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Abstract

Coronary artery calcium scores (CACS) from lung cancer screening computed tomography

(LCSCT) or myocardial perfusion attenuation correction computed tomography (ACCT) are

not routinely performed or reported. CACS from LCSCT and ACCT have not been directly

compared in the same patient population. We identified 66 patients who underwent both

LCSCT (non-gated) and ECG-gated cardiac CT (CCT) within a 2-year span. Of this popula-

tion, 40 subjects had also undergone ACCT. Using the Agatston method, CACS for 264 indi-

vidual vessels from the LCSCT population and for 160 vessels from ACCT population were

calculated and evaluated for agreement with ECG-gated CCT as the gold standard. Sec-

ondary analysis included a comparison of individual vessel contribution to variations in

agreement and a comparison of total CACS from CCT, LCSCT, and ACCT for respective

MACE prediction. CACS from LCSCT demonstrated a strong Pearson correlation, r =

0.9017 (0.876–0.9223), with good agreement when compared to CACS from CCT. CACS

from ACCT demonstrated a significantly (P < 0.00001) weaker correlation, r = 0.5593

(0.4401–0.6592). On an individual vessel basis, CACS from all major vessels (LM, LAD,

LCX, and RCA) contributed to the weaker correlation. For total vessel CACS, LCSCT dem-

onstrated comparable area under the curve (AUC) for the receiver operating characteristic

(ROC) curve (LCSCT AUC = 0.8133 and CCT AUC = 0.8302, P = 0.691) for prediction of

MACE. Although ACCT demonstrated a similar AUC (ACCT AUC = 0.7969, P = 0.662)

for MACE prediction the cutoff value for elevated risk was extremely low. In conclusion,

LCSCT outperformed ACCT at calcium scoring by providing better agreement and compa-

rable risk assessment to CCT despite the absence of ECG-gating. It is therefore reasonable

to use LCSCT images to derive and report Agatston-based CACS for cardiovascular risk
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assessment, whereas the use of ACCT images to report Agatston-based CACS is not cur-

rently practical.

Introduction

According to the World Health Organization, ischemic heart disease caused by atherosclerotic

coronary artery disease (CAD) remains the single leading cause of morbidity and mortality in

the world[1]. Calcification of atherosclerotic plaques is a well-established pathologic finding

that carries predictive value in terms of atherosclerotic burden and risk of cardiovascular mor-

tality and all-cause mortality[2, 3]. In addition, the organization of calcific deposits within

individual atherosclerotic plaque has predictive value for the plaque’s vulnerability[4–6]. ECG-

gated CCT defines coronary calcium by a threshold attenuation coefficient measurement of

130 Hounsfield units (HU) with an area of�1 mm2, and CACS are then determined by the

product of calcified plaque area and relative density as determined by attenuation[7]. Other

large epidemiologic studies have used a threshold of 130 HU with an area of�1.48 mm2 to

identify coronary calcium[8, 9]. In line with the goals of precision medicine, the addition of

coronary artery calcium score to prediction models based on traditional risk factors signifi-

cantly improves risk stratification and can place more individuals in the most extreme risk cat-

egories, thus having potential to influence decision making with regards to medical therapy

[10, 11].

Lung cancer, the third most common cancer and leading cause of cancer-related death, can

be treated with surgical resection which is potentially curative in early stages[12, 13]. Low-

dose, non-gated, noncontrast chest CT (LCSCT) scans have provided a significant benefit for

lung cancer screening in the high-risk smoking population and are recommended for routine

cancer screening[13–17]. Because smoking is also a major risk factor for ischemic heart disease

and there is significant overlap between eligibility for LCSCT and elevated cardiovascular risk,

there is broad interest in using information about coronary calcification from LCSCT to aide

in cardiovascular event risk assessment[18–21]. In the evaluation of myocardial ischemia,

hybrid imaging using either single-photon emission computed tomography (SPECT) or posi-

tron emission tomography (PET) combined with CT allows for improved diagnostic accuracy

of myocardial perfusion imaging through the use of CT-based attenuation correction algo-

rithms[22–26]. Moreover, there may be additional benefit to assessing coronary calcium on

attenuation CT scans during myocardial perfusion imaging to help further predict cardiovas-

cular event risk[27–29].

