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Abstract In this work, we present a rules-based method

for localizing retinal blood vessels in confocal scanning

laser ophthalmoscopy (cSLO) images and evaluate its

feasibility. A total of 31 healthy participants (17 female;

mean age: 64.0 ± 8.2 years) were studied using manual

and automatic segmentation. High-resolution peripapillary

scan acquisition cSLO images were acquired. The auto-

mated segmentation method consisted of image pre-pro-

cessing for gray-level homogenization and blood vessel

enhancement (morphological opening operation, Gaussian

filter, morphological Top-Hat transformation), binary

thresholding (entropy-based thresholding operation), and

removal of falsely detected isolated vessel pixels. The

proposed algorithm was first tested on the publically

available dataset DRIVE, which contains color fundus

photographs, and compared to performance results from

the literature. Good results were obtained. Monochromatic

cSLO images segmented using the proposed method were

compared to those manually segmented by two indepen-

dent observers. For the algorithm, a sensitivity of 0.7542,

specificity of 0.8607, and accuracy of 0.8508 were

obtained. For the two independent observers, a sensitivity

of 0.6579, specificity of 0.9699, and accuracy of 0.9401

were obtained. The results demonstrate that it is possible to

localize vessels in monochromatic cSLO images of the

retina using a rules-based approach. The performance

results are inferior to those obtained using fundus pho-

tography, which could be due to the nature of the

technology.
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Image processing � Confocal scanning laser

ophthalmoscopy (cSLO) � Blood vessel

Abbreviations

SD-OCT Spectral-domain optical coherence tomography

cSLO Confocal scanning laser ophthalmoscopy

RGB Red–green–blue color space

HSI Hue–saturation–intensity color space

YIQ Luminance–in-phase-quadrature color space

NTSC National Television System Committee

1 Introduction

The segmentation of retinal vessels and their morphology

such as length, width, tortuosity, and branching patterns can

be used for the diagnosis, screening, treatment, and evalu-

ation of various cardiovascular and ophthalmologic dis-

eases [1]. It has been shown that morphological features of

retinal vessels in childhood and adulthood are related to

cardiovascular risk factors, such as blood pressure and body

mass index [2], and both coronary heart disease and stroke

in later life [3]. Automatic detection of retinal vessels and

the analysis of their morphology are feasible in screening

programs for diabetic retinopathy [4], arteriolar narrowing

detection [5], detection of foveal avascular regions [6],

retinopathy of prematurity evaluation [7], and investigation

of general cardiovascular diseases and hypertension [8].

Temporal or multimodal image registration [9], optic

disc identification, and fovea localization [10] are possible
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using automatic algorithms for retinal vessel detection and

branch point detection. The retinal vascular tree can even

be used for biometric identification, as it has been found to

be unique for each individual [11, 12].

The automated analysis of the above-mentioned mor-

phological features is accepted by the medical community

[13], as manual measurement is not only time-consuming,

but also dependent on the observer and their experience.

Many algorithms and techniques have been proposed for

the segmentation of retinal blood vessels using two-di-

mensional (2D) colored retinal images acquired from a

conventional fundus camera [13]. With the introduction of

confocal scanning laser ophthalmoscopy (cSLO) [14], it

has become possible to image the fundus without the need

for mydriatics. Moreover, confocal scanning has several

advantages over a conventional fundus camera in terms of

convenience for screening.

cSLO uses a focused light beam to scan over the area of

the fundus to be imaged [15–17], and only a small spot

from the fundus is illuminated at any time. The light that

returns from this spot determines the brightness of a cor-

responding point in the generated image or screen. An

array of points or pixels can be built up by scanning suc-

cessive points on the fundus with the light beam. This is

achieved using a spinning and oscillating mirror that helps

the light beam to scan faster across the fundus.

cSLO images are monochromic and thus differences in

spectral information are lost. However, a monochromatic

cSLO image differs from a conventional monochromatic

image in that the contrast in a confocal image arises mainly

from differences in the absorption of incident light [18].

This means that variation in the wavelengths found in a

monochromatic fundus camera image differs from that in a

confocal image. In a confocal image, the blood vessels

show up well when using red illumination, whereas this

does not happen in conventional monochromatic images.

