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Abstract: The spread of antibiotic resistance among bacteria has become one of the major health
problems worldwide. Methicillin-resistant staphylococcal strains are especially dangerous because
they are often resistant to other antibiotics. The increasing insensitivity to macrolides, lincosamides
and streptogramin B antibiotics of methicillin-resistant staphylococcal isolates has limited the use of
these drugs in therapy. The combination of natural compounds and antibiotics can be considered as
an alternative tool to fight multi-drug-resistant pathogen infections. The aim of the presented study
was to examine the antibacterial activity of protocatechuic acid ethyl ester–erythromycin combination
towards Staphylococcus aureus and Staphylococcus epidermidis strains with various resistance profiles to
methicillin and macrolides, lincosamides and streptogramin B (MLSB) antibiotics. The in-vitro an-
tibacterial potential of the above combination was investigated by minimum inhibitory concentration
assays and checkerboard testing. The observed effects were strain dependent, with 8 of 12 tested
staphylococcal strains showing an indifferent effect on the natural compound and erythromycin; for
2 strains, the tested combination had an additive effect, while for another 2, the effect was synergistic.
Interestingly, the multi-drug-resistant strains were more sensitive to the cooperative action of the
protocatechuic acid ethyl ester and the antibiotic.

Keywords: protocatechuic acid ethyl ester; erythromycin; fractional inhibitory concentration;
Staphylococcus spp.

1. Introduction

New resistance mechanisms developed by bacteria have greatly reduced the number
of available therapeutic agents effective against bacterial infections. Frequently, microor-
ganisms isolated from hospitalized patients show resistance to more than one group of
antibiotics. In recent years, multi-drug-resistant bacteria have become the major concern for
global health, so the search for new antimicrobial agents is now a priority for researchers [1].
To date, the beneficial interactions of antibiotics with compounds of plant origin were sug-
gested by many studies [2–4]. Staphylococcus aureus is one of the World Health Organization
(WHO) priority pathogens for research on new antibiotics. This mainly commensal microor-
ganism can induce diseases of the skin and soft tissues, respiratory, urinary or digestive
system. What is more, it could form biofilms on medical devices or surgical sites. In turn,
Staphylococcus epidermidis, which colonizes mucous membranes and skin, is one of the main
etiological factors of nosocomial infections [2,5], and is a major element in the human body’s
microbiota [6]. Colonization with coagulase-negative staphylococci (CoNS) takes place at
birth and accompanies us throughout all our life [7]. It is currently believed that this oppor-
tunistic pathogen is responsible for infections associated with medical accessories, such as
central venous ports, catheters, hip prostheses, knee prostheses and various procedures,
such as coronary artery bypass surgery, cholecystectomy, laminectomy, colon surgery and
cesarean section [8,9]. Due to the ability of S. epidermidis to form biofilms on the surfaces of
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medical devices, they are one of the reservoirs of infection [8]. Because multi-drug-resistant
staphylococci strains are common in both hospital and community environments, it is
very important to search for alternative treatments in staphylococcal infections. Many
studies proved the synergistic effect of plant-derived compounds in combination with an-
tibiotics [2,7,10–12]. New drug combinations may lead to the development of new, cheaper,
more accessible, more effective, safer-for-the-environment and, above all, for patients, an-
timicrobial therapies [1]. Protocatechuic acid (PCA) is one of the plant-derived compounds
shown to have antimicrobial activity against Gram-positive, Gram-negative bacteria and
fungi [13–16]. Its antimicrobial activity is related to the ability to inhibit bacterial growth
and enhance the action of antibiotics and, thus, reduce resistance development [15]. What
is more, PCA is non-toxic to humans at an oral dose of 100 mg/kg [15,17]. A usage limi-
tation of phenolic acids, such as PCA as medicinal substances, is their low bioavailability.
Moreover, phenolic acids are rapidly metabolized and excreted in the urine. Chemical mod-
ifications of phenolic acids may increase their biological activity, e.g., esterification increases
the lipophilicity of PCA [18,19]. Figure 1 shows the differences in the chemical structure of
PCA and protocatechuic acid ethyl ester (EDHB, ethyl 3–4 dihydroxybenzoate). EDHB has
not yet been extensively studied for its antibacterial activity. This compound is found in the
leaves and roots of many plant species, peanut seed casings and also in tea and wine [20].
EDHB is widely used as a food stabilizer [21] and its antioxidant, neuroprotective, myo-
and cardioprotective properties were indicated by many authors [21–26]. Our previous
study proved the antibacterial properties of EDHB against reference and clinical strains of
S. aureus [2]. What is more, a decrease in the minimal inhibitory concentrations (MIC) of
erythromycin in the presence of this ester was observed. Therefore, it seems important to
thoroughly evaluate the interactions of EDHB with erythromycin and to define its potential
clinical usefulness. Since erythromycin and PCA have different targets in the bacterial
cell, the choice of this combination seems to be justified. Erythromycin inhibits bacterial
protein synthesis, while PCA causes membrane lysis of bacteria [16,27,28]. PCA can, thus,
enhance the antibacterial effects of erythromycin without fear of interference. Since the
esterification of phenolic acid may increase it bioavailability, research on the antibacterial
properties of EDHB is more promising than on PCA; therefore, the authors decided to focus
on EDHB. The aim of this study was to determine the direction of the influence of EDHB
and erythromycin on the reference and clinical strains of S. aureus and S. epidermidis.
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Figure 1. The chemical structure of protocatechuic acid (A) and protocatechuic acid ethyl ester (B).