While studies have demonstrated reasonable agreement between CACS from various

types of non-gated, noncontrast chest CT and ECG-gated CCT, clinical outcomes have rarely

been evaluated[30–34]. Conversely, recent studies that demonstrated the predictive value of

CACS from LCSCT did not directly compare LCSCT with the gold standard, ECG-gated

CCT, for agreement[19, 20]. Moreover, despite showing strong potential for providing infor-

mation about coronary artery calcium burden, there has been no direct comparison of

ACCT with CCT in terms of Agatston CACS values or MACE prediction[27–29]. Lastly,

there have been no studies that directly compare both LCSCT and ACCT with CCT in the

same population.

Here, we identified a patient population who had undergone LCSCT, ACCT, and CCT

within a 2-year period. We evaluated agreement and predictive value of Agatston-based CACS

from LCSCT and ACCT scans compared to CCT as a gold standard. To our knowledge, this is
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the first direct evaluation of both LCSCT and ACCT relative to CCT for the prediction of out-

comes in an elevated risk population, using a standard Agatston-based scoring method.

Materials and methods

This study was approved by the VA Connecticut Healthcare Institutional Review Board and

complies with the Declaration of Helsinki, and all patient data were handled in compliance

with the Health Insurance Portability and Accountability Act (HIPAA) regulations. All patient

records were de-identified and analyzed anonymously.

Study design and patient population

We undertook a retrospective study design. This study was performed at a single site, the Vet-

erans Affairs (VA) Healthcare System Medical Center in West Haven, Connecticut. This study

included all U.S. Veterans who were identified as having undergone both LCSCT and CCT

within a 2-year period between October 1, 2012 and September 30, 2015. We identified 66

patients that met these criteria. Of the 66 patients, 40 patients had also undergone a myocardial

perfusion imaging study with ACCT within the same 2-year period.

CT acquisition and reconstruction parameters

Table 1 summarizes all CT Acquisition and Image Reconstruction Parameters.

1. CCT. Studies at the West Haven VA Medical Center were performed using a 64-slice

CT scanner (Toshiba Acquilion) with a 64 mm x 0.5 mm collimation, using an axial acquisi-

tion protocol. Rotation time was 0.23 seconds. All scans were ECG-gated and electrocardio-

graphically triggered at 70% of the R-R interval, with patient heart rates averaging between 55–

65 BPM. Scanning field of view was set to 320 mm. Matrix size was 256 x 256. Based on these

parameters, the minimum area required to identify calcium was 1.56 mm2. A 120-kV tube

voltage was applied for all subjects. The tube current was 73 mAmp. Image reconstruction

slice thickness was 3 mm.

2. LCSCT. Studies at the West Haven VA Medical Center were performed using a 64-slice

CT scanner (Toshiba Acquilion) with a 64 mm x 0.5 mm collimation, using a helical acquisi-

tion protocol. Rotation time was 0.35–0.4 seconds, and pitch was 0.84. Studies were not ECG-

gated, and patient heart rates were not controlled. Scanning field of view was set to 400 mm.

Matrix size was 256 x 256. Based on these parameters, the minimum area required to identify

calcium was 2.44 mm2. The average tube voltage was 100 kV, and the tube current was modu-

lated between 50–70 mAmp. Image reconstruction slice thickness was 2 mm.

3. ACCT. Studies at the West Haven VA Medical Center were performed using a 16-slice

CT scanner (Phillips Precedence) with a 16 mm x 1.5 mm collimation, using a helical acquisi-

tion protocol. Rotation time was 0.4 seconds, and pitch was 0.81. Studies were not ECG-gated,

and patient heart rates were not controlled. Scanning field of view was set to 600 mm. Matrix

size was 512 x 512. Based on these parameters, the minimum area required to identify calcium

was 1.37 mm2. A 120-kV tube voltage was applied for all subjects. The tube current was 30

mAmp. Image reconstruction slice thickness was 5 mm.

