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Abstract: The reverse transcription quantitative polymerase chain reaction (RT-qPCR) is an estab-
lished tool for the diagnosis of RNA pathogens. Its potential for automation has caused it to be
used as a presence/absence diagnostic tool even when RNA quantification is not required. This
technology has been pushed to the forefront of public awareness by the COVID-19 pandemic, as its
global application has enabled rapid and analytically sensitive mass testing, with the first assays
targeting three viral genes published within days of the publication of the SARS-CoV-2 genomic
sequence. One of those, targeting the RNA-dependent RNA polymerase gene, has been heavily
criticised for supposed scientific flaws at the molecular and methodological level, and this criticism
has been extrapolated to doubts about the validity of RT-qPCR for COVID-19 testing in general.
We have analysed this assay in detail, and our findings reveal some limitations but also highlight
the robustness of the RT-qPCR methodology for SARS-CoV-2 detection. Nevertheless, whilst our
data show that some errors can be tolerated, it is always prudent to confirm that the primer and
probe sequences complement their intended target, since, when errors do occur, they may result in a
reduction in the analytical sensitivity. However, in this case, it is unlikely that a mismatch will result
in poor specificity or a significant number of false-positive SARS-CoV-2 diagnoses, especially as this
is routinely checked by diagnostic laboratories as part of their quality assurance.
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1. Introduction

The reverse transcription quantitative polymerase chain reaction (RT-qPCR) has long-
been the research tool of choice for the detection and quantification of a wide variety
of RNAs [1]. Nonetheless, the problems associated with reproducibility caused by a
range of parameters, including workflow complexity and protocol differences, a diversity
of analytical approaches and calibrations, as well as unitage issues, prompted an early
recognition of the limitations of the technology as an aide to therapeutic decision-making [2].
Moreover, operator- and reagent-associated variabilities also contribute appreciably to
the reliability of RT-qPCR data [3]. There have been numerous publications addressing
PCR-related challenges [4–11], culminating in the publication of guidelines to encourage
better experimental practices to allow more reliable and unequivocal interpretations of
qPCR results [12–14]. The uptake of these recommendations has been patchy at best [15–17],
and until recently, little notice was taken of the significant challenges posed by poor assay
designs, a lack of optimisation and validation and variable data interpretation [18]. Even
so, one area where RT-qPCR based diagnoses and reproducible quantification guiding
therapeutic decisions has been successful is in infectious diseases [19], and RT-qPCR has
become the first-line diagnostic test for many different microorganisms [20], including
viruses, using a range of chemistries, instruments and protocols [21–26].

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as
the aetiological agent for the coronavirus disease in 2019 (COVID-19) has enhanced the role
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of RT-qPCR as an essential tool for the early diagnosis of this disease but also highlighted
the previously ignored challenges [27]. The initial difficulties have been early and openly
acknowledged [28], especially with regards to the divergence of the performances between
assays, RT-PCR kits and laboratories [29–31] and the emergence of variants refractory to
amplification by a commercial assay [32]. However, a substantial body of opinion has
emerged, propagated mainly through the press and social media, maligning its use and
questioning the validity and utility of RT-qPCR-based testing, in particular. This is, in
part, due to criticism of the first such test, which was released with remarkable alacrity
only a day or so after the viral genomic sequence was made available and published in a
peer-reviewed journal a week later [33]. This test consisted of three assays targeting the
genes specifying the RNA-dependent RNA polymerase (RdRp), envelope small membrane
protein (E) and nucleoprotein (N). The reverse primer sequence of the RdRp assay contains
an incorrect degenerate base S, defined as C or G [34], whereas the SARS-CoV-2 RNA
sequence at that position is a T. Whilst the amplification efficiency of the RdRp assay in
question can be 100% [35], the quantification cycles (Cq) are higher when compared to a
range of other SARS-CoV-2-specific assays [34–37], affecting the sensitivity, but not the
specificity, of the assay [38]. Ironically, the current debate with regards to the interpretation
of RT-qPCR test results does not focus on the sensitivity but on the clinical relevance of
detecting the virus, often at very low copy numbers. Nonetheless, given the importance of
maintaining confidence in the ability of molecular testing to detect SARS-CoV-2 accurately,
reliably and sensitively, we dissected the performance of the RdRp assay to determine just
how well it performs and to remind the scientific community that mismatches between
primers and targets do not necessarily affect the effective performance of an assay.

