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Abstract

The dynamics of a spreading disease and individual behavioral changes are entangled pro-

cesses that have to be addressed together in order to effectively manage an outbreak.

Here, we relate individual risk perception to the adoption of a specific set of control mea-

sures, as obtained from an extensive large-scale survey performed via Facebook—

involving more than 500,000 respondents from 64 countries—showing that there is a “one-

to-one” relationship between perceived epidemic risk and compliance with a set of mitigation

rules. We then develop a mathematical model for the spreading of a disease—sharing epi-

demiological features with COVID-19—that explicitly takes into account non-compliant indi-

vidual behaviors and evaluates the impact of a population fraction of infectious risk-deniers

on the epidemic dynamics. Our modeling study grounds on a wide set of structures, includ-

ing both synthetic and more than 180 real-world contact patterns, to evaluate, in realistic

scenarios, how network features typical of human interaction patterns impact the spread of

a disease. In both synthetic and real contact patterns we find that epidemic spreading is hin-

dered for decreasing population fractions of risk-denier individuals. From empirical contact

patterns we demonstrate that connectivity heterogeneity and group structure significantly

affect the peak of hospitalized population: higher modularity and heterogeneity of social con-

tacts are linked to lower peaks at a fixed fraction of risk-denier individuals while, at the same

time, such features increase the relative impact on hospitalizations with respect to the case

where everyone correctly perceive the risks.

Author summary

The spreading of a disease across a population is affected by the compliance with behav-

ioral restrictions, enforced by governments to slow the diffusion of an epidemic. In this

study, we use a large-scale survey to relate compliance with behavioral rules to individual

level of disease risk perception. We asses that absence of risk awareness is associated with

a set of harmful behaviors (namely, non-compliance with: social distancing, use of facial

masks and adoption of any prevention measures) that can accelerate the diffusion of an

epidemic. Through a mathematical model, we study how epidemic dynamics, and in
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particular hospitalization burden, is affected by the presence of different fractions of the

total population who do not correctly perceive the disease risk and, accordingly, adopt

harmful behaviors. Moreover, we study how different social contact structures among

individuals modulate the effect on epidemic spreading of a fixed population fraction with

null risk perception. Our findings highlight that a fixed percentage of people with null risk

awareness has a lower impact on epidemic size in social structures characterized by com-

munities and heterogeneity in contacts among individuals. The spreading of a disease

across a population is affected by the compliance with behavioral restrictions, enforced by

governments to slow the diffusion of an epidemic. In this study, we use a large-scale sur-

vey to relate compliance with behavioral rules to individual level of disease risk percep-

tion. We asses that absence of risk awareness is associated with a set of harmful behaviors

(namely, non-compliance with: social distancing, use of facial masks and adoption of any

prevention measures) that can accelerate the diffusion of an epidemic. Through a mathe-

matical model, we study how epidemic dynamics, and in particular hospitalization bur-

den, is affected by the presence of different fractions of the total population who do not

correctly perceive the disease risk and, accordingly, adopt harmful behaviors. Moreover,

we study how different social contact structures among individuals modulate the effect on

epidemic spreading of a fixed population fraction with null risk perception. Our findings

highlight that a fixed percentage of people with null risk awareness has a lower effective-

ness on epidemic size in social structures characterized by communities and heterogeneity

in contacts among individuals. However, in these same social structures, larger fractions

of risk-denying population cause an enhanced effect on epidemic size.

Introduction

Severe acute respiratory syndrome (SARS) in 2003, Middle East respiratory syndrome (MERS)

in 2012 and COVID-19 in 2020 are examples of highly infectious diseases for which no phar-

maceutical treatments such as drugs or vaccine were readily available at the time of their out-

breaks. In such cases, non-pharmaceutical interventions (NPIs) have been the most important

resource to contain the epidemics and effective tools in the outbreak management [1–6].

In the case of COVID-19, the global fight against the spread of the SARS-CoV-2 virus is

heavily relying on a large number of NPIs which, for most countries, were based on significant

behavioral changes at individual and collective level, enforced by governments in order to mit-

igate the diffusion of the epidemics [7–12]. The corresponding sudden change in habits and

practices has naturally faced, across the globe, a wide range of levels of public acceptance.

Even if compliance with specific control measures was crucial to delay the disease spread-

ing, the adoption of behavioral changes is far from being homogeneous across a population

and individual choices are affected by epidemic risk perception [13–18].

To better understand how the people’s knowledge, beliefs, behaviors, risk perception and

compliance with required rules differ around the world, a research group led by the MIT

designed a survey [19] consisting of 20 multiple choice questions (see MIT survey data section

in Materials and methods). The survey has been conducted over a large sample of Facebook

users across 64 countries and replicated 13 times during a time-span of six months between

July 2020 and January 2021. Across all countries, the survey covers in total an effective sample

size of over half a million subjects with a minimal effective sample size over a country of 500.