Coronary artery calcium scoring

For CCT, LCSCT, and ACCT scans, CACS was calculated using the Agatston method[7]. Cor-

onary artery calcium scoring was performed using previously described methods for other epi-

demiologic studies[8, 9], and images were viewed and scored using a Carestream Vue PACS

(Carestream Health) imaging workstation. In brief, the calcium scoring application in the
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Carestream Vue PACS displays axial image slices for the reader. The calcium scoring applica-

tion was equally successful at presenting axial images from CCT, LCSCT, and ACCT. As

expected, the mean numbers of slices taken up by the heart on axial images were statistically

different 32 ± 5.5, 44 ± 5.1, and 22 ± 4.9 for CCT, LCSCT, and ACCT studies, respectively (see

Table 1). The reader scrolls through axial slices and identifies coronary arteries with potential

calcium to be scored. The reader indicates the appropriate coronary vessel to the program and

circles the region of interest. Only pixels of attenuation coefficient measurements above 130

HU within the region of interest are selected as calcified and incorporated into the calcium

score. All scans were scored twice; once by a board-certified cardiologist in Cardiovascular

Computed Tomography (A.R.M. and J.M) and once by a cardiac imaging residents and fellows

(G.B., E.S., and B.D.Y.). Residents and fellows were trained on 50 scans with feedback and

supervision from the board-certified cardiologists. All readers were blinded to patient clinical

data and the calcium scores from the different CT modalities (CCT, LCSCT, and ACCT).

Inter-observer agreement was quantified for total CACS values from all (CCT, LCSCT, and

ACCT) studies, and the overall kappa was found to be very good at 0.915 with 95% confidence

interval from 0.867 to 0.964.

Covariates

The electronic medical record was searched for patient demographics and cardiovascular

covariates including age, sex, race, and BMI. Medical history included smoking status,

hypertension, hypertensive medication, cholesterol medication, diabetes and diabetes medi-

cation, and fasting lipid profile. 10-Year Framingham risk score and ASCVD risk score were

calculated.

Outcomes

The electronic medical record was searched for major adverse cardiovascular events (MACE)

as defined by death by all cause, sudden cardiovascular death, death by cerebrovascular acci-

dent, nonfatal cerebrovascular accident, nonfatal myocardial infarction, acute coronary syn-

drome, and revascularization by either percutaneous intervention (PCI) or coronary artery

bypass graft surgery (CABG).

Table 1. CT acquisition and image reconstruction parameters.

CCT LCSCT ACCT

Collimation 64 x 0.5 mm 64 x 0.5 mm 16 x 1.5 mm

Acquisition Protocol Axial Helical Helical

Rotation Time 0.23 0.35–0.4 0.4

Pitch N/A 0.84 0.81

FOV 320 400 600

Matrix Size 256 x 256 256 x 256 512 x 512

Area Required to Identify Calcium �1.56 mm2 �2.44 mm2 �1.37 mm2

Tube Voltage 120 kVp 100 kVp 120 kVp

Tube Current 73 mAmp 50–70 mAmp 30 mAmp

Image Reconstruction Slice Thickness 3.0 mm 2.0 mm 5.0 mm

Average Slices Containing the Heart, mean ± s.d. (P value) 32 ± 5.5 (<0.0001) 44 ± 5.1 (<0.0001) 22 ± 4.9 (<0.0001)

P value relative to other CT values, as determined by ordinary one-way ANOVA followed by Tukey’s post hoc multiple comparisons test.

https://doi.org/10.1371/journal.pone.0175678.t001

Relative value of CACS from LCSCT and ACCT

PLOS ONE | https://doi.org/10.1371/journal.pone.0175678 April 24, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0175678.t001
https://doi.org/10.1371/journal.pone.0175678


Statistical analysis

All statistical data were analyzed with the use of Prism 6 (GraphPad) or R software version

3.3.1 (R Core Team). Baseline demographics, clinical characteristics, and CACS were com-

pared between the cohort that underwent LCSCT and the subgroup who also underwent