2. Results
2.1. Antibiotic Resistance Profile of Tested Strains

The resistance profile of the tested strains is presented in Table 1. Among the tested
S. aureus strains, three were resistant to methicillin (S. aureus ATCC 43300, S. aureus 3 and
4) and three strains of S. epidermidis were resistant to this antibiotic (S. epidermidis ATCC
35984, S. epidermidis 1 and 2). The remaining isolates showed sensitivity to methicillin
(S. aureus ATCC 25923, S. epidermidis ATCC 12228, S. aureus 1 and 2, S. epidermidis 3 and 4).
S. aureus ATCC 43300, S. epidermidis ATCC 35984, S. aureus 3, S. aureus 4, S. epidermidis 1
and S. epidermidis 2 strains demonstrated the constitutive phenotype of resistance to MLSB
antibiotics (cMLSB). The remaining isolates did not show the MLSB resistance phenotype.
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Table 1. The methicillin and MLSB resistance profiles of examined strains.

Strain Methicillin Resistance Profile MLSB Resistance Profile

S. aureus ATCC 25923 MSSA -

S. aureus ATCC 43300 MRSA cMLSB

S. epidermidis ATCC 12228 MSSE -

S. epidermidis ATCC 35984 MRSE cMLSB

S. aureus 1 MSSA -

S. aureus 2 MSSA -

S. aureus 3 MRSA cMLSB

S. aureus 4 MRSA cMLSB

S. epidermidis 1 MRSE cMLSB

S. epidermidis 2 MRSE cMLSB

S. epidermidis 3 MSSE -

S. epidermidis 4 MSSE -
MSSA—methicillin-sensitive Staphylococcus aureus, MRSA—methicillin-resistant Staphylococcus aureus,
MRSE—methicillin-resistant Staphylococcus epidermidis, MSSE—methicillin-resistant Staphylococcus epidermidis,
cMLSB—constitutive macrolide, lincosamide and streptogramin B mechanism of resistance.

2.2. The Fractional Inhibitory Concentration (FIC) Values for Protocatechuic Acid Ethyl Ester and
Erythromycin against Staphylococcal Strains

The EDHB inhibited the growth of all the tested S. aureus strains, with MIC values
ranging from 16 to 1024 µg/mL. The growth of the S. aureus reference strains was inhibited
at a concentration of 512 µg/mL. S. aureus 1 and 2 strains proved to be sensitive to EDHB
with MIC 16 µg/mL, while the growth of the S. aureus 3 and 4 strains was inhibited at a
concentration of 1024 µg/mL. The MIC values for erythromycin against S. aureus isolates
ranged from 0.25 to 2048 µg/mL. S. aureus ATCC 25925, S. aureus 1 and S. aureus 2 strains
showed the lowest MIC values, 0.25 µg/mL, while S. aureus strains ATCC 25923, 3 and 4
demonstrated MICs at 2048 µg/mL.

