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Abstract: Template matching is a simple image detection algorithm that can easily detect different
types of objects just by changing the template without tedious training procedures. Despite these
advantages, template matching is not currently widely used. This is because traditional template
matching is not very reliable for images that differ from the template. The reliability of template
matching can be improved by using additional information (depths for the template) available from
the vision sensor system. Methods of obtaining the depth of a template using stereo vision or a
few (two or more) template images or a short template video via mono vision are well known in
the vision literature and have been commercialized. In this strategy, this paper proposes a template
matching vision sensor system that can easily detect various types of objects without prior training.
To this end, by using the additional information provided by the vision sensor system, we study a
method to increase the reliability of template matching, even when there is a difference in the 3D
direction and size between the template and the image. Template images obtained through the vision
sensor provide a depth template. Using this depth template, it is possible to predict the change
of the image according to the difference in the 3D direction and the size of the object. Using the
predicted changes in these images, the template is calibrated close to the given image, and then
template matching is performed. For ease of use, the algorithm is proposed as a closed form solution
that avoids tedious recursion or training processes. For wider application and more accurate results,
the proposed method considers the 3D direction and size difference in the perspective projection
model and the general 3D rotation model.

Keywords: image processing; template matching; vision sensor

1. Introduction

Template matching is a well-known technique often used in many image-processing
and computer vision tasks, e.g., object detection and recognition [1,2]. This is due to
the simplicity and efficiency of the method. In addition, compared with learning-based
methods e.g., deep-learning, NCC, and Viola-Jones. Object detection using template
matching is often preferred in applications where the detection is required to perform using
a single template supplied by the user and off-line learning every possible object class is
impossible. Moreover, the template is unknown by the detection system beforehand [2].
The template matching method can be easily applied to various objects by changing only
one template.

Template matching is simple, and suitable for VLSI logic gate implementations that
achieve lower prices and faster speeds than software implementations on PC or embedded
systems [3].

Considering the advantages of template matching, this paper aims to develop a
template matching system for multi-purpose image detection and recognition that can be
easily applied to various objects.

Despite the advantages, template matching needs some improvement, and research
has been conducted to this end. Typical distortion measures for template matching can be
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combined with tone mapping to handle illumination-changes [4], with asymmetric correla-
tion to handle noise [5], or with edge orientation in complement with spatial information
to handle cluttered images [6].

Many studies on fast template matching methods have been reported, which focus on
improving the search algorithm [7], reducing the number of matching points, or based on
two state coarse fine approaches [8]. However, all the methods mentioned so far assume
only 2D translation between the template and the target image. Since 2D translation alone
cannot cope with local deformations of the shape of an object, pixel-by-pixel differences
occur at the corresponding points of the template and query regions.

To cope with this local deformation, much research has been done. Bai et al. used
“shape band”, a dilated version of templates [9]. However, the shape band does not
constrain the location of the template points on the same shape. In [10], color histogram
matching is used (for detection). This does not restrict the geometric transformation;
however, in many cases the color histogram is not a good representation, e.g., in the
presence of background clutter and occlusions [11].

Korman et al. [12] introduced a template matching algorithm under 2D affine transfor-
mation. Tian and Narsimhan [13] found a globally optimal estimation of nonrigid image
distortions. In [14], viewpoint-invariant (rotation-invariant) template matching methods
were intensively discussed. These methods typically use 2D affine transformations to
simulate the view of the query image from different perspectives. In [1], the previous
image information PA was used to improve template matching performance. PA (previous
area of the object) was 2D-resized and related to NA (new area of the object). However,
these methods assumed a one-to-one mapping between the template and the query region
for the underlying 2D transformation.

Since the real object is 3D transformed, its imaged transform is different from the pure
2D transformation model. Due to this, an error occurs between the value predicted by the
2D transformation model and the actual value of the search image. This error decreases the
accuracy of template matching.