ACCT. Results are presented as mean (standard error) for continuous variables with normal

distribution, as median (interquartile range) for continuous variables without normal distribu-

tion, and as number (percentage) for categorical data. The t test was used to compare normally

distributed continuous variables between 2 independent groups. The Wilcoxon rank sum test

was used for continuous variables not normally distributed, and Chi-square test was used for

categorical variables. Differences between multiple groups were assessed by ANOVA followed

by Tukey’s post hoc multiple comparisons test. For analysis of CACS between LCSCT and

CCT or ACCT and CCT, the Pearson product-moment correlation coefficient was determined

followed by a Bland-Altman plot for bias and agreement. Analyses were repeated using Gener-

alized Estimating Equations (GEE) to adjust for potential clustering of coronary vessel’s cal-

cium score by patient. For receiver operating characteristic curves, comparison of the areas

under the curve between LCSCT and CCT as well as between ACCT and CCT were carried

out by the method established by Hanley and McNeil[35]. Time-to-event curves using the

Kaplan-Meier method were calculated. Results were compared using the log-rank statistic. A

2-sided P<0.05 was considered statistically significant. Using a two-sided alpha of 0.05, our

study had an 80% power to detect a 10% difference in the Pearson correlation between LCSCT

and ACCT. Using a two-sided alpha of 0.05, our study had an 80% power to detect significance

in the proportion of events using calcium score cutoff for CCT.

Results

We evaluated a total of 66 patients who had undergone both LCSCT and CCT within the

period of 3 years between October 1, 2012 and September 30, 2015 (Table 2). The 66 patients

in this study had a mean age of 65 years. All patients were U.S. Veterans. A majority of the

patients were white men and smokers with elevated cardiovascular risk. The median choles-

terol was 169 mg/dL and the median BMI was 31 kg/m2. Approximately one-third of the

patients carried a history of diabetes or a family history of early CAD. Fifteen percent of

patients had known CAD by a prior imaging modality, but none of the patients had a previous

history of revascularization. Of the 66 patients, 40 patients had also undergone myocardial per-

fusion imaging with ACCT. There were no differences in the demographics and clinical char-

acteristics between the patients who underwent LCSCT and the patients who underwent both

LCSCT and ACCT (Table 2). The median CACS as determined by CCT from both LCSCT

and the ACCT populations was comparable at 160 and 176 (P = 0.731), respectively. The

median time between CCT and non-gated CT was 7 (IQR: 1,17) months for LCSCT and 2

(IQR: 1,5) months for ACCT.

The agreement of individual coronary artery CACS between either LCSCT (264 coronary

arteries) or ACCT (160 coronary arteries) and CCT were evaluated (Fig 1). Despite the lack of

ECG-gating, the Pearson correlation between CACS from the CCT and the CACS from

LCSCT was strong at 0.9017 (SEE = 6.4, P< 0.0001). Bland-Altman analysis showed a mean

bias of -2 with 95% limits of agreement between -130 to 127. The Pearson correlation between

CACS from the CCT and the CACS from ACCT was 0.5593 (SEE = 58.5, P< 0.0001). The

Bland-Altman analysis showed a mean bias of -61.7 with 95% limits of agreement between

-293 to 169. The Pearson correlations were statistically different between the LCSCT and the

ACCT CACS (P < 0.00001). Results did not significantly change after adjusting for potential

clustering effect at the individual patient level.
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We assessed whether any individual vessel calcium scores contributed more or less to the

significantly decreased agreement of ACCT-derived CACS (Table 3). The CACS were divided

by individual vessel and then each vessel CACS was compared for agreement with the respec-

tive CACS from CCT studies as the gold standard. The Pearson correlations for the LCSCT

studies were 0.9599 (0.9349–0.9754), 0.929 (0.8854–0.9564), 0.9169 (0.8668–0.9486), and

0.8548 (0.7702–0.9099) for left main (LM), left anterior descending (LAD), left circumflex

(LCX), and right (RCA) coronary arteries, respectively. The Pearson correlations for the