EDHB at the concentrations used in this study inhibited the growth of all tested
S. epidermidis strains. The MICs of EDHB ranged from 512 to 1024 µg/mL. Five S. epidermidis
strains showed identical susceptibility to EDHB with MIC at 512 µg/mL. The highest MIC
values at the level of 1024 µg/mL were characteristic for the S. epidermidis ATCC 12228
strain. The MIC values for erythromycin against S. epidermidis strains ranged from 0.125
to 2048 µg/mL. S. epidermidis ATCC 12228, 3 and 4 strains showed the lowest MIC values
(0.125, 0.125 and 2 µg/mL, respectively), while S. epidermidis ATCC 35984, 1 and 2 strains
demonstrated MICs at 2048 µg/mL. The MIC values for both EDHB and erythromycin are
presented in Table 2.

Based on the checkerboard assay, MIC values were determined for EDHB in combina-
tion with erythromycin and for erythromycin in combination with EDHB.

Erythromycin and EDHB exerted an indifferent effect against five S. aureus strains. The
synergistic effect of the compounds was noted only against S. aureus 3. The erythromycin–
EDHB combination turned out to be more active against S. epidermidis strains, where in two
cases, an additive effect was found (S. epidermidis 12228 and 3) and in one, it was synergistic
(S. epidermidis 4). For the remaining strains, the effect of combining the compounds was
indifferent.
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Table 2. The MIC values for staphylococcal strains in the second stage of the study.

Staphylococcal Strain
MIC Values

EDHB Erythromycin

S. aureus ATCC 25923 512 0.25

S. aureus ATCC 43300 512 2048

S. aureus 1 16 0.25

S. aureus 2 16 0.25

S. aureus 3 1024 2048

S. aureus 4 1024 2048

S. epidermidis ATCC 12228 1024 0.125

S. epidermidis ATCC 35984 512 2048

S. epidermidis 1 512 2048

S. epidermidis 2 512 2048

S. epidermidis 3 512 0.125

S. epidermidis 4 512 2
MIC—minimum inhibitory concentration, EDHB—protocatechuic acid ethyl ester.

The results of the checkerboard assay for each strain are shown in Figure S1
(Supplementary Materials), while the FIC index and their interpretation are presented
in Table 3.

Table 3. FIC index and their interpretation.

Strain FIC Index Interacion

S. aureus ATCC 25923 1.031 indifference

S. aureus ATCC 43300 1.016 indifference

S. epidermidis ATCC 12228 0.628 additive

S. epidermidis ATCC 35984 1.063 indifference

S. aureus 1 2 indifference

S. aureus 2 1.125 indifference

S. aureus 3 0.078 synergism

S. aureus 4 1.016 indifference

S. epidermidis 1 1.015 indifference

S. epidermidis 2 1.015 indifference

S. epidermidis 3 0.750 additive

S. epidermidis 4 0.281 synergism
FIC index—fractional inhibitory concentration index.

Table 4 shows the MIC value changes of erythromycin in the presence of EDHB at
different concentrations, together with MICs of EDHB. The EDHB concentrations were
determined for each strain on the basis of the MIC values obtained in the first stage of
the study [29,30]. The changes in the MIC value of erythromycin after the addition of
EDHB were statistically significant (p = 0.005). Statistical analysis also revealed significant
differences between MIC changes for resistant versus susceptible strains (p = 0.002). Inter-
estingly, the strains resistant to MLSB antibiotics and methicillin were more sensitive to the
erythromycin–EDHB combination (Table 4).
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Table 4. The MIC values of erythromycin alone and in combination with EDHB towards staphylococ-
cal strains.

Strain MIC of EDHB EDHB Concentration
in Well with FIC Index MIC of Erythromycin MIC of Erythromycin

with EDHB

Decrease of the MIC
Value after the EDHB

Addition [%]

S. aureus ATCC 25923 512 16 0.25 0.25 0

S. aureus ATCC 43300 512 512 2048 32 98.44

S. epidermidis ATCC 12228 1024 512 0.125 0.016 12.8

S. epidermidis ATCC 35984 512 32 2048 1 99.95

S. aureus 1 16 16 0.25 0.25 0

S. aureus 2 16 16 0.25 0.03125 87.5

S. aureus 3 1024 64 2048 32 98.44

S. aureus 4 1024 1024 2048 32 98.44

S. epidermidis 1 512 512 2048 1 99.95

S. epidermidis 2 512 512 2048 32 99.95

S. epidermidis 3 512 128 0.125 0.063 50.4

S. epidermidis 4 512 32 2 0.5 75

EDHB—protocatechuic acid ethyl ester, MIC—minimum inhibitory concentration.