As a solution to this problem, this paper proposes to replace the 2D transformation
model of the existing method with a perspective projection of the 3D transformation model
as it is. The projected 3D transformation model can further reduce template matching
errors, and reduce sensitivity to size differences and 3D direction differences caused by 3D
deformation of the target.

The proposed method only requires one depth image template to extend the 2D
transformation model of the existing method to the projected 3D transformation model.
The process of acquiring the depth image template was previously performed separately
from the template matching, so it does not need to be performed in real time.

Currently, inexpensive 3D cameras such as the Kinect [15] have become popular
in 3D scene modeling and human-computer interfaces (HCI) that use perceived depth
information. Such devices make it easy and affordable to capture a depth image with its
associated color image [16].

If the user does not have such a device, the depth image can be calculated from one
short video or 2D image shots of the target using one of the existing 3D reconstruction
algorithms. In this process, the existing 3D reconstruction algorithm can be based on
image registration using feature descriptors such as SIFT, SURF, and so on. Existing 3D
reconstruction algorithms are well known in the literature [17]. Thus, this paper focuses on
designing a template matching process.

The proposed template matching process is designed as a closed-form algorithm
rather than a numerical method for convenience of use. For wider applications and more
accurate results, the proposed method is designed to employ a perspective projection
model and a general 3D rotation model as opposed to the other approaches, in which
the perspective projection model is replaced by an orthographic projection model and the
general 3D rotation model is replaced by 2D planar motions or a confined-form 3D motions
for a simpler formulation.
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In addition, the distortion measure of the proposed template matching can be im-
proved by combining with known methods. For example, it can be combined with [4]
to increase the robustness to illumination changes, ref. [5] to increase the robustness to
noise, ref. [6] to effectively handle cluttered images, and [1,7,8] to increase the speed. As
suggested in [3], the proposed template matching method can be faster and lower in cost
through VLSI logic gate implementation.

In terms of image detection, the biggest advantage of template matching is that it can
detect various types of objects without tedious pre-training or descriptor redesign. Another
advantage of template matching is that the algorithm is simple and regular, allowing
not only microcomputer embedded system implementations, but also gate-level VLSI
implementations. Gate-level VLSI implementations are known to be faster and cheaper
than microcomputer embedded system implementations. Inheriting the advantages of
template matching, this paper proposes a template matching vision sensor system for
image detection that can be used for various types of objects without any prior training
process or descriptor redesign. In addition, in order to increase the reliability of image
detection when the posture of the object in the given image is different from the template
of the object, this paper devises a method that adjusts the template by itself. For ease of use,
the template matching process combined with the template adjustment process is designed
as a closed algorithm without the tedious recursive process.

2. Proposed Template Matching Algorithm with Pose Mismatch Compensation

Figure 1 shows the proposed template matching vision sensor system.
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Figure 1. Proposed template matching vision system.

The depth template is obtained as an offline process before the online matching process.
The depth template can be obtained using vision sensor-based hardware (e.g., 3D depth
camera, Kinect) or a reconstruction algorithm from multiple images. Multiple images can
be obtained from a multi-vision sensor system, or from a sequence of images in mono
vision. This off-line pre-process is well known in the vision literature. Therefore, this
section focuses on designing an online matching process that is robust to pose mismatch
between template and image. Pose mismatch includes both direction (viewing angle,
rotation) and size (distance) differences.

Template matching is the process of finding the location of a sub image called a
template within a target image (matching image, search image). This method is a simple
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algorithm for measuring the similarity between the template image (T) and the part
of the target image (I). The basic template matching algorithm consists of calculating a
distortion measure (objective function, cost function) that measures the similarity between
the template and the image at each position of the target image. The minimum distortion or
maximum correlation position is then taken to locate the template into the target image [18].
Representative of typical distortion measures is the sum of squared differences (SSD)
described in Equation (1).

J(d) = ∑
qi

(I(qi + d)− T(qi))
2 (1)

where qi, i = 1, · · · , M are the image positions (pixel coordinates) of the template and M
is the number of image positions. M and I are image intensity maps of the template and the
target image, respectively. The SSD is commonly known as block matching approach [19].