ACCT studies were 0.8424 (0.7176–0.9148), 0.5134 (0.2272–0.718), 0.7246 (0.5304–0.8466),

and 0.5393 (0.2696–0.7305) for LM, LAD, LCX, and RCA respectively. On an individual vessel

basis, the ACCT demonstrated decreased agreement relative to LSCST for all four major ves-

sels, indicating that the weaker correlation is global and not particular to any specific vessel,

nor attributable to the lack of ECG-gating or motion artifact of any one vessel. Fig 2 demon-

strates an example of the discrepancy in agreement between images from ACCT and images

from both LCSCT and CCT with areas of visually appreciable calcium in the LAD that fell

below the Agatston threshold of 130 HU on the ACCT image (ACCT, upper panel, yellow

arrow), leading to an under-identification of the calcium burden in the ACCT study.

In our patient population, the median follow-up time for MACE was 24 (IQR: 20, 24)

months for LCSCT and CCT, and 24 (IQR: 16, 24) months for ACCT, and there was a total of

12 MACE events; 1 cardiac death, 2 noncardiac deaths, 1 CVA, 2 CABGs and 6 PCIs. Fig 3

demonstrates the receiver operating characteristic (ROC) curves for the three imaging modali-

ties of CCT, LCSCT and ACCT. The AUC for the ROC curves were 0.8302 (95% confidence

interval: 0.7112 to 0.9493), 0.8133 (95% confidence interval: 0.6922 to 0.9344), and 0.7969

Table 2. Baseline demographics, clinical characteristics, and CACS of LCSCT vs. ACCT populations.

LCSCT

(n = 66)

ACCT

(n = 40)

P Value

Age, years, median (IQR) 65 (58, 67) 65 (59, 67) 0.919

BMI, median (IQR) 31 (26, 35) 31 (27, 34) 0.987

Male, n (%) 61 (92) 37 (93) 0.715

Caucasian, n (%) 57 (86) 34 (85) 0.927

African American, n (%) 9 (14) 6 (15) 0.927

DM, n (%) 19 (29) 12 (30) 0.931

Hypertension, n (%) 49 (74) 29 (73) 0.976

Hyperlipidemia, n (%) 43 (65) 31 (78) 0.261

Total Cholesterol, median (IQR) 169 (145, 201) 171 (147, 204) 0.825

HDL Cholesterol, median (IQR) 36 (36, 55) 41 (36, 54) 0.759

Statin Use, n (%) 39 (59) 29 (73) 0.235

Smoking, n (%) 51 (77) 29 (73) 0.748

Family History of Early CAD, n (%) 20 (30) 16 (40) 0.487

CAD, n (%) 10 (15) 9 (23) 0.487

MI, n (%) 1 (2) 1 (3) 0.708

Prior PCI or CABG, n (%) 0 (0) 0(0) N/A

Framingham Risk, median (IQR) 16 (12, 19) 16 (13, 18) 0.809

ASCVD Risk, median (IQR) 22 (15, 28) 21 (16, 28) 0.868

CCT CACS, median (IQR) 160 (14, 441) 176 (18, 500) 0.731

BMI = body mass index; DM = diabetes mellitus; CAD = coronary artery disease; MI = myocardial infarction; PCI = percutaneous intervention;

CABG = coronary artery bypass graft surgery; ASCVD = atherosclerotic cardiovascular disease; CT = computed tomography; CACS = coronary artery

calcium score; AC = attenuation correction

https://doi.org/10.1371/journal.pone.0175678.t002
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(95% confidence interval: 0.624 to 0.9698) for CCT, LCSCT, and ACCT, respectively. Compar-

ison of the AUCs revealed no significant differences between LCSCT and CCT (P = 0.691),

ACCT and CCT (P = 0.678), or LCSCT and ACCT (P = 0.839). Despite comparable sensitivity

and specificity among the three tests, the cutoff values for optimal test performance were quite

different. At CACS of>250, the CCT scans had an 83% sensitivity and a 72% specificity with a

likelihood ratio of 3 for MACE in this patient population. Comparable performance could be

obtained at CACS >200 and CACS >10 for LCSCT and ACCT, respectively.