3. Discussion

Staphylococcal infections have become one of the most important public health prob-
lems, as multi-drug-resistant strains of this microbe are spreading rapidly. This fact stim-
ulates scientists to search for new antimicrobial compounds and therapeutic strategies
for staphylococcal disease treatment. A very promising direction of research is the imple-
mentation of substances of natural origin to augment routine antimicrobial therapies. The
enhancement of antibiotic action by such compounds is due to sensitizing bacterial strains
to drugs and enhancing their activity by increasing the bioavailability or simultaneously
affecting a different site in the bacterial cell [4].

In this study, the antibacterial effect of the EDHB and erythromycin combination on
reference and clinical Staphylococcus spp. strains was assessed. EDHB in combination with
erythromycin showed an indifferent effect against five S. aureus isolates, while a synergistic
interaction was found for one strain. Interestingly, a synergistic effect was noted against a
multi-drug-resistant clinical strain, which, due to its character, should be less susceptible
to the combined action of the compounds. In turn, among S. epidermidis strains, three
indifferent, two additive and one synergistic effect were noted. A synergistic interaction
was found against the sensitive S. epidermidis 4. It should be noted that if one substance
is much more active, sometimes it is difficult to distinguish an indifferent effect from
an additive effect, especially when using dilutions of the antibiotics [31]. The statistical
analysis showed that the resistant strains of the tested staphylococci were more sensitive
to the EDHB–erythromycin combination then sensitive isolates. Significant differences
were observed in the decrease in erythromycin MIC values after the addition of EDHB
(Table 4). Therefore, it is likely that EDHB blocks the mechanisms of bacterial resistance,
thus, increasing its sensitivity.

What is more, the combination of “erythromycin–EDHB” turned out to be more ef-
fective against coagulase-negative staphylococci. Because S. epidermidis strains produce
biofilm, which is the CoNSs’ main virulence factor, evaluation of the effective combina-
tion of EDHB–erythromycin is of importance. The antibiofilm properties of PCA have
been described in many studies [32–35]. The mechanism of PCA antibiofilm action is
attributed to the changes in the properties of bacterial surfaces and inhibition of quorum
sensing [32,34,35]. The reference S. epidermidis ATCC 35983 strain has a biofilm-forming abil-
ity and possesses icaADBC operon. The direction of the interaction of EDHB–erythromycin
for this strain was indifferent. All tested clinical S. epidermidis isolates also have biofilm for-
mation ability (data not shown). Among these strains, two indifferent, one synergistic and
one additive interaction were noted. Since the EDHB–erythromycin combination has been
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shown to be more effective against the CoNS strains, it is possible that EDHB also affects
the biofilm formation process. It is believed that natural compounds showing synergism
with antibiotics could have potential use in the effective treatment of nosocomial infec-
tions caused by the CoNS, especially in cases requiring a non-standard pharmacological
approach [3].

Previously, Miklasińska et al. [2] investigated the antibacterial effect of EDHB alone
and in combination with four antibiotics: erythromycin, clindamycin, vancomycin and
cefoxitin. Twenty clinical strains and three reference strains of S. aureus were tested.
The MIC values for EDHB ranged from 64 to 1024 µg/mL, with median 512 µg/mL,
while the MIC values for EDHB in this study ranged from 16 µg/mL to 1024 µg/mL
(median 512 µg/mL) and were strain dependent. In our previous study, we found that the
differences in the EDHB MIC values did not depend on the mechanism of resistance to
MLSB antibiotics [2]. What is more, we found out that the presence of EDHB increased the
sensitivity of the studied strains to erythromycin, as well as to clindamycin and vancomycin.
Among examined strains were two reference isolates (S. aureus ATCC 43300 and S. aureus
ATCC 25923), which were also included in this work and showed an indifferent effect to
the EDHB–erythromycin combination. For the S. aureus ATCC 43300 strain, both studies
showed the same MIC value of 512 µg/mL, while for S. aureus 25923, the obtained MICs
were different. In our previous study, it was 256 µg/mL, while in the present work,
the MIC was 512 µg/mL. As both experiments were carried out on the same strains,
stored in our department and with the use of a compounds purchased from the same
company, the probable cause of the difference is a laboratory error. However, it should
be noted that the above MIC values do not differ significantly, and these results do not
affect the assessment of the antibacterial activity of EDHB against the tested strains. The
results of both studies failed to unambiguously demonstrate whether the combination
of erythromycin and EDHB would bring a noticeable therapeutic benefit but showed a
tendency to decrease erythromycin resistance under the influence of the EDHB.