2. Results
2.1. One-Step RT-qPCR

The results for the six assays (A–F) amplified with each of the five master mixes
are shown in Figure 1A–E. The amplification patterns are similar, with assays B (correct
specific R primer) and D (correct specific F and R primers) consistently recording the
lowest Cqs. Interestingly, combining the specific F primer ALT Fsp with the mismatched
reverse primer resulted in an assay (C) that performed less well than the original assay A
(∆Cq = 0.88 (95% CI 0.71–1.05)). Substituting specific primers with wobble primers (assays
E and F) also resulted in a poorer performance with all five master mixes. Replacing the
original mismatched RdRp SARSr-R primer with the correct, specific primer ALT-Rsp
increased the sensitivity of assay B by around four-fold (95% CI 3.05–5.2, with ∆Cqs of
−1.96 ± 0.66, −2.05 ± 0.09, −1.45 ± 0.26, −1.5 ± 0.11 and −2.5 ± 0.95 for PrimeScript 3,
Novaprime, Toughmix, Taqpath and Luna, respectively (Figure 1F). All Cqs are listed in
the Supplementary Data File, Sheet 1.

2.2. RT Temperature Effect

The effects of modifying the RT conditions were analysed using three one-step master
mixes: all six assays were reverse-transcribed and amplified with GSD Novaprime, whilst
PCRBio and Quanta Toughmix were used to assess assays A, B and D. Assay A with the
mismatched reverse primer recorded lower Cqs at higher RT temperatures, although the
increase in the sensitivity was modest, with the PCRBio assay showing the smallest Cq
range at 1.2 and NovaPrime the largest at 1.42 (Figure 2A). Between 42 ◦C and 50 ◦C,
the Cq range was even smaller; for example, the PCRBio recorded only a Cq difference
of 0.5. Assays B and D were affected even less by the RT temperatures, with only the
NovaPrime master mix showing a clear effect (Figure 2B,C). Whilst the PCRBio and Quanta
Toughmix master mixes recorded similar results, GSD NovaPrime consistently recorded
the lowest Cqs. All Cqs, together with those recorded for assays C, E and F amplified by
the NovaPrime master mix, are listed in Supplementary Data File, Sheet 2.
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Figure 1. Performance of the six assays listed in Figure 9. Each of the assays was used with different one-step RT-qPCR
different master mixes. (A) Takara PrimeScript 3. (B) GSD Novaprime. (C) Quanta 1-step Toughmix. (D) ABI TaqPath. (E)
NEB Luna. Plots are shows as bars with individual Cqs and standard deviations. Each replicate is an independent RT-qPCR
reaction. (F) Effect of replacing the incorrect original reverse porimer with a correct specific one as shown by the ∆Cq values
of assay B compared with assay A for the five master mixes. The box and whiskers plot shows the minimum and maximum
∆Cq values, together with the median (solid line).

2.3. Separate RT Primed by Random Primers Followed by qPCR

The relative contributions of the RT and qPCR steps were further investigated by
reverse-transcribed RNA using random primers with Superscript IV Vilo (SS4) or iScript
and subjecting the cDNA to qPCR amplification. This resulted in a rather different amplifi-
cation pattern compared with each other, as well as the one-step methodology for both RTs
(Figure 3A,B). First, the Cqs recorded by SS4-transcribed cDNA were consistently lower
than those from iScript. Second, assays A and B gave broadly comparable results, with the
∆Cqs similar at 0.93 (95% CI 0.26–1.59) for SS4 (Figure 3C) and 0.1 (95% CI −0.44 to 0.63)
for iScript (Figure 3D). Third, assays A and B performed much worse with SS4 than assay
D, recording a ∆CqA:D of 3.96 (95% CI −0.44 to 0.63) and ∆CqB:D of 3.04 (95% CI 2.42–3.66).
In contrast, the ∆Cqs with cDNA transcribed with iScript were 1.30 (95% CI 0.85–1.74) and
1.19 (95% CI 0.69–1.69), respectively. Finally, assays C, D, E and F recorded similar results
with both cDNAs, suggesting that the presence of wobble bases in the primers did not
affect the PCR reaction.
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Figure 2. Effect of a reverse transcription temperature gradient on the sensitivity recorded by three
assays amplified using different one step RT-qPCR master mixes. (A) Assay A with original primers
(B) Assay B with corrected reverse primer. (C) Assay D with specific, correct forward and reverse
primers. Quanta Toughmix results are shown with purple diamonds, PCRBio results with green
triangles and GSD Novaprime results with blue squares.

