentary Table 1), which is provided by Biobank Japan (http://jenger.
riken.jp/result) (minimum of 12,302 and maximum of 212,453 sam-
ples). The nonpsychiatric traits were common diseases (e.g., type 2
diabetes), quantitative data of laboratory examinations (e.g., blood
sugar [BS]), and physical characteristics (e.g., BMI). It should be
noted that there were no overlapping samples between GWASs for
SCZ and nonpsychiatric traits.

To enhance the statistical power during the primary meta-analy-
sis of SCZ results for EAS, the “metafor” package in R (https://www.
metafor-project.org/doku.php) was used. We applied results from the
fixed-effects model with Pheterogeneity ≥0.05 and the random-effects
model Pheterogeneity <0.05.

For EUR samples, we used PGC results for SCZ (33,640 SCZ and
43,456 controls)26 and UK Biobank data (http://www.nealelab.is/uk-
biobank: a total of 4,236 phenotypes are listed) for nonpsychiatric traits
(minimum of 51,453 and maximum of 361,194 samples). Among these
nonpsychiatric traits, we used overlapped ones with the phenotypes listed
in JENGER (20 binary traits and 34 quantitative traits).

LDSC analysis
All genetic correlation analyses were conducted using LDSC16 soft-
ware (https://github.com/bulik/ldsc). This software estimates the
genetic correlation between two phenotypes based on the summary
statistics. The genetic correlations between SCZ and nonpsychiatric
traits were calculated in each population (EAS and EUR). However,
specifically for EUR data, we only assessed the genetic correlation in
identical pairs analyzed from EAS results, thereby excluding traits
listed only in the UK Biobank, mentioned above.

For quality control, we used SNPs: (1) involved in the 1000
Genomes Project and HapMap Projects, (2) with a minor allele
frequency ≥ 1%, and (3) INFO (imputation quality measures) ≥0.9.

Subsequent meta-analysis was conducted by merging the “over-
lapped” traits (20 binary traits and 34 quantitative trait loci [QTL]
traits) between results from the EAS and EUR samples. The “met-
afor” package in R was used based on the fixed-effects model,
because we assumed little differences of the genetic correlation
between populations. Multiple comparisons were corrected using the
false discovery rate (Benjamini–Hochberg method) to calculate q-
values (q-values <0.05 were set as the significant threshold) in each
trait (binary and QTL traits in the meta-analysis).

MR analysis
For MR analysis, we only targeted traits that showed significant corre-
lation during LDSC analysis. These nonpsychiatric traits were used as

exposures, whereas SCZ was used as the outcome. The “exposure”
SNPs, which surpassed the P-value threshold of P < 5 � 10�8 in the
results of the nonpsychiatric traits, were clamped to remove SNPs in
linkage disequilibrium (r2 < 0.001 within a 10-Mb window) and
selected as instrumental variables. Our primary MR analysis method
was inverse variance weighted (IVW) regression, particularly when P-
values of the Egger intercept exceeded 0.05. We also conducted: (1)
weighted median analysis, (2) MR-Egger regression analysis, and (3)
MR pleiotropy residual sum and outlier (MR-PRESSO) analysis as
sensitivity analyses. During MR-PRESSO, we checked the horizontal
pleiotropy using the robust method and performed the global test to
examine for outlier removal.

The aforementioned MR analyses were conducted using the
“TwoSample MR”27 package in R (https://mrcieu.github.io/
TwoSampleMR/), with the default setting. The multiple comparisons
were again corrected by false discovery rate and the significance level
was set at q-values <0.05 in each population (EAS and EUR).

Ethical statement
For the SCZ GWAS in the Japanese population,6 written informed
consent was obtained from all patients following a thorough explana-
tion of the study. The study was approved by the ethics committees of
Fujita Health University and other participating universities, which
conform to the provisions of the Declaration of Helsinki.