The resolution of cSLO may be less than that of a con-

ventional fundus camera for structures that have high

contrast; however, cSLO may be able to resolve structures

that cannot be seen by conventional imaging because of

poor contrast. This is due to the nature of the technology, as

the visibility of the structure depends on its contrast with its

surroundings.

As mentioned previously, cSLO has several advantages.

These include:

(a) Dilation is no longer required to ensure high-quality

results. The burden of fundus investigations on the

patient is low, resulting in a high acceptance rate for

longitudinal investigations.

(b) Examinations can be performed in under 2 min.

(c) cSLO is often integrated with other technologies

such as spectral-domain optical coherence

tomography (SD-OCT), thereby facilitating multi-

modality imaging, which links different views on a

particular disease and opens the research spectrum

[19].

Retinal vessels are arterioles and venules starting from

the optic disc and are spread out over the fundus. There is a

strong light reflex along the centerline of the retinal vessels

that is more apparent on arterioles than venules and in

younger compared to older participants.

As mentioned before, methods for retinal vessel seg-

mentation using 2D colored retinal images acquired from a

conventional fundus camera can be divided into two

groups, namely rules-based methods and supervised

methods. Rules-based methods use vessel tracking, math-

ematical morphology, matched filtering, model-based

locally adaptive thresholding, or deformable models.

Supervised methods are based on pixel classification,

which consists of classifying each pixel into one of two

classes, vessel and non-vessel.

There are several approaches for rules-based methods.

Vessel tracking uses the centerlines of vessels to obtain the

vasculature of the structure [20–25]. An initial set of

starting points, for example, at the optic nerve, is estab-

lished automatically or manually and the vessels are traced

from there. Another approach is based on the knowledge

that vessels are piecewise linear and connected [7, 26–29];

therefore, morphological operators can be used to filter the

vasculature from the background. Matched filtering tech-

niques [30–36] extract the vessel silhouette from the

background using a 2D linear structural element with a

Gaussian cross-profile section that is rotated into three

dimensions, with the kernel rotated into many different

orientations (usually 8 or 12) to fit into the vessels of dif-

ferent configurations. A general framework based on a

verification-based multi-threshold probing scheme was

presented by Jiang et al. [37]. A deformable or snake model

has also been used [38, 39] that evolves by iterative

adaption to fit the shape of the desired structure.

Supervised methods are based on training with manually

labeled images [40–46]. The images are pre-processed

using approaches similar to rules-based methods. There-

after, each pixel is classified as a vessel or non-vessel and

then pixels are trained using manually labeled images.

This paper proposes a rules-based method partly adop-

ted from Marin et al. [46], Pal et al. [47], and Chan-

wimaluang et al. [33]. The method has several steps: (1)

image pre-processing for gray-level homogenization and

blood vessel enhancement, (2) binary thresholding opera-

tion, and (3) removal of falsely detected isolated vessel

pixels.

To date, we have not been able to find a method for

vessel segmentation in cSLO images. Analogue techniques
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from fundus photography [33, 46, 47] were adopted for this

new image acquisition technique, which is becoming

increasingly popular. The purpose of our study is to

determine whether existing techniques can be applied to

localizing retinal blood vessels in cSLO images.

2 Materials and Methods

To evaluate the vessel segmentation methodology, 31

peripapillary scan acquisition cSLO images of one ran-

domly selected eye of 31 healthy participants (17 female

and 14 male; mean age, 64.0 ± 8.2 years) were used.

Furthermore, as this approach adopts previous algorithms

for conventional fundus photographs, it was evaluated

using the dataset digital retinal images for vessel extraction

(DRIVE) [43]. DRIVE is a publicly available database

consisting of a total of 40 color fundus photographs. The

photographs were obtained from a diabetic retinopathy

screening program in the Netherlands that comprised 453

subjects between 31 and 86 years of age. This enables

comparison with the literature. The Ethics Committee of

the Medical Association of Hamburg ruled that approval

was not required for this study, as all data were acquired

anonymously. The study followed the recommendations of

the Declaration of Helsinki (Seventh revision, 64th Meet-

ing, Fortaleza, Brazil) and Good Clinical Practice. Written

informed consent was obtained from each patient before

any examination procedures were performed. If the patients

were not able to give informed consent, they were excluded

from the study.