The near-equivalence in the results obtained for assays A and B was corroborated
by repeating the RT reactions for both RTases using a different RNA sample, this time
carrying out eight separate RT reactions with SS4 and four with iScript. (Figure 3E). The
SS4 results (∆Cq = 0.3 (95% CI 0.16–0.45)) were equivalent to the previous experiment,
whereas the iScript results showed a slightly larger ∆Cq (∆Cq = 0.91 (95% CI = 0.65–1.16)),
but nevertheless, they were in line with the previous results. All the Cqs are listed in
Supplementary Data File, Sheet 3.
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Figure 3. Two step RT-qPCR of the six assays listed in Figure 9 with separate random priming of
followed by amplification with SensiFast. (A) Scatterplot with bars and SD for Cqs recorded with SS4
RT. (B) Scatterplot with bars and SD for Cqs recorded BioRad iScript. (C) Plot showing the frequency
distribution of the SS4 ∆Cq data, together with the median (solid line). A:B compares the original
assay to the one with a correct specific reverse primer. The others compare each of the assays against
D, which uses specific forward and reverse primers. (D) Plot showing the frequency distribution of
the iSCript ∆Cq data, together with the median (solid line) for the same assay combinations. (E) Plot
showing the frequency distribution of the 2 × 4 replicate SS4 and for replicate iScript ∆Cq data,
together with the median (solid line).

2.4. qPCR Temperature Effect

Compared with SS4, the ∆Cqs between assays A and D with the iScript-derived cDNA
were unexpectedly small (3.83 ± 0.31 vs. 0.96 ± 0.34). Hence, the qPCR analysis of both
assays was repeated with another sample of cDNA synthesised by iScript. The first three
cycles were carried out using a 45.0–60.0 ◦C annealing/polymerisation gradient, followed
by a standard amplification at 60 ◦C, with either SYBR Green (Figure 4A) or RdRp_SARSr-
P2 (Figure 4B) as the reporters. In both cases, the Cqs recorded by assay A were comparable
to those for assay D (Figure 4C), and, notably, despite the supposedly incompatible melting
temperatures of the primers, both assays amplified equally well at all the temperatures,
even above 58 ◦C, with melt curves showing single amplicons (Figure 4A, insert). All the
Cqs are listed in Supplementary Data File, Sheet 4.
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Figure 4. Effect of annealing temperature on RT-qPCR. cDNA synthesised by BioRad iScript was used to amplify assays A
and D with Bioline SensiFast master mix. (A) SYBR-green reported amplification plots and ∆Cq values for assays A (blue)
and D (pink), with the melt curves shown in the insert. (B) Amplification plots and ∆Cq values for assays A (green) and D
(brown). (C) Plot of ∆Cq vs. temperature with trend lines for the SYBR Green (pink) and probe-based (green) assays.

The performance of assays A and D at different annealing/polymerisation temper-
atures (58 ◦C, 60 ◦C, 62 ◦C and 64 ◦C, Figure 5A) was further investigated using four
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additional master mixes and a different qPCR instrument. The results for assay A were
equivalent to those of assay D at an annealing/polymerisation temperature of 58 ◦C
for three of the master mixes, with the PrimerDesign, KAPA and Quanta master mixes
giving similar results, with ∆CqsA:D of 0.17 ± 0.25, −0.72 ± 0.23 and 0.01 ± 0.30, re-
spectively (Figure 5B). The Thermo Fisher master mix performed significantly worse
(∆Cq = 5.23 ± 0.73). Increasing the annealing/polymerisation temperature to 60 ◦C re-
sulted in a deterioration of the performance of assay A relative to that of assay D, especially
for the PrimerDesign master mix, a trend exacerbated by further increases to 62 ◦C and
64 ◦C, although assay A was able to amplify its target even at 64 ◦C. The Thermo Fisher
master mix continued to be the worst performer and failed to amplify either assay at 64 ◦C.
All Cq values are listed in Supplementary Data File, Sheet 5.
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Figure 5. Influence of master mix on qPCR performance of assays A and D with cDNA synthesised
by BioRad iScript. (A) Protocols of the four annealing/polymerisation conditions. (B) Plots of the
∆Cqs between assays A and D, carried out in duplicate at the four temperatures recorded with
PrimerDesign (blue), Roche (turquoise), Quanta (green) and ABI (brown) master mixes. The error
bars show standard deviations.
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2.5. Comparison of Mismatched and Corrected RdRp Probes