Based on the AUC derived from the ROC curves, patients were divided into high and low

risk groups, using the above cutoff values for optimal test performance. Fig 4 demonstrates the

Kaplan-Meier plots for MACE outcomes (CACS high-risk cutoffs of>250 for CCT,>200 for

LCSCT, and>10 for ACCT). The plots for the low-risk vs. high-risk groups were statistically

significant in all CT modalities. When the low risk plots were compared between CCT,

LCSCT, and ACCT, there were no statistical differences (P = 0.8818) between the CT

Fig 1. Scatter plot of Agatston CACS from CCT scans and either LCSCT or ACCT scans along with corresponding Bland-Altman plots for

agreement. (A) The Pearson correlation of CACS between CCT scans and LCSCT scans. (B) Bland-Altman Plots for Agreement between CCT

scans and LCSCT scans. (C) The Pearson correlation of global CACS between CCT scans and ACCT scans. (D) Bland-Altman Plots for Agreement

between CCT scans and ACCT scans.

https://doi.org/10.1371/journal.pone.0175678.g001
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modalities. Likewise, when the high-risk plots were compared between CCT, LCSCT, and

ACCT, there were no differences (P = 0.784) between the CT modalities.

Discussion

We evaluated the significance of Agatston-derived CACS values derived from LCSCT and

ACCT scans in an elevated risk population and found that LCSCT demonstrated better

Table 3. Comparison of the Pearson correlation of total CACS and individual vessel CACS between

LCSCT and ACCT.

Vessel LCSCT

r

(95% Cl)

ACCT

r

(95% CI)

P Value

Total 0.9385

(0.9007–0.9621)

0.6204

(0.3751–0.7845)

< 0.00001

LM 0.9599

(0.9349–0.9754)

0.8424

(0.7176–0.9148)

0.0006

LAD 0.929

(0.8854–0.9564)

0.5134

(0.2272–0.718)

< 0.00001

LCX 0.9169

(0.8668–0.9486)

0.7246

(0.5304–0.8466)

0.0016

RCA 0.8548

(0.7702–0.9099)

0.5393

(0.2696–0.7305)

0.0012

https://doi.org/10.1371/journal.pone.0175678.t003

Fig 2. Example of the decreased detection of calcium using ACCT relative to CCT and LCSCT in a single

slice plane of the LAD from an individual patient. CCT with LAD Agatston CACS of 645. LCSCT with LAD

Agatston CACS of 749. ACCT with LAD Agatston CACS of 203. Bar, 3cm. Upper panel; CT images at the level of

the proximal to mid LAD. Red arrow; identified calcium. Yellow arrow; unidentified calcium. Lower panels; CT

images as displayed at the imaging workstation with pixels of Agatston threshold of 130 Hounsfield units (HU)

highlighted in red and region of interest circled in yellow. In this example, LCSCT images were acquired 14 months

after the CCT images and the ACCT images were acquired 3 months prior to the CCT images.

https://doi.org/10.1371/journal.pone.0175678.g002
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agreement with ECG-gated CCT as the gold standard. Secondary analysis confirmed that no

individual vessel was responsible for the lower agreement by ACCT. Though LCSCT and

ACCT demonstrated comparable area under the curve (AUC) for the receiver operating char-

acteristic (ROC) curve, cutoff values for elevated risk and optimal test performance revealed

LCSCT performs in a manner comparable to CCT. There is robust data to support the use of

coronary artery calcium scoring in the further risk stratification of patients with elevated car-

diovascular risk[36]. Moreover, a calcium score of zero carried a negative predictive value of

96% for stenosis greater than 50% in a large study of symptomatic patients[37]. However, cor-

onary calcium scoring for precision cardiovascular risk stratification of patients remains

underutilized. Furthermore, most insurance providers do not cover the expense of a standard