Only patients meeting the inclusion and exclusion cri-

teria were included. The ophthalmic inclusion criteria were

(i) best-corrected visual acuity of 0.3 LogMAR or better,

(ii) spherical refraction within ±5.0 dioptres (D), (iii)

cylindrical correction within ±2.0 D, and (iv) normal

results for visual field testing (Humphrey Visual Field

Analyzer 30–2 [76 points over the central 30� of the visual
field]; Humphrey, San Leandro, CA, USA). The exclusion

criteria were (i) intensive alcohol abuse, (ii) body mass

index [30 kg/m2, (iii) intraocular pressure C21 mmHg,

(iv) anterior ischaemic optic neuropathy, (v) high myopia,

and (vi) congenital abnormalities of the optic nerve.

Patients underwent various ophthalmic examinations,

including (i) assessment of best-corrected visual acuity by

auto-refractometry (OCULUS/NIDEK auto-refractometer,

OCULUS Optikgeräte GmbH, Wetzlar, Germany) fol-

lowed by subjective refractometry, (ii) slit lamp-assisted

biomicroscopy of the anterior segment, (iii) ophthal-

moscopy after medical dilation of the pupil, (iv) visual field

testing (Humphrey Visual Field Analyzer 30-2 [76 points

over the central 30� of the visual field]), (v) Goldmann

applanation tonometry, and (vii) cSLO image acquisition

(SPECTRALIS; Heidelberg Engineering, Heidelberg,

Germany).

cSLO images were acquired using the SPECTRALIS

device (SPECTRALIS software version 6.0a; Heidelberg

Engineering), which is a combination of normal SD-OCT

and cSLO. In our study, at least three high-resolution

peripapillary images were taken. Scans with low fixation or

failing retinal nerve fiber layer (RNFL) segmentation (thus

possible low quality of cSLO as well) were excluded. To

minimize possible variability, all images were acquired by

one trained investigator. The criteria for determining the

scan quality were a clear fundus image before and after

image acquisition and absence of scan or algorithm

failures.

All cSLO images were manually segmented by two

experienced observers independently. These were set as the

gold standard (approximate ground truth) and were com-

pared with the automatically segmented vessels of the

algorithm. Statistical analysis was carried out using a

commercially available software package (Prism 6 for Mac

OSX; GraphPad Software, Version 6.0d). The means and

standard deviations were determined, and p values were

corrected according to Bonferroni to correct for performing

multiple statistical analyses. All p values were two-tailed

and a p value of\0.05 was considered to indicate statistical

significance. Correlation was performed using Pearson

correlation calculations, as the values sampled from the

populations followed an approximate Gaussian distribu-

tion. The correlation coefficient is indicated by r. One eye

of each participant was used for statistical analysis.

3 Calculation

The proposed methods are (1) image pre-processing for

gray-level homogenization and blood vessel enhancement,

(2) binary thresholding operation, and (3) removal of fal-

sely detected isolated vessel pixels. The input images are

monochromatic in the case of cSLO. For color photographs

from the DRIVE dataset, only the green channel of the

retinal image was selected because it best highlights

vessels.

3.1 Image Pre-processing for Gray-Level

Homogenization and Blood Vessel Enhancement

cSLO images have high levels of noise; therefore, pre-

processing is needed before pixel features can be extracted

in the classification step. The pre-processing includes:

(a) removal of the vessel central light reflex, (b) homoge-

nization of the background, and (c) enhancement of the

vessels. These steps are shown in Fig. 1a–f.
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3.1.1 Vessel Central Light Reflex Removal

Retinal blood vessels in cSLO images typically appear

darker than the surrounding tissue due to their lower

reflectance. Furthermore, inner vessel pixels appear darker

than the outer ones; however, many vessels include a

central light reflex. For accurate segmentation of the vessel,

this bright strip needs to be removed. Therefore, a mor-

phological opening operation is applied using a three-pixel-

diameter disc. An example is shown in Figs. 1b, c. This

step was not needed for the DRIVE dataset with color

fundus photographs.