In this work we investigate the impact of people with null risk perception (here named risk-

deniers) on epidemic spreading. We first identify a set of behaviors that is robustly related to a

PLOS COMPUTATIONAL BIOLOGY Risk perception and empirical structures shape the dynamics of infectious disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009760 February 16, 2022 2 / 19

https://doi.org/10.1371/journal.pcbi.1009760


low or null level of individual risk perception, like non-compliance with social distancing and

with use of facial masks. We then develop a mathematical model with compartmental states

that explicitly take into account the adoption of the selected mitigation behaviours. We study

effects of different amounts of non-compliant, risk-denier people on the evolution of the epi-

demics on top of synthetic models characterized by increasing complexity (e.g., level of cluster-

ing, modular structure) and on 187 real-world networks. We find evidence that modular

structure and degree heterogeneity have a twofold effect on epidemic spreading, as dynamics

on top of networks characterized by those topological features show a lower peak of hospital

admissions but also an hospitalization amount that is more strongly affected by increasing

quantities of risk-deniers people.

Results

We analyze the aggregated results of the MIT survey, with the goal of identifying sets of beliefs

and behaviors which systematically appear together. The aggregated survey results provide

information about the fraction of respondents to 140 nonexclusive alternative answers for

each of the 64 countries. Given this abundance of information, we decided to analyze the cor-

relations across the whole data set by means of UMAP clustering technique (see, in Materials

and methods, section Dimensionality reduction and correlation analysis for further details).

In Fig 1A we show that different clusters can be distinguished by the answer to one of the

most prominent questions posed, evaluating the level of risk perceived in the community

(“How dangerous do you think the COVID-19 risk is to your community?”). The most isolated

cluster collects 9 answers labelled in the figure as “No risk”, as it includes the response “Not at
all dangerous” to the aforementioned question, thus identifying a set of answers associated

with the belief that there is no risk associate with the COVID-19. These answers are associated

to only other three questions:

• Which of the following best describes your familiarity with the term “physical distancing” dur-
ing the COVID-19 pandemic? (ANSWERS: I have heard of it but do not know what it means /
I have not heard of it);

• How effective is wearing a face mask for preventing the spread of COVID-19? (ANSWERS:

Not effective at all / Slightly effective);

• What measures have you taken to prevent infection from COVID-19 in the past week?
(ANSWERS: None / Getting the flu vaccine / Using antibiotics / Using homeopathic remedies).

These selection of answers therefore isolate three behaviors associated with the belief that

COVID-19 is not dangerous. A person convinced that COVID-19 is not dangerous: i) does

not comply to social distancing rules, poorly understanding the concept of physical distancing;

ii) does not believe that face masks are effective; iii) does not act to prevent infection, or acts as

it was just a flu. These behaviors clearly deviate from the rules necessarily enforced by the pub-

lic health authorities to mitigate the COVID-19 epidemic, representing the non-compliance

behaviors we explicitly consider in our epidemic model, in the remainder of this study.

(Robustness of clustering results is evaluated in S1 Fig).

Once isolating these non-compliant behaviors, we quantify the population fraction of non-

compliant individuals in the countries covered. In Fig 1B, we illustrate the distribution of frac-

tions in all countries for the “No risk” community (which distribution display a peak at about

5%), those of the non-compliance with social distancing (“No distancing”, peak at 6%) and not

believing in the effectiveness of face masks (“No mask”, peak at 7%). Given how the survey is

designed, it is not possible to quantify the fraction of respondents who answered not to take
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any meaningful prevention against the infection, but we can identify a lower bound as the frac-

tion of users who answered “None” (“No preventions”) which has a peak at 3% in the survey.

The same distribution of the fraction of respondents is mapped in Fig 1C, where is illustrated

the fraction of individuals who do not believe in face masks effectiveness, and in S2 Fig where

we illustrate the fraction of individuals who do not perceive risks and do not understand social

distancing. We find that 34% of the countries has a percentage of non-compliance with the use

of masks higher than 10%, and among them several high income countries such as the United

States of America, United Kingdom, France, Germany, Canada and the Netherlands. The dis-

tributions refer to average values computed over six months. For 23 countries, the survey has

been regularly repeated every two weeks over a total of 13 waves of online survey: by using

these time series, one can also study the evolution in time of these non-compliant behaviors.

In S3 Fig we illustrate the example of the belief that face masks are ineffective in preventing the

spread of the virus. The evolution of this belief is highly variable across waves and countries,

with values that can exceed 30% and, on average across all the countries, the peak value is 8%.

Fig 1. Isolating behaviors associated with null risk perception in the MIT COVID-19 beliefs, behaviors & norms survey. a: UMAP

embedding and HDBSCAN clustering. Using UMAP for dimensionality reduction, projecting the multidimensional manifold where the

survey data lie to two dimensions and the clustering algorithms HDBSCAN to identify questions in the survey where globally answers were

similar, we isolate in the survey a set of non-compliant behaviors (red circles) associated with the lack of perception of danger associated with