CCT for CACS, and some even consider CCT for CACS to be investigational[31, 36]. In

addition to cost, concerns have been raised by studies that have projected a small and finite

increase in lifetime cancer risk attributable to CCT, despite technological advances and guide-

lines that have reduced the radiation exposure below 1 mSv[38, 39]. Thus, demonstrating abil-

ity to obtain comparable data regarding coronary calcification from alternative methods may

fulfill a large, unmet clinical need. There are an estimated 72 million noncontrast chest CTs

done each year in the U.S.[40]. With the recent U.S. Preventative Services Task Force recom-

mendations for lung cancer screening with low-dose computed tomography in adults who

have a long-standing history of smoking, the use of LCSCT is expected to grow tremendously;

it is estimated that as many as 94 million U.S. adults are current or former smokers[15, 41].

Our current study assessed the utility of reporting CACS from these studies to provide cardio-

vascular risk assessment and clinical management benefit with negligible added expense or

radiation exposure.

We identified CACS values from LCSCT studies as essentially comparable to those from

CCT despite the lack of ECG-gating. Recently, LCSCT was determined to underestimate cal-

cium score, particularly in the lower range (<1000) of calcium scores[31]. There are several

technical explanations for our study’s improved agreement in the lower range calcium scores.

First, by performing our analysis on individual vessel CACS values, we were able to increase

the power of our study while focusing on CACS values <800. Second, our study was unique in

Fig 3. Receiver operator characteristic curves for CCT, LCSCT, and ACCT. (A) ROC curve for CCT with AUC of 0.8302 (P = 0.0004). (B) ROC

curve for LCSCT with AUC of 0.8133 (P = 0.0007). (C) ROC curve for ACCT with AUC of 0.7969 (P = 0.01).

https://doi.org/10.1371/journal.pone.0175678.g003
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Fig 4. Kaplan-Meier plots for MACE. Kaplan-Meier event curve for MACE using (A) CCT, (B) LCSCT, and

(C) ACCT in patients divided into low and high calcium burden as determined by their respective ROC Curves

(**, P < 0.01, log-rank test).

https://doi.org/10.1371/journal.pone.0175678.g004
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that we used dedicated lung cancer screening CT scans that had image reconstruction slice

thicknesses of 2 mm, which is a comparable thickness to the standard of 2.5 mm ECG-gated

cardiac CT scans. The prior study used CACS derived from whole body CT scans with image

reconstruction thickness of 6 mm and included a large proportion of CACS values in excess of

1000[31]. Finally, the prior study used CT studies that were performed on an older model elec-

tron beam CT scanner between 2000 and 2003, while our study used CT images acquired on a

newer 64-slice thickness CT scanner between 2012 and 2015.

Recently, CACS derived from ACCT have demonstrated good agreement, using subjective

estimations of calcium burden based on a visual scoring system[27]. Our study differed in

that we took a standardized approach to acquisition and scoring that eliminated subjectivity,

potential variability among less experienced users, and the increased risk of false positive iden-

tification of calcium. By using a more universally applicable and standardized approach, we

identified a significantly weaker agreement with a strong negative bias in calcium scores from

ACCT studies. Recent studies have sought to change scan acquisition or the thresholding for

calcification to<130 HU to make up for the reduced detection of calcium on ACCT scans[28,

29]. Fig 2 illustrates an example of visually appreciable calcium in the LAD that was under-

identified because it did not meet the 130 HU threshold for calcium scoring. However, it

remains unclear whether reducing the threshold would reduce or sacrifice the specificity of cal-

cium detection, and thus further study is needed in this area.

Coronary artery motion, particularly the motion of the right coronary artery (RCA), during

cardiac phases is highly susceptible to imaging artifact in the absence of ECG-gating[42]. How-

ever, ECG-gating did not appear to affect the identification of calcium by LCSCT, and results

from the individual vessel analysis demonstrated that all four vessels rather than just the RCA

contributed to the under identification of calcium on the ACCT studies. Moreover, rotation

time and pitch were comparable between LCSCT and ACCT acquisition protocols, indicating

that they are not likely to be contributing to the differences in calcium detection. Several alter-

native explanations for the decreased identification of calcium on ACCT studies remain to be

studied. Foremost, the ACCT images were reconstructed at the standard 5 mm slice thickness,

whereas the CCT and LCSCT images were reconstructed at 2.5 and 2 mm, respectively. Con-

sistent with the increased slice thickness is the reduced number of slices containing the heart

on the ACCT axial images; thus, the under-identification of calcium associated with ACCT

may have been influenced by partial volume effects, leading to reduced attenuation measures.