3.1.2 Homogenization of Background

Apart from the vessels, the fundus contains some areas of

non-uniform intensity due to unequal distribution of the

RNFL, translucency of the choroid tissue, and variable

illumination. For the feature vector operation later on, this

variation in intensity needs to be removed as much as

possible to improve the performance of vessel segmenta-

tion. Firstly, a 3 9 3 mean filter is applied to smooth the

image, followed by a Gaussian kernel of size 3 9 3, with a

standard deviation of 1.8. With this filtering, the smallest

vessels might not be detected, but the overall performance

is increased due to noise reduction. Secondly, a back-

ground image is generated using a 20 9 20 filter. This

background image is subtracted from the former image,

resulting in homogenization of the background.

The resultant image is not well distributed, and covers

the full range of 0–255 (refer to 8-bit images). To express

this linearly, the values are transformed into integers cov-

ering the whole range of possible gray levels, leading to a

shade-corrected image with reduced background intensity

variations and enhanced contrast. To remove the effect of

differing illumination, we created a homogenized image Ih
using the following equation: Ih = Isc ? 128 - max(Isc)

where, max(Isc) is the maximum value of the image Isc. If

the pixel value of Ih is less than 0 or greater than 255, then

it gets replaced with 0 or 255, respectively.

Fig. 1 Demonstration of image pre-processing for gray-level homog-

enization and blood vessel enhancement. a Original image, b Original

image magnified before vessel central light reflex removal using

morphological opening operation, c Original image magnified after

vessel central light reflex removal using morphological opening

operation, d Homogenization of background using Gaussian filter, e
Further homogenization of background by reducing intensity varia-

tions and enhancing contrast and f Enhancement of vessels using

morphological Top-Hat transformation
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3.1.3 Enhancement of Vessels

The final step for pre-processing the cSLO image is the

vessel enhancement. This is achieved by applying the mor-

phological top-hat transformation. An image with bright

retinal features such as the optic disc and the possible pres-

ence of exudates of reflection artefacts is generated by

applying amorphological opening (disc that is eight pixels in

radius). The image is removed from the former generated

homogenized image, resulting in the highlighting of the

darker structures in the image (i.e., blood vessels, fovea,

possible presence of micro-aneurysms or haemorrhages).

3.2 Binary Thresholding

An entropy-based thresholding scheme can be used to dis-

tinguish between vessel segments and the background, as it

takes into account the spatial distribution of gray levels, and

the image pixel intensities are not independent of each other.

This step was adopted from Chanwimaluang et al. [33]. We

calculated a co-occurrence matrix, T, based on pixel values

of image I. As we assume that there are 256 color levels, the

size of T is 256 9 256. T contains the structural information

of the image, which is obtained by analyzing consecutive

pixels and their co-occurrence. Any location, for example,

Ti,j, will contain the number of times the pixel values i and

j occur consecutively. Such consecutive occurrences of the

same pixel value can appear horizontally or vertically. If we

suppose that P and Q are the height and width of the image,

then we can formally describe T as follows:

Ti;j ¼
XP

m¼0

XQ

n¼0

d

where d = 1 if either I(m, n) = i and I(m, n ? 1) = j or

I(m, n) = i and I(m ? 1, n) = j; otherwise, d = 0. Then,

the probability of the co-occurrence of pixels i to j is cal-

culated as:

Pij ¼
Ti;jP

i

P
j Ti;j

The threshold value can be any value between 0 and

255, inclusive. If we suppose that s is such that

0 B s B 255, then the following quantities of all s are

calculated as follows:

PAs ¼
X8

i¼0

X8

j¼0

Pij

PCs ¼
X255

i¼sþ1

X255

j¼sþ1

Pij

Then, the second-order entropies of the foreground, HAs,

and the background, HCs, for all s are calculated as:

HAs ¼ �:5PAslog2PAs

HCs ¼ �:5PCslog2PCs

The total second-order entropy, Hs, is calculated for all

s as:

Hs ¼ HAs þ HCs

The final threshold will be s, for which Hs is maximum:

Threshold ¼ argmax
xs

Hx

The result of the binary thresholding operation is

demonstrated in Fig. 2a.