Results
Initially, LDSC analysis was conducted between SCZ and non-
psychiatric traits in EAS samples (Tables 1 and Fig. 1; the full results
can be seen in Table S1 and Figs. S1 and S2). Ten traits showed mar-
ginal significant correlation (P < 0.05) in this population (Table S1).
Next, we conducted LDSC analysis for EUR samples and detected 8
of 54 “overlapped” traits (20 binary traits and 34 QTL traits) with
P < 0.05 (Table S1). The subsequent meta-analysis for the 54 “over-
lapped” traits in each population revealed no significant genetic corre-
lation between SCZ and binary traits (q-value <0.05); however, we
detected six QTL traits that showed significant genetic correlation
with SCZ (Table 1 and Fig. 1): BMI (rg = �0.101,
q-value = 1.01 � 10�9), CRP (rg = �0.0756, q-value = 7.80 � 10�5),
high-density-lipoprotein cholesterol (HDL-C: rg = 0.0722,
q-value = 2.90 � 10�3), BS (rg = �0.0679, q-value = 1.44 � 10�2),
triglycerides (TGs: rg = �0.0524, q-value = 2.44 � 10�2), and systolic
blood pressure (SBP: rg = �0.0543, q-value = 3.45 � 10�2). The direc-
tion of the genetic correlation for the six mentioned traits was identical
between EAS and EUR results, suggesting consistent evidence between
populations.

Further analysis on these “significant” traits was conducted
through MR to examine causality. No significant causal relationship
was obtained after correcting the multiple comparisons (Table 2).
However, it is of note that we detected nonsignificant trend of the
causal effects between CRP (beta = �0.0923, q-value = 0.0514 in
IVW, Egger intercept = 0.389) and SCZ, which is derived from EUR
samples (Table 2). Whereas, the results with the significant P-value
of Egger intercept (P < 0.05, which means possible pleiotropy, thus
prioritizing other “non-IVW” methods) were not always consistent.

Discussion
In this genetic correlation analysis using multipopulation samples, we
detected a significant correlation between several metabolic syndrome
(MetS)–related traits/CRP and SCZ. Most of these have been previ-
ously reported mainly in EUR samples,16–18 suggesting that our
results replicated those presented in previous studies, albeit in a larger
sample size with multipopulation samples. Nevertheless, we did not
detect the significant causal relationship between these nonpsychiatric
traits and SCZ after correcting the multiple comparisons.
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MetS-related traits and SCZ
The current study found a significant genetic correlation between
MetS-related traits, such as BMI, HDL-C, BS, TGs, SBP, and SCZ.
MetS is diagnosed based on various factors, namely large abdominal
circumference, high TGs, low HDL-C, high blood pressure, and high
fasting blood glucose.28 Most of our results implied shared genetic
components between “non-MetS”–related traits and SCZ; we found a
negative rg between SCZ and BMI, TGs, SBP, and BS, and a positive
rg between SCZ and HDL-C, all of which showed the identical direc-
tion of the effect for EAS and EUR samples, suggesting robust
results.

Nevertheless, in clinical practice, patients with SCZ generally
demonstrate a higher prevalence of dyslipidemia, obesity, hyperten-
sion, and hyperglycemia than the general population and often have
an increased risk of premature death caused by cardiovascular

disease.29,30 Some epidemiological studies targeting first episodes
among drug-naïve patients reported that such individuals had already
exhibited high BMI or dyslipidemia.31–33 This may imply that sec-
ond-generation antipsychotics, which is a major risk factor for obe-
sity, are “independent” of MetS-related traits in the early stages
of SCZ.