COVID-19. Other clusters include answers indicating higher level of perceived danger (gray pentagons, yellow triangles and orange

diamonds, see Materials and methods) or with a mismatch between the importance for the respondents of taking action against the epidemics

and the perceived importance for the community (brown squares). b: Fraction of respondents who declare non-compliant behaviors in the 64

countries considered. Besides the community risk (blue), all answers of the “No risk” cluster of panel (a) are associated with three questions

isolating three non-compliant behaviors: unfamiliarity with social distancing (red), disbelief in face mask effectiveness (green) and the lack of

preventive actions taken (yellow). Together with the lack of actions taken, also other ineffective actions are included in the “No risk” cluster,

but they are here not aggregated together with the “None” answer since the answers were non-exclusives. c: World map of the fraction of

respondents doubting the effectiveness of masks. Higher mistrust in mask usage is observed in Africa while Asian countries appear to be more

accustomed to the public health control measure. Map dataset from Natural Earth website (https://www.naturalearthdata.com/). See also S2

Fig for maps associated with the other three questions.

https://doi.org/10.1371/journal.pcbi.1009760.g001
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Similarly the peak values of waves, estimated as averages across countries for “No risk”, “No

distancing” and “No preventions”, are 10%, 12% and 8%, respectively.

The role played by human behavior in the spread of an infectious disease has been widely

investigated by means of mathematical models that usually describe both opinion and epi-

demic dynamics, as well as the interactions between those two processes ([20–22]). Here we

explore the effect of behavior using an ad hoc generalization of the compartmental susceptible-

exposed-infectious-recovered (SEIR) model, which explicitly accounts for non-compliant

infectious people (ID) as one of the epidemic states (see Epidemic model). In our hypothesis,

people belonging to the ID compartment represent risk-denier infectious people that, accord-

ing to results from the survey, do not comply to social distancing, do not use face masks and,

in general, do not adopt any measure to prevent the diffusion of the infection. The adoption of

such control measures is, in our model, realized only by compliant infectious people (IC). The

isolation compartment (Q) is the epidemic state modeling the adoption of mitigation behav-

iours. We derive the dynamics of population fractions in each compartment by using an

agent-based approach that explicitly takes into account the non-trivial connectivity structure

among individuals. We test our epidemic model on 4 distinct types of synthetic network mod-

els and 187 real networks belonging to 9 different datasets.

Synthetic models with distinct topological features are selected to gain insights into how

specific network features, typical of human interaction patterns, may affect the epidemic

spreading. Specifically, we run our analysis on Erdős-Rényi (ER) networks, where links are

drawn uniformly at random, small world (WS) networks, exhibiting high transitivity and low

average path length, Barabási-Albert model (BA), characterized by a highly heterogeneous

connectivity distribution, and a stochastic block model (SBM4) characterized by modular

structure resembling communities. As reported in S4 Fig, we validate our model assumptions

by comparing solutions of mean-field equations with stochastic simulations. As expected, ana-

lytical solutions provide a good description of dynamics on BA and ER networks, whereas mis-

match with simulations is observed when networks are characterized by modular structures.

Therefore, we opted to rely on agent-based simulations for subsequent analysis, although the

mean-field approximation will be used later to compare predicted hospitalized amount with

observations in the USA at the state level (see S6 Fig).

In order to quantify the epidemiological impact, we characterize the epidemic dynamics

through the maximum value (peak) along the time course of hospitalized population (H). This

measure is estimated using fixed epidemic parameters in our model, while varying the popula-

tion fraction of infectious risk-deniers α between α = 0, corresponding to a scenario where all

the infected people are compliant with the mitigation rules, and α = 1, simulating a scenario

where all infected people are risk-deniers. Evaluating the basic reproduction number R0 can

itself support our hypothesis that non-compliant behaviours have an impact on epidemic size.

In particular, we estimate R0 and we use the closed-form equation that describe peak of infec-

tious people as a function of R0 to gain insights on the increase with α. Theoretical estimates

are confirmed by stochastic simulations and provide a lower bound (see S5 Fig for details).

To test the goodness of our model in a real scenario, we compare predictions on hospital-

ized admissions to observed values in a set of countries. In order to avoid confounding factors

we test our model in a time window at which MIT survey data are available and interventions

put in place to reduce transmission (like full closure of nonessential businesses, restrictions of

mobility or stay-at-home orders) remain unchanged. We simulated epidemic dynamics in the

different USA states on a time period between July 6 and September 27, 2020. Epidemic model

parameters are the same described in Epidemic model, with the exception of the fraction of

risk-deniers, that is inferred, for each country, from MIT survey data. In our model, we also

set values at t = 0 as the total population, number of infectious, hospitalized and recovered
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people in each country reported in ‘the COVID tracking project’ data set [23]. We run our

model using mean-field approximation, estimate the fraction of hospitalized population and

compare those values with real hospitalized population reported in USA states. Results are

shown in S6 Fig, where we also report Spearman rank correlation coefficient and p value,

respectively ρ = 0.78 and p = 3 × 10−10. Correlation analysis suggests that the proposed model

is able to capture epidemic trend, but further information (like, for example, age-structured

contact rates or more detailed socioeconomic data) should be considered to reproduce real

epidemic data.

Impact on epidemic spreading caused by different levels of α across multiple synthetic net-

works is summarized in Fig 2A, where we show the peak evaluated from hospitalized popula-

tion time course. (Examples of temporal evolution of hospitalized people in real world

networks are shown in Fig 3B)). We find that maximum hospital burden increases when we

increase the population fraction of risk-denier infectious people, for all the considered network

models. Furthermore, our results show that, when compared to other network models at fixed

α, SBM4 has an hospitalized peak that is significantly lower (Kruskal-Wallis H-test followed by

post-hoc pairwise comparisons with Mann-Whitney test corrected for multiple comparisons).