The performance of assay G, which uses the original mismatched RdRP_SARSr-P1
probe, was compared to assay H, which substitutes that probe with the corrected ALT-P1dg
sequence. The performance of both was compared to that of a published SARS-CoV-2
assay (CoV2-ID) [39]. Three replicate assays using the PCRBio one-step RT-qPCR master
mix recorded equivalent Cqs, with G:H ∆Cqs of 0.42 ± 0.71, 1.01 ± 0.50 and −0.05 ± 0.45,
respectively (Figure 6A). As expected, and in line with the previously reported lower
sensitivity of this assay, both assays were less sensitive than CoV2-ID, with average ∆Cqs
of 5.09± 0.64 and 5.54± 0.75 for G and H, respectively. Repeating the comparison between
assays G and H using two-step RT-qPCR assays with cDNA synthesised by Ultrascript
(Figure 6B) or SS4 (Figure 6C) and amplified using Bioline’s SensiFast qPCR master mix
confirmed the equivalence of the two probes, indicating that the two mismatches did
not affect the ability of the probe to bind to the PCR amplicon. The Cqs are listed in
Supplementary Data File, Sheet 6.
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Figure 6. Effect of mismatches between probe and target sequence. Column bar charts are shown
plotted as the mean Cq± SD. RdRp_SARSr-P2 results are shown in green, those obtained with NML
P1 dg in blue. (A) Cqs from three replicate PCRBio 1-step RT-qPCR assays demonstrate that whilst
the RdRp assay is less sensitive than CoV2-ID, the mismatched probe records approximately the
same Cqs as the non-mismatched one. (B) Cqs were recorded using cDNA reverse transcribed by
UltraScript and amplified by SensiFast qPCR master mix. (C) Cqs were recorded using cDNA reverse
transcribed by SS4 and amplified by SensiFast qPCR master mix.

2.6. Effect of Increased Reverse Primer Concentration

Finally, the potential for increasing the efficiency of the RT step was investigated by
doubling the concentrations of the reverse primers in assays A, C and D and carrying out
RT-qPCR assays with the PrimeScript 3 and PCRBio one-step master mixes. This resulted
in lower Cqs for assays A and C, especially with the PrimeScript master mix (Figure 7).
There was no real effect on the Cqs recorded by assay D run with specific primers. The Cqs
are listed in Supplementary Data File, Sheet 7.
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Figure 7. Effect of doubling R primer concentration for RT-qPCR analysis of RNA with assays A, C
and D. The lower Cqs recorded by the higher primer concentration are apparent for assays A and C
carried out using PrimeScript 3 (blue), compared with assay D, where doubling the concentration
of NML R sp made little difference. Assay A was also enhanced with the PCRBio (brown) master
mix, whereas assays C and D were not. The error bars show the standard deviations recorded by two
independent replicate reactions carried out with each assay.

3. Discussion

This investigation clarifies and restates a number of issues with regards to the Charité
RdRp assay:

1. The single base mismatch in the reverse primer reduces the sensitivity of the assay by
affecting the RT step.

2. The qPCR step is less affected by the primer mismatch than has been suggested.
3. In one-step RT-qPCR reactions, specific primers perform better than those that incor-

porate wobble bases.
4. The two mismatches in the RdRp_SARS-P1 probe do not affect the performance of

the assay.
5. Although there is a significant difference in the Tm between the forward and reverse

primers, our data show that the RdRp assay performs reliably at a broad range of
annealing temperatures and well above the calculated Tm for the R primer.