On the contrary, longitudinal studies surveying BMI, one of
the MetS-related traits, during the adolescent period (e.g., aged
18 years) showed that patients with SCZ had a lower BMI than
patients without SCZ.34,35 This evidence is consistent with our
current results and previous reports on genetic correlation, which
supports the classical “somatotype” theory, suggesting that obesity
in SCZ is an acquired/extrinsic effect from drug therapy (antipsy-
chotics), lifestyle changes, poor diet, lack of exercise, and living
conditions.18

Table 1. Results of genetic correlation analysis with P < 0.1

EAS EUR Meta-analysis (EAS + EUR)

Trait Type rg SE P-value rg SE P-value rg SE P-value q-value

Osteoporosis Binary 0.107 0.0784 0.173 0.0789 0.0439 0.0725 0.0856 0.0383 0.0254 0.377
Cirrhosis Binary 0.121 0.121 0.320 0.254 0.141 0.0719 0.178 0.0737 0.0538 0.377
Epilepsy Binary 0.140 0.126 0.268 0.141 0.0907 0.121 0.141 0.0920 0.0565 0.377
Prostate cancer Binary 0.0703 0.0510 0.168 0.0594 0.0614 0.333 0.0659 0.0392 0.0933 0.467
BMI QTL �0.0713 0.0294 0.0155 �0.112 0.0178 2.80E�10 �0.101 0.0152 2.97E�11 1.01E�09
CRP QTL �0.0363 0.0936 0.698 �0.0772 0.0186 3.18E�05 �0.0756 0.0182 3.40E�05 7.80E�05
HDL-C QTL 0.122 0.0467 9.00E�03 0.0614 0.0218 4.90E�03 0.0722 0.0198 2.55E�04 2.90E�03
BS QTL �0.103 0.0475 0.0304 �0.0588 0.0243 0.0154 �0.0679 0.0216 1.70E�03 0.0144
TGs QTL �0.0510 0.0344 0.139 �0.0529 0.0211 0.0121 �0.0524 0.0180 3.60E�03 0.0244
SBP QTL �0.0694 0.0415 0.0943 �0.0498 0.0225 0.0267 �0.0543 0.0198 6.10E�03 0.0345
GGT QTL �9.10E�03 0.0343 0.791 �0.0465 0.0203 0.0219 �0.0368 0.0175 0.0352 0.171
DBP QTL �0.0345 0.0428 0.420 �0.0385 0.0222 0.0834 �0.0377 0.0197 0.0561 0.221
Phosphorus QTL 1.40E�03 0.0758 0.985 0.0460 0.0233 0.0483 0.0422 0.0223 0.0584 0.221
Lymphocyte count QTL �0.0545 0.0494 0.270 0.0449 0.0193 0.0198 0.0317 0.0180 0.0775 0.264
MCV QTL 0.0190 0.0343 0.580 0.0279 0.0174 0.109 0.0261 0.0155 0.0928 0.287

Bold numbers represent a significant correlation after applying false discovery rate correction.
BMI, body mass index; BS, blood sugar; CRP, C-reactive protein; DBP, diastolic blood pressure; EAS, East Asian; EUR, European; GGT,
γ-glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; MCV, mean corpuscular volume; QTL, quantitative trait loci; rg, genetic
correlation; SBP, systolic blood pressure; SE, standard error; TGs, triglycerides; QTL, quantitative trait loci.

Fig. 1 Heatmap of genetic correlation
analysis with P-values <0.1 (for overall
samples). The colored box indicates the
genetic correlation matrix (rg). Asterisk
indicates q-values <0.05. EAS, East
Asian; EUR, European.
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It is important to determine whether these MetS-related traits in
SCZ are derived from endogenous or extrinsic effects.19,36,37 Our
findings basically support the notion that extrinsic effects are the
major cause for not only BMI but also other MetS-related traits in
SCZ.28 In clinical settings, this speculation is encouraging for psychi-
atrists and patients because it implies that MetS-related traits can be
manageable. However, it is clear that MetS-related traits in SCZ are
caused by complex mechanisms and require further studies.

Causal effect of instrumental variables from
nonpsychiatric traits on SCZ
Our MR analysis revealed no significant causal relationship between
nonpsychiatric traits (MetS-related traits and CRP) and SCZ after cor-
recting the multiple comparisons (q-value >0.05). This indicates that,
at least, there is no “strong” causal effect based on these traits.