To the best of our knowledge, there are no studies, except ours, on the antibacterial
activity of EDHB, but works on the antimicrobial potential of the PCA are worth discussing.
Chai et al. [36] studied the action of PCA and chlorogenic acid in combination with antibi-
otics against Escherichia coli, S. aureus, Streptococcus iniae and Proteus mirabilis. The authors
found that the growth of Gram-negative bacteria was inhibited to a lesser extent by PCA and
chlorogenic acid than the growth of Gram-positive pathogens, and that the effect of PCA
was more prominent than that of chlorogenic acid. Both of these acids showed the strongest
antibacterial activity against S. aureus. Similarly, Stojković et al. [28], in their study, noted
the highest PCA activity against the S. aureus strain compared with other Gram-positive
and also Gram-negative bacteria. The MIC value of PCA against S. aureus in their study
was 300 µg/mL, so it was close to the median obtained in our work for EDHB (512 µg/mL).
Chai et al. [36] also studied an interaction between PCA and antibiotics. A synergistic effect
against S. aureus was noted for the PCA with clinafloxacin and gatifloxacin, an additive
effect for the combination with ciprofloxacin, and an indifferent effect for the combination
with sulfamonomethoxine. Sanhueza et al. [37] also assessed the interactions between PCA
and antibiotics with a different mechanism of action (oxacillin, ampicillin, nalidixic acid,
ciprofloxacin, norfloxacin, levofloxacin, tetracycline and chloramphenicol) against five
clinical and one reference strain of S. aureus (ATCC 6538). The analysis of the FIC index by
the checkerboard method showed values below 0.5 for all tested combinations of antibiotics,
phenolic compounds and bacterial strains, which pointed to a synergistic effect. The results
of the above studies may suggest that the direction of EDHB’s effect does not depend on
the mechanism of action of the antibiotic. Erythromycin, used in our work, inhibits the
synthesis of bacterial proteins by binding to the 50S ribosome subunit, while clinafloxacin,
gatifloxacin, ciprofloxacin, nalidixic acid, norfloxacin and levofloxacin interfere with the
synthesis of bacterial DNA. On the other hand, oxacillin and ampicillin interfere with the
synthesis of the cell wall and tetracycline inhibits bacterial proteins synthesis by binding
to the 30S ribosome subunit. Since PCA causes membrane lysis of bacteria [16,27,28], it is
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more probable that the synergistic effect is related to the stimulation of other sites in the
bacterial cell. Because the influence of PCA–antibiotics combinations is strain dependent, it
may be related to other bacterial resistance mechanisms. Mandalari et al. [38] evaluated
the FIC values for catechin, PCA and epicatechin combinations against Gram-negative and
Gram-positive bacteria. Further, in their study, the S. aureus strain turned out to be most
susceptible to the examined compounds. An indifference towards synergism was observed
between naringenin and PCA against S. aureus. Since naringenin affects the bacterial cell
membrane [39], and PCA causes membrane lysis [16,27,28], the direction of the interaction
may be justified by reinforcing one other’s action.

The above studies and the results of the presented work indicate that natural com-
pounds, including EDHB, can modify the antibacterial action of antibiotics against staphylo-
coccal strains. The experiments showed a better effect from PCA on Gram-positive bacteria,
in particular, S. aureus, and this should be the focus of future studies. As numerous works
imply the antibacterial properties of protocatechuic acid and its chemical derivatives, such
studies should be carried out with a greater number of strains to precisely evaluate the
antimicrobial potential of phenolic compounds, with associations with antibiotics with
different mechanisms of action. Efforts should also be directed to precisely determine
the mechanism of action of EDHB on bacterial cells and its potential applications in the
treatment of staphylococcal infections. This line of research may, in the future, provide a
new, effective method of antibacterial therapy.