The performance of this assay has been evaluated previously in several publications
and shown to result in higher Cqs and a reduced sensitivity when compared with assays
targeting other viral genes [34–38]. The actual reduction, however, is not clear. This is
because the ∆Cqs vary considerably between reports, and the protocols used are also
significantly different (Supplementary Data File, Sheet 8). Critically, there is no agreement
on which of the most commonly used assays is the most sensitive one. The overall quality of
a molecular diagnostic test is dependent on an optimised, complete workflow starting with
sample selection and collection and ending with appropriate data, rather than individual
components of the workflow [31]. The performance differences of the various SARS-CoV-2
RT-qPCR kits are due to both the different viral sequences being targeted and, also, the
different reagents and master mix formulations, including the kit production quality [30].
Certainly, the conclusion from one of the papers is worth repeating that “thanks to this
[the Charité RdRp] assay an important number of COVID-19 diagnoses were made, which
contributed to limiting the spread of the outbreak” [38].
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The RdRp-SARSr-R mismatch might be expected to affect either the RT or the PCR,
depending on whether the cDNA protocol is a one-step RT-qPCR protocol using specific
RT primers or a two-step protocol using random priming. In vivo [40] and in vitro [41–43]
studies established long ago that reverse transcription is a 3′-mismatch-tolerant process, a
conclusion supported by more recent analyses [44]. Another study has shown that as many
as four internal mismatches have no effect on RT efficiency [45], and mismatched primers
are efficiently extended by Avian Myeloblastosis Virus-RT [46], again confirmed by a more
recent report [47]. Importantly, the effect of a mismatch varies up to seven-fold depending
on the master mix used [47]. Lastly, once a mismatched primer is reverse-transcribed into a
cDNA template, both are fully complementary, and no dramatic negative effect would be
expected for the subsequent PCR.

The data presented here support these inferences and extend them to demonstrate that
the extent of the mismatch-associated effect depends on three factors: (i) the choice of RT
and (ii) RT-qPCR amplification strategy, as well as (iii) the selection of RT-qPCR master mix
reagents. As demonstrated, the use of one-step protocols results in an average variability
of around four-fold across the five master mixes for the mismatch assay compared with the
corrected assay. Replacing the wobble bases altogether had no beneficial effect. Combining
a specific forward primer with the mismatched reverse primer had a slightly deleterious
effect, though the corrected wobble R primer performs the least well. However, there are
reagent-dependent differences; for example, assay E performs better than assay A with the
GSD Novaprime master mix.

The RT temperature gradient results shed some more light on the effects of the R
primer mismatch on the RT step within a one-step RT-qPCR assay. Lower annealing
temperatures have little effect on the RT efficiency for all three assays, although, again,
there are clear differences between the reagents, with the GSD Novaprime master mix
recording lower Cqs and performing better at the higher temperatures. However, clearly,
the mismatch is not significantly destabilised at higher RT temperatures, and lowering the
RT temperature does not restore an efficient cDNA synthesis from the mismatched primer.

Whereas assay A consistently performed poorly compared to assay B in the one-
step RT-qPCR reactions, a two-step approach involving a separate RT step that includes
random primers minimised the effect of the mismatch, a result observed for both RTs
tested. This was reproducible with the amplification of multiple independent RT replicates.
Interestingly, there was an RT-dependent difference in the ∆Cqs between A and D. The
reduced sensitivity can be ameliorated by adjusting the experimental conditions, most
obviously by increasing the concentration of the mismatched reverse primer. These results
differed from those reported elsewhere [37], but whereas these authors did not actually
increase the primer concentrations above those originally reported, the concentration of
RdRp_SARSr-R in this study were doubled to 1.6 µM.