3.3 Post-processing for Removing Falsely Detected

Isolated Vessel Pixels

We encountered a significant amount of unnecessary seg-

ments that were not connected with other segments and

could thus be considered as noise. To remove these

unnecessary segments, we applied a method for removing

unconnected components. It is obvious that all the unnec-

essary segments are smaller in size, which means that the

total number of pixels inside the unnecessary segments is

relatively low.

Component regions are built in the image, and all pixels

in a component region are given the same label. In order to

remove artefacts, the pixel area in each connected region is

measured; during artefact removal, each region connected

to an area below p is reclassified as a non-vessel. An image

after the removal of all non-vessel classified pixels is

shown in Fig. 2b.

4 Results

In order to quantify the algorithmic performance of the

proposed method on a fundus image, the resulting seg-

mentation was compared to its corresponding ground truth

image. This image was obtained using a manually created

vessel mask, in which all vessel pixels are set to one and all

non-vessel pixels are set to zero. Thus, automated vessel

segmentation performance can be assessed. Algorithmic

performance was based on a vessel pixel and non-vessel

pixel comparison with the ground truth image and evalu-

ated in terms of sensitivity, specificity, true positive rate,

false positive rate, and accuracy.

For the algorithm performance on the DRIVE dataset

versus the ground truth, the results were a sensitivity of
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0.6745, a specificity of 0.9714, a true positive rate of

0.6745, a false positive rate of 0.0286, and an accuracy of

0.9334 (Table 1).

For the first observer versus second observer evaluation,

the results were a sensitivity of 0.6579, a specificity of

0.9699, a true positive rate of 0.6579, a false positive rate

of 0.0301, and an accuracy of 0.9401. For the algorithm

performance versus the first observer evaluation, the results

were a sensitivity of 0.7542, a specificity of 0.8607, a true

positive rate of 0.7542, a false positive rate of 0.1393, and

an accuracy of 0.8508. The best and worst algorithm seg-

mentations are given in Table 2. Individual performance

values for all 31 patients are shown in Fig. 3.

5 Discussion

Methods for retinal vessel detection in fundus recordings,

regardless of the image acquisition technique and the

resulting image, can be classified into rules-based and

supervised methods. This study proposed a rules-based

method for retinal vessel detection in monochromatic

cSLO fundus images. To the best of our knowledge, this is

the first approach for automated vessel detection in cSLO

images. The cSLO images are pre-processed for gray-level

homogenization and blood vessel enhancement, followed

by a binary thresholding operation and removal of falsely

detected isolated vessel pixels. In the best case, the pro-

posed approach for 31 previously described cSLO images

had a sensitivity of 0.7542, a specificity of 0.8607, a true

positive rate of 0.7542, a false positive rate of 0.1393, and

an accuracy of 0.8508. For the DRIVE color fundus ima-

ges, an accuracy of 0.9334 was obtained.

A direct comparison of our approach with other retinal

vessel segmentation algorithms is possible using the

DRIVE dataset. Published fundus photography vessel

segmentation was often performed on the publicly avail-

able datasets DRIVE and STARE. The DRIVE database

consists of a total of 40 color fundus photographs. The

STARE database [31] contains 20 fundus photographs for

blood vessel segmentation, 10 of which contain pathology.

Performance values are presented in Table 3 (partly

adapted from Fraz et al. [13]). Comparing the performance

values for DRIVE with the chosen literature shows no

differences to very small differences in the selected per-

formance values (sensitivity, specificity, and accuracy) The

performance values for cSLO images obtained using our

approach are lower compared to those for fundus

photographs.

This is the first algorithm for vessel detection in cSLO

images, and thus, there is room for further improvement. A

possible reason for the performance differences is that the

Fig. 2 Demonstration of binary

thresholding and removing

falsely detected vessel pixels.

a Binary thresholding operation,

b post-processing for removing

falsely detected isolated vessel

pixels

Table 1 Average performance measures for color fundus photography (using DRIVE dataset) and cSLO (separated into inter-observer per-

formance and algorithm versus observer performance)

Segmentation method Average accuracy True positive rate False positive rate Sensitivity Specificity