However, despite a nonsignificant trend, we stressed that one of
the best P-values (q-value) was obtained in the instrumental variables

Table 2. Results of mendelian randomization analysis

EAS EUR

Trait Method
No.

of SNPs beta SE P-value q-value
No.

of SNPs beta SE P-value q-value

BMI Inverse variance
weighted

62 �0.211 0.113 0.0617 0.434 298 �0.165 0.0654 0.0116 0.0514

Weighted median 62 �0.135 0.115 0.241 0.530 298 �0.125 0.0727 0.0860 0.229
MR Egger 62 0.178 0.364 0.625 0.772 298 0.280 0.191 0.142 0.341

MR-PRESSO 60 �0.125 0.0949 0.192 0.530 278 �0.140 0.0561 0.0134 0.0514
Egger intercept 0.264 0.0135

CRP Inverse variance
weighted

6 �0.0530 0.141 0.706 0.795 183 �0.0923 0.0378 0.0146 0.0514

Weighted median 6 �0.0920 0.143 0.520 0.772 183 �0.109 0.0422 0.0100 0.0514
MR Egger 6 0.197 0.342 0.596 0.772 183 �0.0602 0.0530 0.258 0.442

MR-PRESSO 6 NA NA NA 176 �0.101 0.0332 2.79E�03 0.0514
Egger intercept 0.465 0.389

HDL-
C

Inverse variance
weighted

50 0.0756 0.0364 0.0379 0.431 247 0.0412 0.0387 0.287 0.459

Weighted median 50 0.0567 0.0543 0.296 0.530 247 �0.0184 0.0439 0.674 0.887
MR Egger 50 �6.90E�03 0.0656 0.917 0.917 247 �0.0786 0.0559 0.161 0.351

MR-PRESSO 50 NA NA NA 235 0.0406 0.0323 0.209 0.386
Egger intercept 0.139 2.00E�03 3.68E�03

BS Inverse variance
weighted

15 �0.117 0.105 0.265 0.530 93 �0.135 0.0726 0.0629 0.189

Weighted median 15 �0.145 0.141 0.303 0.530 93 �0.0485 0.0694 0.485 0.728
MR Egger 15 �0.124 0.529 0.818 0.859 93 �0.0421 0.118 0.723 0.887

MR-PRESSO 15 NA NA NA 86 �0.126 0.0503 0.0144 0.0514
Egger intercept 0.989 0.321

TGs Inverse variance
weighted

36 �0.0469 0.0625 0.452 0.730 204 �0.0143 0.0428 0.739 0.887

Weighted median 36 �0.0960 0.0671 0.152 0.530 204 �0.0208 0.0444 0.640 0.887
MR Egger 36 �0.207 0.0975 0.0409 0.431 204 0.0825 0.0616 0.182 0.364

MR-PRESSO 34 �0.0626 0.0564 0.275 0.530 192 6.83E�03 0.0340 0.841 0.910
Egger intercept 0.0452 0.0316

SBP Inverse variance
weighted

22 0.207 0.164 0.206 0.530 158 �0.0134 0.0831 0.872 0.910

Weighted median 22 0.0794 0.161 0.623 0.772 158 0.0212 0.0846 0.802 0.910
MR Egger 22 0.987 0.574 0.101 0.530 158 0.702 0.268 9.56E�03 0.0514

MR-PRESSO 21 0.0416 0.114 0.719 0.795 153 �5.01E�03 0.0687 0.942 0.942
Egger intercept 0.172 5.65E�03