The cDNA obtained using random primers incorporates any initially mismatched
nucleotides, and although the efficiency of the extension depends on how efficiently
a primer hybridises onto its complementary target sequence [48] and how effective Taq
polymerase binds to both [49], the consequences of the mismatches during the PCR reaction
are not straightforward [50]. A series of studies has established that the effects of the
mismatches are variable and depend on the sequence context [49,51], the nature of the
mismatch [52], the reaction conditions [53,54] and the polymerase [55], as well as the
primer length [56]. Single mismatches, especially when located well away from the 3′-end
of the primer, generally have a small effect on PCR amplification [57–59]. An internal
G:T mismatch is the least affected, and lowering the annealing temperature improves the
primer extension efficiency of almost all single mismatch types occurring at positions other
than the last 3–5 bases from the primer 3′-end [60]. This is, of course, relevant, since not
only is the mismatch 15 nucleotides from the 3′-end of the reverse primer, but it results in
the most favourable G:T pairing expected to have a minimal effect on the qPCR assay. This
deduction is borne out by the comparable performances of assays A and D over a wide
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temperature range in the qPCR reactions carried out with the first three cycles, involving a
45.0–60.0 ◦C annealing/polymerisation gradient.

An analysis of the compatibility of the primers and probe suggests that they are not a
good match by the accepted design criteria. One unanticipated feature of the two primers
is their disparate Tm, with the forward primer predicted to have a significantly higher Tm
than the reverse one. Conventionally, qPCR uses equimolar concentrations of two primers
with similar Tm. However, this is not necessary for an efficient PCR, as demonstrated by
Linear-After-The-Exponential (LATE)-PCR [61], where limiting the concentration of one
primer results in a decreased Tm for that primer compared to the one that is in excess [62].
The optimal annealing temperature, which is where most or all of the primers are bound to
their target, is likely to be quite different from the Tm, which is defined as the temperature
where 50% of the primers are bound to their target. The performance of the assay across
a range of annealing conditions above the predicted Tm shows that the choice of master
mix is important and that even a widely mismatched primer pair can result in efficient
amplification. Interestingly, mismatches in the probe that might be expected to affect
its performance by reducing its Tm have little effect, as shown by a comparison of the
mismatched original probe with a corrected version. It is expected that sufficient probe
binds to the template prior to the primer extension, maintaining adequate exonuclease
digestion of the probe.

If use of a mismatched reverse oligonucleotide results in less efficient cDNA synthesis
priming, one way of ameliorating this issue could be to increase its concentration, thus
improving the cDNA yield and, hence, the sensitivity of the assay. This is indeed possible,
although doubling the concentration of the mismatched RdRp_SARSr-R primer improved
the performance of assay A and, to a lesser degree, that of assay C without significantly
affecting assay D.

Lastly, no discussion of a diagnostic test would be complete without an acknowl-
edgement that, no matter how sensitive, accurate and reliable an RT-qPCR assay might
be, appropriate interpretation of the results is an equally important, final component of
the informed, clinical decision-making process. Whilst RT-qPCR can provide a measure of
the abundance of SARS-CoV-2 RNA above a technical threshold, it remains unclear how
that abundance, usually expressed as a Cq value, translates to infectiousness or the need to
implement rigorous public health measures. This is exemplified by the wide Cq variability
observed after the amplification of the same RNA sample with a commercial primer and
probe (PrimerDesigns Coronavirus Genesig assay) and nine different commercial master
mixes (Supplementary Figure S1). This is expected, and has been previously discussed, but
adds weight to the argument that reporting unqualified Cqs in the context of testing for
SARS-CoV-2 is meaningless.