4. Materials and Methods
4.1. Bacterial Strains

The antibacterial activity of EDHB was assessed against four clinical S. aureus strains
isolated (S. aureus 1, 2, 3 and 4) from clinical wound samples and four clinical S. epidermids
strains (S. epidermidis 1, 2, 3 and 4) isolated from blood together with four reference strains:
S. aureus ATCC 25923, S. aureus ATCC 43300, S. epidermidis ATCC 12228 and S. epidermidis
ATCC 35984. The species of the clinical strains was confirmed by assessing their phenotypic
features, such as: morphology of colonies grown on blood agar, type of hemolysis, growth
on Chapman medium and production of coagulase and catalase. The Oxoid Staphytect Plus
test and the API Staph test (bioMerieux, Marcy-l’Étoile, France) were also performed. To
ensure that the clinical strains were identified correctly the PCR-RFLP reaction was carried
out. GeneMATRIX Tissue & Bacterial DNA Purification KIT (EuRx Ltd., Gdańsk, Poland)
was used for bacterial genomic DNA isolation [40]. The PCR reaction was performed using
10× PCR RED master mix kit (BLIRT SA, Gdańsk, Poland) in a MJ Mini Personal Thermal
Cycler (Bio-Rad, Hercules, CA, USA). To confirm the classification of species, the specific
restriction profiles after cleaving of PCR products with 10 U of restriction enzymes XapI
and Bsp143I (Fermentas, Vilnius, Lithuania) were analyzed. All the tested strains were
stored in the Trypticase Soy Broth medium with 20% glycerol at −80 ◦C. EDHB used in
this study was received from Sigma Chemical Co. (St. Louis, MO, USA) and dissolved in
DMSO immediately prior to use.

4.2. Antibiotic Resistance Profile

The disc-diffusion method was used to assess the resistance profile of examined
strains to methicillin, macrolides and lincosamides with use of antibiotic discs (EMAPOL)
of cefoxitin (30 µg), clindamycin (2 µg) and erythromycin (15 µg) and Mueller–Hinton Agar
(BTL) [31].

4.3. Susceptibility Testing of Staphylococcal Strains to Erythromycin and EDHB Using the
Microdilution Method

The standard microdilution method in sterile 96-well polystyrene plates (FL Medical,
Torreglia, Italy) was used to determine the minimum inhibitory concentrations of EDHB
and erythromycin towards the staphylococcal strains [41,42]. Serial dilutions were made
as follows: 11 wells of 96-well polystyrene plates were filled with Mueller–Hinton; in the
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next step, 100 µL of EDHB or erythromycin stock solution was added to the first well and
mixed thoroughly, and subsequently 100 µL was transferred to the next and remaining
wells in the same manner, and finally, from the last well 100 µL was removed. In the next
step, 100 µL of the 0.5 McFarland bacterial suspension was added to the wells containing
the EDHB and erythromycin dilutions. The organization of the titration plate is shown in
Figure 2. The absorbance was assessed in wavelength λ = 595 nm by spectrophotometry
(Thermo Electron Corp., Vantoa, Finland). The MIC is defined as the lowest compound
concentration that yields no visible microorganism growth, and it indicates the resistance
of bacteria to an antimicrobial agent and determines the potency of new antimicrobial
agents [31,41]. All experiments were carried out in triplicate. The obtained MIC values
were used to design a “checkerboard” to determine the FIC value.
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4.4. Determination of the Susceptibility of Staphylococcal Strains to the Erythromycin and
EDHB Combination

The susceptibility of staphylococcal strains to the combination of erythromycin and
EDHB was assessed by determining the fractional inhibitory concentration (FIC) value
for each strain. The checkerboard microdilution method with modifications was used to
determine the total susceptibility effect of the tested strains [35,36]. Briefly, the erythromycin
and EDHB solutions corresponding to an MIC value of 8 were prepared. Then, a series of
1/8 MIC dilutions was made. The MIC values of the substances were determined in the
previous step. As such, 95 µL of dual-concentrated Mueller–Hinton medium was added
to each well of the titration plate. Then, 50 µL of EDHB and appropriate concentration
of erythromycin were added. Finally, 5 µL of a 0.5 McFarland staphylococcal bacterial
suspension was added. The volume of each well was 200 µL. Therefore, the solutions
corresponding to the concentrations of 8 MIC, 4 MIC, 2 MIC, MIC, 1/2 MIC, 1/4 MIC and
1/8 MIC were prepared for erythromycin and EDHB to take into account the dilution of
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50 µL of these substances in 200 µL of the solution and obtained as follows: 2 MIC, MIC,
1/2 MIC, 1/4 MIC, 1/8 MIC, 1/16 MIC and 1/32 MIC in each of the wells. To the last
column and row, respectively, instead of EDHB and erythromycin, 50 µL of medium was
added. The resulting “checkerboard” is shown in Figure 3.
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Figure 3. The scheme of the checkerboard assay to evaluate FIC index for tested strains. B—medium
+ solvent (background). SC—sterility control of the medium (sterility control). The first line of
each row (A–H)—erythromycin (E) dilutions, the darkest color shows the lowest dilution (A1–H1),
and the lightest shows the highest dilution (A8–H8). The second line of each row (A–H)—EDHB
(protocatechuic acid ethyl ester) concentrations, the darkest color indicates the lowest dilution
(A1–A8), while the lightest the highest (H1–H9).