Our results are in agreement with previous studies that attested how community structure has

a hindering effect on spreading for both total size and peak height ([24]). To gain insights into

the trend of hospitalized peak as a function of the fraction of risk-deniers, we evaluate the per-

centage increase in hospitalized peak at different α values with respect to the one estimated at

α = 0.0, as shown in Fig 2B. Our results reveal that at high population fractions of risk-deniers,

modular structure of individual contacts, as in SBM4, significantly enhances the effects of

non-compliance with rules on hospitalization peak.

We study the evolution of the epidemic on top of more than 180 real-world networks,

where nodes are individuals and links are either physical contacts or a proxy for them. Fig 3A

shows that the real social network data set spans more than 3 orders of magnitude in number

of individuals and more than 4 orders of magnitude in number of contacts among individuals.

Moreover both heterogeneity in the number of contacts, here measured using Gini coefficients

(see Synthetic and real-world network data) and modularity distribution cover a wide spec-

trum of possible values. Fig 3B displays time course of hospitalized population in the consid-

ered real networks, where we set the fraction of risk-deniers at α = 0.5 to simulate dynamics.

In Fig 3C are shown, at different α values, distributions of hospitalized peak for data sets with

multiple network samples, namely the two data sets from MIT, the Facebook friendship data

set and Dublin Sociopatterns data set (see Synthetic and real-world network data for further

details). Our results show that the higher are the values of modularity and heterogeneity that

characterize a specific data set (from the lowest to the greatest: MIT, Facebook and Sociopat-

terns), the lower is the evaluated hospitalized peak. On the other hand, as shown in Fig 3D,

data sets with higher modularity and heterogeneity display, at high α values, a greater percent-

age of peak increase. In other words, presence of community structures and degree heteroge-

neity can enforce the effect that risk-deniers individuals have on epidemic size.

The latter hypothesis is further supported by the results in Fig 4, where are shown results

for all real-world contact patterns considered in this study, without any classification accord-

ing to the data set to which they belong. The position of each point is a function of network

modularity and degree heterogeneity, while color encodes hospitalized peak and increase in

hospitalized peak with respect α = 0 for, respectively, panel a) and b). Here we obtain epidemic

dynamics by setting the fraction of risk-denier population to α = 0.5. Scatterplots show that,

the higher are network heterogeneity and modularity, the lower is the peak of hospitalized

patients and the higher is the percentage increase of the hospitalized peak with respect the sce-

nario with zero risk-deniers. In other words, considered together, heterogeneity in degree
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distribution and community structure affect in opposite ways absolute epidemic size and risk-

deniers effect on epidemic size. In Fig 4A we show that, at fixed percentage of risk-denier pop-

ulation, hospitalized peak is hindered in epidemic processes taken place on networks with

high modularity and heterogeneity in connectivity patterns. As reported previously in this

Fig 2. Population fraction of risk-deniers affects epidemics in synthetic networks models. a: Peak of hospitalized

population as a function of the fraction of population of infectious risk-deniers α, for, respectively, uniformly random

(ER), Barabási-Albert (BA), Watts and Strogatz (WS) and stochastic block model (SBM4). Each dot represents the

average measure across 50 dynamical samples of a single network realization, box-plots show quartiles of distributions

across 50 network realizations. We perform a Kruskal-Wallis H-test to test the null hypothesis that the population

medians at fixed α are equal. Post hoc pairwise comparisons between groups at fixed α are required to determine

which distributions are different. To this aim, for those α values with Kruskal-Wallis H-test p value p� 0.05, we use

post-hoc pairwise comparisons between distributions. In particular we use a Mann-Whitney test, because groups are

independent, corrected for multiple comparisons. Significance results are reported as: ����: p� 10−4, ���: 10−4 <

p� 10−3, ��: 10−3 < p� 10−2, �: 10−2 < p� 0.05. Results show that the presence of communities, as in SBM4,

significantly decreases the hospitalized peak for all α fractions, except for α = 0.9. b: Peak of hospitalized population

evaluated with respect to the one estimated at α = 0.0, as percentage increase. At high fractions of risk-deniers (α�
0.9), community structures give rise to higher increase in hospitalizations peak with respect models with different

topology.

https://doi.org/10.1371/journal.pcbi.1009760.g002
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Fig 3. Population fraction of risk-deniers affects epidemics in real networks. a: Scatter plot describing number of

contacts (edges, E) as a function of the number of individuals (nodes, N) for real-world social network data set (n = 187

networks) considered in this study. Each dot is a single network, its color identifies the database source and its size is

proportional to the connectivity heterogeneity measured by the Gini coefficient (see Synthetic and real-world network

data for further details). Inset: distributions of modularity show that the considered data sets of real social networks

spans from structures characterized by the presence of communities (high modularity) to structures with loosely

connected communities (low modularity). b: Temporal evolution of the population of hospitalized patients in real

networks. Model dynamics is evaluated at a fixed fraction (α = 0.5) of risk-deniers. Color identifies the database source

as shown in panel (a). Values of the population at its maximum height correspond to the peak. c: Peak of hospitalized

patients as a function of the population fraction of infectious risk-deniers α for data sets with multiple network

instances. Each dot represents results in a single network, box-plots show quartiles of distributions in each data set.