In theory, the use of RT-qPCR testing to determine the SARS-CoV-2 viral load should
be useful for the clinical management of individuals and the assessment of their need to
self-isolate, as well as the launch of contact tracing. However, although samples with lower
Cq values generally have more viral RNA than those with higher Cq values [63], the clinical
relevance and precision associated with those differences has not been determined [64], and
even the meaning of “high” Cq is undefined. The inconsistencies in using Cq cut-off values
were demonstrated by a publication reporting no positive culture growth in samples with
Cq > 24 [65]; another reporting a positive culture in samples with Cqs of 34 and a negative
culture with Cqs of 22 [66] and yet another report of no positive culture above a Cq of 34
but 12% positive at 33, 50% at 21, 28% at 30, 70% at 29 and 53% at 27 [67]. Crucially, a single
raw, not normalised Cq value is not a quantitative result. At the very least, a Cq informed
quantity would have to involve normalisation using some marker of the cell mass or the
mucosal surface [68] and, crucially, be considered in a clinical context [69]. Sadly, the kind
of results where one group reports no correlation between the Cq values and severity of the
disease or mortality [70] and another that claims that the Cq value predicted the disease
severity and survival [71] is quite the norm. In practice, there are several reasons that Cq
values continue to have limited use in clinical settings. First, a positive PCR test alone does
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not correlate with infectivity, and currently, there is no standard measure of a viral load
in clinical samples. Second, numerous variables have a bearing on the viral load, and the
patient outcomes are determined by an additional set of variables such as comorbidities
and age. Third, the Cq values are relative, as they are affected by sample collection and
processing [72], the targets, reagents, assays [73] and instruments [74]. Fourth, there is a
statistical uncertainty around any Cq value, which, for RT-qPCR, can exceed 3 Cqs under
some circumstances, such as when the template is degraded or present at a low copy
number. Fifth, the Cq values and a lower viral load may not be directly proportional,
because inhibitory factors within samples may cause a later amplification [75]. Sixth, it has
been known for a long time that the testing of the same sample by different laboratories
can result in a huge variability in the recorded Cq values. Consequently, it is not feasible to
dictate a universal Cq to demarcate positive from negative test results [76], even if the Cq
values are translated as units of a pathogen load based on a standard curve. Until suitable,
clinically validated standards are available, it is not possible to correlate the data obtained
from different testing facilities.

In conclusion, the reverse primer mismatch in the RdRp component assay of the
first published SARS-CoV-2 test affects the performance of that assay. In contrast, the
mismatched probe has no appreciable effect on the assay sensitivity. Importantly, it is
possible to ameliorate the effects of the primer mismatch through a combination of optimal
RT, reagents and protocols. Whilst we would continue to stress that it is important to design
assays carefully from the start, our findings hold an important lesson for RT-qPCR assays
in general, as they highlight the flexibility and robustness of this methodology, where even
a suboptimal design can be rescued by intelligent optimisation.

4. Methods and Materials

Details of manufacturers and suppliers are listed in the Supplementary Data File,
Sheet 9.

4.1. Primers and Probes

This study used five oligonucleotide primers and the two RdRp gene probes (SARS
RdRp_SARSr-P1 and SARS RdRp_SARSr-P2) from the Drosten paper, as well as a probe
correcting the mistakes in the RdRp_SARSr-P1 probe. All were HPLC-purified, and their
sequences and locations on the 100-bp amplicon are shown in Figure 8, with the IUPAC
nucleotide codes indicating the wobble bases highlighted.
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RdRp_SARSr-R 3 CARATGTTAAASACACTATTAGCATA 800
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RdRp_SARSr-P1 7 HEX-CAGGTGGWA-Nova-CRTCATCMGGTGATGC 100

ALT P1 dg 8 HEX-CAGGTGGWA-Nova-CMTCATCMGGAGATGC 100
M= A or C; R=A or G; S=G or C; V= A, C or G; W=A or TIUPAC nucleotide base code 

Figure 8. Sequence, concentration and location of oligonucleotides used in this study. Matched
and mismatched nucleotides are shown in green or red, respectively. The final concentration of the
reverse primer was doubled in one set of experiments.

Various combinations of primers and probes were used to prepare eight assays, desig-
nated A–H (Figure 9).
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Figure 9. Assays A–H. (A) original assay; (B) original forward and correct specific reverse primers;
(C) correct specific forward and original reverse primers; (D) correct specific primers; (E) original
forward and correct wobble reverse primers; (F) correct specific forward and wobble reverse primers.

4.2. Instruments

The two qPCR instruments used were Cole-Parmer’s PCRMax instrument (WZ-93947-
00 with 48-well plates (WZ-93947-99) and Bio-Rad’s CFX Connect (1855200) with white
qPCR plates (HSS9665) sealed using qPCR plate heat seals (1814030).

4.3. RNA

Multiple SARS-CoV-2 RNA samples were extracted from a Seracare Accuplex SARS-
CoV-2 Full-Genome verification panel (505-0168) using Qiagen’s QIAamp Viral RNA mini
kit (52904). The RNA quality and integrity were assessed using an Agilent 2100 Bioanalyser
(G2939BA), and the samples were stored at −80 ◦C.