Bold numbers represent results for prioritized analysis based on the significance of Egger intercept (if P > 0.05, we prioritized the “inverse
variance–weighted” method, whereas if P < 0.05, we prioritized other methods).
†Mendelian randomization (MR) pleiotropy residual sum and outlier (MR-PRESSO) beta effects were calculated after removing the outliers, which
were pleiotropic variants. If there was no outlier, we described “NA” in the column. The number of single nucleotide polymorphism (SNPs) in
MR-PRESSO was that after removing the outliers.
BMI, body mass index; BS, blood sugar; CRP, C-reactive protein; EAS, East Asian; EUR, European; HDL-C, high-density lipoprotein cholesterol;
SBP, systolic blood pressure; SE, standard error; TGs, triglycerides.
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from CRP of the EUR population (q-valueIVW = 0.0514, Egger inter-
cept = 0.389). This is not surprising because several studies have
suggested that CRP is a potential biomarker for diagnosis, treatment
response, and prevention of SCZ.38 Specifically, previous clinical
studies, including those with a cross-sectional design, have shown
that patients with SCZ had higher CRP values compared with the
control group.39–45 However, such a study design contains bias, which
could be associated with the “status” of SCZ.46

In contrast, recent evidence from MR analyses, which can theo-
retically reduce the bias caused by environmental factors, suggest that
high CRP values had a protective effect against SCZ.20,21 In the cur-
rent study, a negative correlation was observed between CRP and
SCZ in the LDSC analysis, while a negative beta was observed during
MR analysis (exposure: CRP, outcome: SCZ [note: it was not “signif-
icant”]), although such observations were only observed in the EUR
sample. Therefore, our results are at least in line with those presented
in previous studies, which showed that higher CRP level had a protec-
tive effect against SCZ in EUR populations.20,21 This is partially
supported by evidence in EAS, which showed the same direction of
causal effect, albeit not significantly. One possible reason for the non-
significant trend of CRP on SCZ (in combined samples, EUR, and/or
EAS samples) was that the sample size of EUR, as well as EAS, sam-
ples was not sufficient. We presume that the increased sample size
may allow us to obtain “significant” causal effects; thus, further stud-
ies using multipopulation samples will be essential to obtain concrete
results.

Limitations
There are several limitations to interpreting our current results. First,
the sample size of GWASs, which were used in the LDSC and MR
analyses, might not be sufficient for both the SCZ and nonpsychiatric
traits. This means that insufficient statistical power overlooked the
significant correlation and/or causal relationships. Specifically, MR
analysis for EAS samples was typical because the numbers of instru-
mental variables were much lower than those for EUR samples.
Therefore, further GWASs are required to deny the type II error. Sec-
ond, in the LDSC and MR analyses for the EAS population, GWAS
data for SCZ were mainly from Han Chinese and Japanese, whereas
nonpsychiatric data were from Japanese. This might influence the
results as a result of different ancestries (albeit not large compared
with the difference between EAS and EUR). Therefore, we conducted
further LDSC analyses to confirm whether our analysis in possible
“stratified” EAS affects the result. We calculated the genetic correla-
tion between nonpsychiatric traits (Biobank Japan: Japanese) and (1)
SCZ in the Japanese population,6 (2) SCZ in multiple EAS
populations (PGC Asia25), and (3) a “combined” sample of (1) and
(2) (current results). However, based on these comparisons, we did
not detect any clear difference in rg among these three subgroups
(Table S2 and Figs. S3 and S4), specifically for the significant genetic
correlation in six nonpsychiatric traits, except CRP (note: the genetic
correlation of CRP was not significant in the EAS samples). This
indicates that our comparison minimally affects the results.

Conclusion
Following LDSC analysis, the current study detected a correlation
between MetS-related traits and the inflammatory marker CRP and SCZ
in multipopulation samples. Although most of the statistically significant
data were derived from EUR samples, we believe that novel and/or repli-
cable relationships will be discovered in EAS samples by increasing the
sample size. Therefore, further GWAS with larger sample sizes from
multiple populations should provide unexpected relationships between
psychiatric disorders and other phenotypes, and hopefully clarify the
pathophysiology of psychiatric disorders.
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