DRIVE—color fundus photography 0.9334 0.6745 0.0286 0.6745 0.9714

Intra-observer—cSLO 0.9401 0.6579 0.0301 0.6579 0.9699

Proposed methodology versus first observer—cSLO 0.8508 0.7542 0.1393 0.7542 0.8607
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images were different in quality. cSLO may be able to

resolve certain structures better than does fundus photog-

raphy, as the visibility of structures depends on their con-

trast with surroundings. However, the total resolution of

cSLO is less than that of fundus photography. Furthermore,

fundus photography enables separate color channel analy-

sis. In most cases, the green channel is extracted as it

provides the best vessel/background contrast in color

images (the red channel is the brightest color channel and

has the lowest contrast, and the blue channel offers poor

dynamic range). Therefore, blood-containing elements in

the retina are best represented (i.e., have the highest con-

trast) in the green channel [48]. A combination of two

colors can also be used, for example, by using the red and

green channels of a given retinal image to correct non-

uniform illumination in color fundus images [49]. This can

be even further optimized when using different color

spaces such as the red–green–blue color space, the hue-

saturation-intensity (HSI) color space, or the luminance–in-

phase-quadrature color space (by the National Television

System Committee [NTSC]) [29]. However, these options

do not exist for cSLO images as they are monochromatic,

thus lacking potentially relevant segmentation information.

These results contribute to current knowledge that

shows that it might be possible to automatically localize

retinal blood vessels in monochromatic cSLO images,

although with potentially inferior performance compared to

that of fundus photography, using a rules-based method.

The potential limitations of this study are as follows.

First, only one method was presented, so it might be

unclear whether the inferior performance results compared

to those of fundus photography are due to our approach or

the nature of the technology. Second, no comparison

between rules-based and supervised methods was pre-

sented, and therefore, further studies that consider other

approaches are required. Third, we were unable to use a

publicly available database for cSLO, as none exists. As a

Table 3 Selection of performance measures for different vessel segmentation methodologies using local dataset, DRIVE database, or STARE

database

Methodology Database Average accuracy Sensitivity Specificity

Human observer DRIVE 0.9470 0.7763 0.9723

STARE 0.9348 0.8951 0.9384

Rules-based: vessel tracking using centerlines of vessels

Liu and Sun [24] Local dataset 0.75–0.97 (depends on image) – –

Tolias and Panas [21] Local dataset 0.8236 – –

Rules-based: filtering vasculature from background using morphological operators

Mendonca and Campilho [28] DRIVE 0.9452 0.7344 0.9764

STARE 0.9440 0.6996 0.9730

Fraz et al. [13] DRIVE 0.9430 0.7152 0.9769

STARE 0.9442 0.7311 0.9680

Rules-based: matched filtering techniques

Hoover et al. [31] STARE 0.9267 0.6751 0.9567

Cinsdikici and Aydin [36] DRIVE 0.9293 – –

Rules-based: deformable or snake model

Espona et al. [39] DRIVE 0.9316 0.6634 0.9682

Supervised methods

Ricci and Perfetti [45] DRIVE 0.9563 – –

STARE 0.9584 – –

Martin et al. [46] DRIVE 0.9452 0.7067 0.9801

STARE 0.9526 0.6944 0.9819

Fig. 3 Individual performance values for all 31 patients compared to

manual segmentation of first observer

492 R. Kromer et al.

123



consequence, comparisons of future algorithms with our

approach are less diagnostically significant. However, we

are happy to share our dataset (including manually seg-

mented images) with other study groups.

The strengths of this is study are as follows. First, this is

the first approach for monochromatic cSLO images

showing that vessel localization is possible using this

image acquisition technique. Second, the study used high-

quality images (taken by an experienced, trained investi-

gator) and manually segmented images from two obser-

vers. Third, the proposed approach was tested on the

publically available dataset DRIVE for better comparison

with the literature.

6 Conclusion

This work demonstrated that it is possible to localize vessels

in monochromatic cSLO images of the retina using a rules-

based approach adopted from color fundus photography

approaches with an accuracy of 0.8508 compared an inter-

observer accuracy of 0.9401. The performance results are

inferior to those of fundus photography, which could be due

to the nature of the technology. Further studies are needed to

evaluate alternative approaches for vessel detection.
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Abràmoff, M. D. (2004). Comparative study of retinal vessel

segmentation methods on a new publicly available database.

Medical Imaging, 2004(5370), 648–656. doi:10.1117/12.535349.
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