4.4. RT-qPCR Reactions
4.4.1. RT Reactions

The SARS-CoV-2 RNA was reverse-transcribed in 20 µL using Thermo Fisher’s Su-
perscript IV Vilo (SS4) (11756050) or Bio-Rad’s iScript (1708891), both of which use a
combination of random hexamers and oligo-dT to prime cDNA synthesis. The RT condi-
tions were 5 min at 25 ◦C, 5 min at 55 ◦C (SSIV) or 46 ◦C (iScript) and 5 min at 85 ◦C (SSIV)
or 5 min at 85 ◦C (iScript). The cDNA samples were diluted to 50 µL with RNase-free water
(Fisher Scientific 15992440).

In addition, the SARS-CoV-2 RNA was reverse-transcribed in 20 µL using PCRBio’s
UltraScript (PB30.12-01) with 5 µM as the final concentration of hexamers. The RT con-
ditions were 5 min at 25 ◦C, 5 min at 42 ◦C and 10 min at 85 ◦C. The cDNA sample was
diluted to 50 µL with water.
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4.4.2. 1-Step RT-qPCR

The SARS-CoV-2 RNA was subjected to RT-qPCR amplification with the eight assays
listed in Figure 9 using one or more of six commercial one-step master mixes: PCRBio
1-step Go (PB10.53-10), Takara PrimeScript (RR600A), NEB Luna (E3005S), Eurofins GSD
Novaprime (PCOV6033), Quanta XLT Toughmix (95132-500) and ABI TaqPath (A15299).
All reactions were carried out in 5-µL reactions using the oligonucleotide concentrations
shown in Figure 8. The accuracy and reproducibility of such a small reaction volume is
demonstrated in Supplementary Data File, Sheet 10. The protocol consisted of an RT (5 min
at 50 ◦C) and an activation/denaturation step (2 min at 95 ◦C), followed by 40 cycles of 5 s
at 95 ◦C and 10 s at 60 ◦C.

4.4.3. 2-Step RT-qPCR

One-microliter aliquots of cDNA synthesised by SS4 or iScript were amplified with
the six primer combinations using Meridian Bioscience SensiFast probe master mix (BIO-
86050). The PCR conditions were 2 min at 95 ◦C, followed by 40 cycles of 5 s at 95 ◦C
and 10 s at 60 ◦C. Where indicated, additional qPCR master mixes from Roche (KK4701),
PrimerDesign (oasig-standard-150) and ABI (4444556) were used.

4.4.4. Gradient RT-qPCR

The effect of varying the RT temperatures was tested for all six assays using the GSD
Novaprime 1-step RT-qPCR master mix. A premix of RNA in 1× master mix was added to
six tubes containing the various primer combinations and probes and run on a Bio-Rad
CFX Connect using the following conditions: 5 min at 25 ◦C; 10 min at eight different
temperatures (40.0 ◦C, 40.6 ◦C, 42.0 ◦C, 43.9 ◦C, 46.3 ◦C, 48.3 ◦C, 49.4 ◦C and 50 ◦C); 2 min
at 95 ◦C and 40 cycles of 5 s at 95 ◦C and 10 s at 60 ◦C. Assays A, B and D were also analysed
using the PCRBio and Quanta Toughmix 1-step reagents with the same conditions.

4.4.5. Gradient qPCR

The effect of lowering the annealing temperature for the first three PCR cycles was
analysed by amplifying the cDNA samples using either SYBR Green or RdRp_SARSr-P2 as
reported with the appropriate SensiFast master mix: Meridian Bioscience SYBR master mix
(BIO-98020) or the SensiFast probe master mix. The protocol in a Bio-Rad CFX Connect was
1-min activation at 95 ◦C; three cycles of 3 s at 95 ◦C and 10 s at 45.0 ◦C, 46.0 ◦C, 48.0 ◦C,
50.8 ◦C, 54.6 ◦C, 57.5 ◦C, 50.1 ◦C and 60.0 ◦C, followed by 36 cycles of 5 s at 95 ◦C and 10 s
at 60 ◦C and a melt curve from 65 to 95 ◦C.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22168702/s1.
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