Drawing absolute conclusions about image reconstruction thickness from the data is con-

founded by the other differences in scanning and reconstruction parameters, including colli-

mation, matrix size, and field of view (Table 1). However, field of view and matrix size

contribute the minimal pixel area required to identify calcium, and thus it is interesting to

note that LCSCT had the largest minimal calcium area of 2.4 mm2 whereas ACCT had the

smallest minimal area at 1.37 mm2, suggesting that these parameters were less likely to contrib-

ute to an under-identification of calcium in ACCT studies. Future studies that compare varia-

tion in calcium identification conferred by image reconstruction thickness while holding these

other acquisition and reconstruction parameters constant are required to understand the

extent to which reconstruction thickness impacts calcium score. In addition, we cannot rule

out other technical differences from the ACCT scanner, particularly the intrinsic wider colli-

mation, which may also theoretically cause partial volume effects that decrease sensitivity for

detection of calcium. Further research is clearly needed to delineate the respective influences

of image reconstruction thickness, acquisition parameters of collimation, matrix, and field of

view, and scanner type.

We also identified that CACS from LCSCT and CCT had essentially equivalent predictive

power for outcomes. This was consistent with other studies evaluating low-dose, noncontrast
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CT scans in asymptomatic populations[19, 31], however, our study differed in that it was a

direct comparison of dedicated LCSCT with CCT in an elevated risk population using compa-

rable image reconstruction thickness. The ROC curves for ACCT and CCT were similar

though, as expected, the absolute CACS cutoff values for comparable sensitivity and specificity

differed between the imaging approaches. It is possible that our study is underpowered to

detect a significant difference in the AUCs between ACCT and CCT, but from a practical per-

spective there is likely little clinical meaning in the difference between AUCS of 0.8302 and

0.7969. However, the major difference is in the utility of the significantly lowered threshold of

optimal test performance for indicating elevated event risk in the ACCT study. Whereas simi-

lar risk assessment standards established by CCT can be applied to LCSCT because of the simi-

lar test performance and similar absolute CACS values, such standards could not be applied to

ACCT without marked reductions in sensitivity and negative predictive value.

There are a number of limitations to this study that must be acknowledged. This was a ret-

rospective study design that took place at a single institution. Our sample size was relatively

small and events were primarily driven by revascularization, and so it will be important to con-

firm these findings in a larger, prospective study designed to include cardiovascular events.

Finally, further studies regarding image reconstruction thickness and scanner limitations are

required before any final conclusions can be drawn about the potential utility of ACCT derived

CACS.

Conclusions

In summary, CACS by the Agatston method can be readily carried out in LCSCT and ACCT

studies. Despite a lack of ECG-gating, the CACS from LCSCT can be considered as essentially

comparable to CACs from ECG-gated CCT in terms of absolute value and predictive power,

provided image reconstruction thickness and scanner type are similar as they were in this

study. CACS from ACCT tended to under-identify coronary calcification. Though ACCT

retained a similar AUC for the ROC curve relative to CCT, the cutoff for optimal test perfor-

mance was markedly lower such that it would be difficult to practically assess CACS in ACCT

studies. Thus, it is currently not reasonable to use Agatston-derived CACS values from ACCT

images; however, more studies will be required to ultimately define whether alternative assess-

ments of coronary calcification using ACCT can aid in the assessment of cardiovascular risk.

Nevertheless, standard reporting of Agatston CACS from LCSCT is accurate and can provide

predictive value for MACE, indicating CACS measures should be reported from these studies

and factored into an individualized cardiovascular risk assessment.
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