Statistical tests and significances as in Fig 2. Results show that networks characterized by high values of degree

heterogeneity and modularity, like the ones in Sociopatterns data set, show a peak of hospitalized patients that is

significantly lower than peak evaluated in other real networks. d: Peak of hospitalized patients evaluated with respect to

the one estimated at α = 0.0, as percentage increase. At high fractions of risk-deniers (α� 0.7), data sets characterized

by community structures and high heterogeneity values show an higher increase in hospitalizations peak with respect

data set with low modularity and heterogeneity values.

https://doi.org/10.1371/journal.pcbi.1009760.g003
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paper, clustering can slow the spreading of the disease [25], whereas we hypothesize that the

hindering effect promoted by degree heterogeneity may be explained by the decrease in net-

work synchronizability postulated in the so called “paradox of heterogeneity” [26, 27]. On the

other hand, as shown in Fig 4B, when evaluating effects on hospitalized peak caused by a frac-

tion of risk-deniers with respect to the scenario with no deniers in the population, we find that

increment in hospitalized peak is significantly greater for epidemic processes on networks

with modular structures and high levels of heterogeneity in the number of contacts.

Discussion

Our findings address the problem of how much disease risk perception can quantitatively

affect epidemic spreading on networks with topological features typical of human interaction

patterns. To this aim we design a compartmental model where we explicitly account for behav-

iors that we found are related to null risk perception. In our model study we assume that infec-

tious people, whatever is their risk perception and compliance with rules, spread the disease.

Therefore, in our model, we are considering a group of infectious people that is bigger than

the real world one with the result of underestimating the effects of risk-deniers infectious peo-

ple variations.

A similar underestimation happens also in the case of the pool of susceptible people because

compliant people will be more likely to adopt preventive measures (e.g. wearing masks, avoid-

ing social gatherings, etc).

Therefore, in our model we are effectively considering the worst-case scenario where the pool

of susceptible individuals is maximum (due to the fact that we don’t consider NPIs adoption in

the susceptible compartment) and where the pool of infectious individuals maximizes the proba-

bility to spread the disease. A possible improvement to the model would be to split the suscepti-

ble compartment in two different sub-populations (ideally, an SC and an SD compartment)

according to people compliance to mitigation rules, as we did for the infectious population.

In this work, epidemic dynamics is estimated using fixed parameters reported in a recent

epidemiological model of COVID-19. It is worth noting that all the results here shown depend

Fig 4. Degree heterogeneity and community structure affect hospitalized peak in real networks. Each dot represents degree heterogeneity as a

function of modularity for each real network considered in this study. Model dynamics is evaluated at fixed population fraction of risk-deniers (α = 0.5)

a: Peak of hospitalized patients. Results show that the lower are values of modularity and heterogeneity, the higher is hospitalized peak. b: Peak of

hospitalized patients evaluated with respect to the one estimated at α = 0.0, as percentage increase. Networks with high modularity and heterogeneity

show higher percentage peak increase.

https://doi.org/10.1371/journal.pcbi.1009760.g004
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on the chosen parameters and that our model should be tested with other sets of parameters,

extracted from other references, in order to investigate the robustness of our results.

According to survey results, fractions of respondents who declare non-compliant behav-

iours are highly variable across different countries and different epidemic waves, with values

that can exceed 30%. Nevertheless, considering mean values over time, non-compliance with

specific mitigation rules, such as the use of facial masks, is higher than 10% in several coun-

tries. These values coming from social-media based surveys are naturally prone to a selection

bias [28] towards highly educated people. The level of education is expected to be weekly asso-

ciated to risk-denial, as highly educated people might be slightly more prone to adopt protec-

tive behavior [29]. This would eventually skew the values recorded towards a lower

representation of risk-deniers in the online survey. Our analysis evaluated on real-world net-

works highlights that the observed level of risk denial drive an increase of about 3.5% for

median and about 7% for the third quartile, for the total amount of hospitalized patients.

Therefore, the level of non-compliance with mitigation rules deduced from MIT survey

has, as a percentage increase, a low impact for national health systems. Nevertheless, it is worth

noting that the economic cost associated with relatively low percentage increases in hospital-

ized individuals can be remarkable.

To give an example for USA, where non-compliance with use of facial mask is higher than

10%, it was estimated that there were about 850, 000 hospitalizations due to COVID-19 in a

period of almost a year (51 weeks, from March 8, 2020 to February 27, 2021 [30]). It was also esti-

mated that the average cost of treatment for an inpatient admission for a patient without insur-

ance is 73, 000US$ [31], though it is important to note that high costs could be due to the extreme

price inflation characteristic of the US insurance system. If we assume the percentage increase

of hospitalized patients of 3.5%, it would be equivalent to an increase of more than 2 billion US

dollars. A similar analysis for United Kingdom, where there were about 400, 000 hospitaliza-

tions and where the average cost of a COVID-19 hospital stay is about 6, 700US$ [32], would

lead to a cost increase of more than 100 million American dollars due to non-compliant behav-

iours. The lack of publicly available information and systematic data about this type of costs for

each country makes difficult a more thorough analysis, but it is plausible to suppose that the

economic burden for European and other OECD countries is of the same order of magnitude.