The prepared plates were incubated at 37 ◦C for 24 h. The absorbances were then read
at 595 nm. The percent increase in individual wells in relation to the growth control was
calculated using the formula:

GROWTH = (A well − A background)/(A growth control − A background) × 100% (1)
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where A is the absorbance. The MIC was re-established for EDHB and erythromycin for
each strain. Then the FIC [35,36] was calculated for EDHB and erythromycin and their sum
for each well. The following formula was used:

FIC index = FICA + FICB = (MICA + B)/MICA + (MICB + A)/MICB (2)

where:
MICA + B—MIC of an antibiotic in the presence of a polyphenolic compound.
MICB + A—MIC of a polyphenolic compound in the presence of an antibiotic.
MICA—MIC of the antibiotic alone.
MICB—MIC of a polyphenolic compound alone.
Many different combinations are observed in the checkerboard test; therefore, only

the FIC values of the most efficient combination of compounds are used to calculate the
FICI [35,36]. Based on the FIC index value for each strain, the relationship between EDHB
and erythromycin was assessed according to the following scale:

FIC ≤ 0.5—means synergism;
0.5 < FIC ≤ 1—means additive effect;
1 < FIC ≤ 4—means indifference;
FIC > 4—means antagonism [1].
A synergistic effect can be found when the joint effect of the substances is greater

than the sum of the individual effects. An additive effect can be observed when the sum
of the effects of the substances themselves is equal to the joint effect. A neutral effect is
characterized by a lack of interaction between the compounds [29]. An antagonistic effect is
defined as a decreased collective interaction of the compounds compared to the interaction
of the compounds themselves [31].

4.5. Statistical Analysis

Wilcoxon signed-rank test was used to determine whether the differences in the
MIC values of erythromycin after the addition of EDHB were statistically significant. To
assess the relationship between the presence of resistance mechanisms and the change in
erythromycin MIC values following the addition of EDHB for a given strain the t-student
test was used. For all used tests p ≤ 0.05 was considered as statistically significant. The
data were analyzed with the use of STATISTICA v 13.0 software (StatSoft, Krakow, Poland).

5. Conclusions

The results of this study demonstrate that multi-drug-resistant strains turned out
to be more sensitive to the combination of antibiotics and EDHB than sensitive isolates.
The combination of “erythromycin–EDHB” was more effective against coagulase-negative
staphylococci. The in vitro additive effect and synergy of EDHB and erythromycin can
indicate that EDHB is capable of augmenting the antimicrobial potential of antibiotics
in vivo, but since this effect is strain dependent, further studies are necessary to evaluate
the exact mechanisms of action of protocatechuic acid and EDHB.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11070848/s1, Figure S1: The checkerboard assay results
for staphylococcal strains. The dark grey represents greater than 50% bacterial growth in a well, while
the light grey shows smaller than 50% bacterial growth in a well compared to the growth control.
The blue represents an indifferent, pink additive, while green synergistic interaction. The red framed
box represents FIC index for each strain. The values highlighted in yellow show the MICs for EDHB
and erythromycin.

https://www.mdpi.com/article/10.3390/antibiotics11070848/s1
https://www.mdpi.com/article/10.3390/antibiotics11070848/s1
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M.M.-M., M.K. (Małgorzata Kępa), M.K. (Monika Kulczak), M.O.; Validation: T.J.W., M.M.-M., M.K.
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