For COVID-19, despite the encouraging vaccination campaigns, non-pharmaceutical inter-

ventions still provide the most effective mitigation strategies, thus requiring the highest per-

centage of compliance at both individual and community levels, although the same applies for

other emerging diseases. Information on ongoing disease outbreaks travels fast, often in an

uncontrolled, incomplete or conflicting way which makes the ground for the infodemic phe-

nomenon [33, 34], as pointed out by the World Health Organization [35], a cause of concerns

during the COVID-19 pandemic [36–40]. Our findings demonstrate that different social con-

tact structures produce different (and non-linear) responses to the same amount of risk-denier

individuals. Consequently, in the next future, it will be critical to account for both human con-

nectivity patterns and risk perception when designing mitigation strategies based on non-

pharmaceutical interventions.

Materials and methods

Synthetic and real-world network data

We run simulations of our epidemic model on both synthetic and real-world networks. Syn-

thetic networks are here used to both validate our model and to better understand results on

real networks. Artificial networks are generated with some of the most widely used models of

network structure, namely: scale free (Barabási-Albert, BA), uniformly random Erdős-Rényi
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(ER), stochastic block model (SBM4) and small world (Watts and Strogatz, WS) model. For

each model we generated 50 network realizations with n = 256 nodes and average degree hki =

12 and we run our epidemic models over 50 dynamics samples.

We also study the epidemic dynamics on 187 real-world networks, collecting from 9 differ-

ent data sets, that report contact structures between individuals. Contacts between individuals

are both virtual, reporting Facebook friendship network (Facebook100 [41] and part of Copen-

hagen [42] data sets), and real, when identifying physical proximity among participants

(Copenhagen, BBC4Pandemic [43, 44], Haggle [45], MIT [46, 47], Sociopatterns [48–50]). It is

worth noting that, in this work, virtual contacts between individuals are used as a proxy of

physical contact patterns. That is certainly a limitation of our framework, for example because

a friendship connection between two individuals on a online network does not necessarily

mean that there is also a connection between the two individuals in the physical network, that

is the one relevant to the spread of infectious diseases. Furthermore online social networks

could also miss some contact relevant for the transmission of the disease.

Nevertheless, to address the specific purposes of this work, to choose virtual contacts as a

proxy of physical interactions could be appropriate because we focused our analysis on the

topological features that affects epidemic spreading. Previous works found that online commu-

nities have very similar structural characteristics to offline physical contact networks [51, 52].

Furthermore, some of the data sets used in this work, such as the Copenhagen and the Socio-

patterns ones, have been used to model epidemic spreading in several works [53–55].

It is also worth noting that actual physical interaction were identified via Bluetooth or GPS

signals in all real-world data sets with the exception of the Sociopatterns data set where, in 74/

75 of networks, proximity is estimated using Radio-Frequency-Identification-Devices (RFID)

embedded in conference badges of conference participants and museum visitors.

We evaluate heterogeneity of real-world network structures using the Gini coefficient:

G ¼ 1 �
PN

i¼1
½1=Nð2

Pi
k¼1

Wk � WiÞ�, where Wi is the ratio of ith node’s degree to the total

degree of all nodes and 0� G� 1 [56].

MIT survey data

The MIT survey [19] has been performed through Facebook across 64 countries in biweekely

waves starting from July 2020. In this work we use answers collected between July 2020 and Jan-

uary 2021. The total number of respondents per country ranges between 500 and 30.000. We

aggregate over all age, genders and education level to obtain a single value per country. The sur-

vey includes 20 questions, including questions with a single mutually exclusive answer such as:

• If a vaccine for COVID-19 becomes available, would you choose to get vaccinated?

• How dangerous do you think the COVID-19 risk is to your community?

• Which of the following best describes your familiarity with the term ‘physical distancing’

during the COVID-19 pandemic?

• How effective is wearing a face mask for preventing the spread of COVID-19?

• How often are you able to wear a mask or face covering when you are in public?

. . .

On the other hand, there are also a number of questions where multiple answers are possi-

ble such as:

• In the past week, from which of the following, if any, have you received news and informa-

tion about COVID-19?
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• Which of the following businesses, locations, or events would you visit or attend in the com-

ing two weeks if they were operating at full capacity?

• What measures have you taken to prevent infection from COVID-19 in the past week?

. . .

The question “How dangerous do you think the COVID-19 risk is to your community?” is

the one that we use for labeling Fig 1, together with the “community mismatch” indicating the

difference between the answers to “How important is it for you to take actions to prevent the

spread of COVID-19 in your community?” and “How important do other people in your com-

munity think it is to take actions to prevent the spread of COVID-19?”. The labeling has been

made for sake of illustration: as can be seen in S1 Fig clusters vary between different UMAP

seeds, with the exception of the one that identifies non-compliant behaviors.

Epidemic model

In this work we use a compartmental model that classify an individual according to both his

epidemic state and his behaviour. Our model included the following compartments: suscepti-

ble (S) individuals who have not yet contracted the disease, exposed (E) individuals who are

not yet contagious, infectious with compliant behaviors (IC) who mitigate the spreading of the

disease by adopting ad-hoc interventions, infectious with non-compliant behaviors, or risk-

denier infectious (ID) who don’t adopt measures to contrast disease spreading, hospitalized

(H) people who require hospitalization, self-isolating or quarantined (Q) infectious individuals

who stay at home and are compliant with NPIs (wash hands, use masks, etc) to stop the

spreading of the disease, recovered (R) people who are no more infectious. All the infectious

people, regardless of their behaviour, leave their compartments and may reach H or R com-

partments, but only infectious people IC, compliant with distancing and use of masks, can

reach the Q compartment. The equations describing the dynamics the of disease transmission

within each population are given by:

_S ¼ � lS

_E ¼ lS � sE

_IC ¼ sð1 � aÞE � daIC � ZbIC � gð1 � a � bÞIC

_ID ¼ saE � daID � gð1 � aÞID

_H ¼ da½IC þ ID� � ghospH

_Q ¼ ZbIC � gQ

_R ¼ gð1 � a � bÞIC þ gð1 � aÞIDþ ghospH þ gQ

ð1Þ

where:

Sþ Eþ IC þ IDþH þ Qþ R ¼ 1 ð2Þ

Each variable is the fraction of individuals in a specific compartment at time t and parame-

ters are force of infection (λ), incubation rate (σ), recovery rate (γ), recovery rate for hospital-

ized patients (γhosp), hospitalization rate (δ), quarantine rate (η), fraction of risk-deniers (α),

fraction of population that needs hospitalization (a) and fraction of population that are tested

as positive for the disease and are quarantined at home (b). A scheme of the epidemic model is

shown in Fig 5. To derive the dynamics, in this work we set the values of the parameters to the

PLOS COMPUTATIONAL BIOLOGY Risk perception and empirical structures shape the dynamics of infectious disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009760 February 16, 2022 12 / 19

https://doi.org/10.1371/journal.pcbi.1009760


ones recently estimated for epidemiological models of COVID-19 [57]. In particular, we set

the expected amount of people one infectious individual can infect per day as: infection trans-

mission rate β = 0.5, σ = 1/6 day−1, γ = 1/7 day−1, γhosp = 1/14 day−1, δ = 0.025 day−1, η = 0.33

day−1, a = 0.2, b = 0.2.

Simulation of epidemic dynamics and validation

We use two approaches to analyze the dynamics of the population in each compartment, and

then we compare results to validate our methods. We simulate the dynamics by taking into

account the stochastic nature and the network connectivity structure through which epidemics

is transmitted among individuals by using a Gillespie algorithm (GA) [58], that decompose the

dynamics into independent spontaneous processes and then perform a change of state of each

node by a non fixed time step. We impose an initial condition of a single infectious individual,

that we assigned to IC or ID compartment with a probability depending on α and for each syn-

thetic network realization and for each real network we simulate 50 dynamic samples. We also

adopt a deterministic analytical framework by solving the ODE systems in the homogeneous

mixing hypothesis, that do not require the knowledge of the precise contact network but

assumes that all individuals have identical probability of infecting contacts. We are able to

relate the dynamics on networks and in the homogeneous mixing approach by writing the

probability that a individual on a network is infected in a time interval Δt as:

lDt ¼ 1 � ð1 � bDtÞNk ¼ 1 � ð1 � bDtÞ
hkiI

2 ð3Þ

where (1 − βΔt) is the probability that the node is not infected in the time interval Δt, Nk is the

number of edges emanating from all infected vertices I = IC + ID and hki is the average

Fig 5. Graphical scheme of the epidemic model. Compartments included in the model are: susceptible S, uninfected individuals, exposed E,

individuals who are not yet contagious, infectious with compliant behaviors IC, who mitigate the spreading of the disease by adopting NPIs,

infectious with non-compliant behaviors, or risk-denier infectious ID, individuals who are not compliant with mitigation rules, hospitalized H,

people who require hospitalization, self-isolating or quarantined Q, infectious individuals who stay at home and are compliant with NPIs,

recovered R, people who are no more infectious. Model parameters are: force of infection λ, incubation rate σ, recovery rate γ, recovery rate for

hospitalized patients γhosp, hospitalization rate δ, quarantine rate η, fraction of risk-deniers α, fraction of population that needs hospitalization a
and fraction of population that are quarantined at home b.

https://doi.org/10.1371/journal.pcbi.1009760.g005
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network degree. If βΔt� 1, we can approximate l �
bhkiI

2
¼ ~bI and obtain a force of infection

that does not depend on time interval. In our study we integrate model equations by using

both expressions of λ.

Closed form equations for the basic reproduction number R0

The basic reproduction number R0 is the number of secondary infections produced by a single

infection in a completely susceptible population and is a good estimate of how fast a disease

can spread in a population ([59, 60]). We estimate R0 using the next generation operator

method ([61]) and we define the next generation matrix G as the square matrix in which the

ijth element is the expected number of secondary infections in population i caused by an infec-

tious individuals of population j. Matrix G is in turn composed by the matrix F of new infec-

tions and matrix V of the remaining transfers of infections from one compartment to another:

F ¼

0 ~b ~b

0 0 0

0 0 0

2

6
6
6
4

3

7
7
7
5

ð4Þ

V ¼

s 0 0

� sð1 � aÞ A 0

� sa 0 B

2

6
6
6
4

3

7
7
7
5

ð5Þ

where A = δa + ηb + γ(1 − a − b) and B = δa + γ(1 − a). We estimate R0 as the spectral radius

(dominant eigenvalue) of G = FV−1 and we obtain:

R0 ¼
~b

A
1þ a

bðZ � gÞ
B

� �

ð6Þ

Assuming that our model can be cast to a standard SIR model with a R0 ¼
~b=geff , where γeff

= AB/[B + αb(η − γ)] and where the infectious compartment I is composed by E, IC and ID

compartments. In this framework, we can use the analytical solution of the peak height derived

for SIR model ([62, 63]) and we write the equation that relates the maximum population frac-

tion of infectious to basic reproduction number R0:

Imax ¼ 1þ K þ K ln K; ð7Þ

where K ¼ 1

R0
.

Dimensionality reduction and correlation analysis

To identify correlations among different behaviors and opinions in MIT survey data, we use a

method that consist of two passages. First, we reduce the dimensionality of the problem using

a dimension reduction technique called Uniform Manifold Approximation and Projection

(UMAP) [64]. In a few words, UMAP works by a) approximating a manifold on which the

data is assumed to lie; b) constructing a fuzzy simplicial set representation of the approximated

manifold; c) searching for a low dimensional projection of the data that has the closest possible

equivalent fuzzy topological structure. With respect other dimensionality reduction tech-

niques, such as t-SNE (T-distributed stochastic neighbour embedding), UMAP has a higher

processing speed and a faster visualization. As a second step, after we reduced the

PLOS COMPUTATIONAL BIOLOGY Risk perception and empirical structures shape the dynamics of infectious disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009760 February 16, 2022 14 / 19

https://doi.org/10.1371/journal.pcbi.1009760


dimensionality of survey data, we cluster the answers of the survey using HDBSCAN [65], in

order to identify answers that were systematically provided together across multiple countries.

Since UMAP presents some levels of randomness which are then captured by HDBSCAN, in

S1 Fig we illustrate the results provided by other 9 different random seeds. In all cases, the

same cluster of 9 con-compliant answers is isolated by HDBSCAN.

Supporting information

S1 Fig. UMAP embedding and HDBSCAN clustering. Using 9 random seeds different by

that generating Fig 1A, we systematically observe the presence of the same cluster of nine

answers used in the manuscript to isolate non-compliant behavior.

(TIFF)

S2 Fig. World maps. a: Fraction of respondents declaring they do think the COVID-19 is dan-

gerous in their community. b: Fraction of respondents declaring they are not familiar with

“physical distancing” c: Fraction of respondents declaring they have not taken any action to

prevent infection from COVID-19 in the past week. Map dataset from Natural Earth website

(https://www.naturalearthdata.com/).

(TIFF)

S3 Fig. Temporal evolution of the belief that that face masks are ineffective, for 23 coun-

tries. For each country, blue line reports fraction of respondents sharing this belief along 13

waves and orange dotted line is the average across waves. We observe a great variability across

both countries and time.

(TIFF)

S4 Fig. Comparison between mean-field solutions and simulations on networks. Popula-

tion fraction of hospitalized people: average (continuous line) and s.e.m. (shaded area) across

50 samples obtained with stochastic simulations based on Gillespie algorithm on networks.

Dashed lines are the solutions of ODE system in mixed population approximation: black

dashed line refer to results obtained with a constant force of infection l ¼ ~bI, whereas orange

dashed line is solution for a time dependent λ. Panels a, b, c, d refer, respectively, to simula-

tions on BA, ER, SBM4 and WS networks.

(TIFF)

S5 Fig. Maximum population fraction of infectious people at different values: Comparison

between agent-based simulations and analytical solution estimated using basic reproduc-

tion number. Reported values are percent increases with respect to measures at α = 0. Box-

plots show quartiles of distributions across 10 ER network realizations, red line is the equation

relating infectious peak height to R0 ¼
~b=geff .

(TIFF)

S6 Fig. Comparison of model predictions with real data. For each USA state, we plot

the hospitalized population estimated from our model against the real hospitalized

population. Both values describe the situation in a time period between 7/6/2020 and

9/27/2020, as the model is informed by the conditions prior that period and by survey data

taken along that timespan. Spearman rank-order correlation coefficient (ρ) and p-value are

reported.

(TIFF)

S7 Fig. Hospitalized peak values evaluated from dynamics modeled at fixed population

fraction of risk-deniers. a-b: α = 0.1, c-d: α = 0.9. Left panels show peak of hospitalized
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patients, right panels show peak of hospitalized patients evaluated with respect to the one esti-

mated at α = 0.0, as percentage increase.

(TIFF)
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