To further analyze the SSD measure given in Equation (1), let us look at Figure 2.
Consider a case where template A is block matched to target image A. This case shows an
example where the pose of the target on the template image plane (T) matches the pose of
the target on the target image plane (I). In this case, the corresponding point of qi on the
template image plane is qi + d on the target image plane. That means T(qi) = I(qi + d). In
this sense, SSD distortion measures are defined in the form given in Equation (1).
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Figure 2. Perspective-Projected 3D rigid body transformation model for block matching of template
A to target image A’ (X′i − Xi = ∆Xi, q′i − qi = ∆qi): (a) template A is a photograph of a target with
a 3D pose A. (b) target image A’ is a photograph of target with a 3D pose A’.

Consider a case where template A is block matched to target image A’. This case shows
an example where the pose of the target on the template image plane (T) does not match
the pose of the target on the target image plane (I). In this case, the corresponding point of
qi on the template image plane is q′i + d on the target image plane, not qi + d. That means
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T(qi) = I(q′i + d). In this sense, SSD distortion measures in Equation (1) can be rewritten
into Equation (2):

J(d) =
M

∑
i=1

(I(q′i + d)− T(qi))
2 where q′i = ψ(qi, η) (2)

Here q′i can be parameterized using a transformation model, i.e., q′i(η) = ψ(qi, η)
where η is the parameter vector of the transformation model ψ. Finally, the value of d that
minimizes J(d) is the matching position.

From the point of view of Equation (2), the conventional SSD given in Equation (1)
can be regarded as an approximation of Equation (2), assuming the transformation model
ψ(qi, η) ≈ qi. This transformation model assumes that the template and the target image
have the same pose. As a result, this transformation model of the conventional SSD does
not fit well when the poses of the template and target image are different.

This weakness can be compensated for by using a more sophisticated transformation
model. For this purpose, well-known 2D transformation models, such as 2D homogeneous
transformation, affine transformation, and similar, can be used. However, if the target is
an object undergoing 3D transformation, there is a limit to applying a simple 2D trans-
formation model. As shown in Figure 2, the target performs a 3D transformation. The
projection of these 3D transformations onto the image plane does not fit well with a simple
2D transformation model.

For example, 3D rotations and translations perpendicular to the image plane cause
deformations of size and orientation that cannot be correctly described using simple 2D
translations or 2D transformation models. To properly describe these deformations, it is
necessary to take into account the original 3D motion.

With this in mind, this paper does not forcibly approximate a 3D transformation of a
target to a simple 2D transformation, but expresses it as a 3D rigid body transformation
model as it is. The 3D rigid body transformation model is then projected onto the image
plane using a perspective projection camera model. The perspective projected 3D rigid
body transformation model thus obtained is adopted as a transformation model between
the template and the target image. Thus, the proposed matching measure (objective
function) is an SSD whose transformation model, i.e., q′i(η) = ψ(qi, η) has been upgraded
with perspective projected 3D rigid body transformation (perspective projection of a 3D
rigid body transformation model).

From now on, we will formulate the proposed perspective-projected 3D rigid body
transformation model of the target.

2.1. 3D Transform Model of Target

We begin by formulating a 3D rigid body transformation model of the target. In
Figure 2, suppose the difference between the two poses of a given target, 3D pose A (pose
of the target in the template) and 3D pose A’ (pose of the target in the target image), consists
of rotation by an angle θ ∈ R about the axis of rotation w ∈ R3 and translation by P ∈ R3.
If the coordinate of a point on the target is Xi ∈ R3 when 3D pose is A and is X′i ∈ R3

when 3D pose is A’, the relationship as shown in Equation (3) holds.

X′i = RXi + P (3)

Here R = exp([ŵ]θ) is the rotation matrix and ŵ = [ ŵ1 ŵ2 ŵ3 ]
T is the unit vector

in the direction of w. The notation [ŵ] is defined as the following skew-symmetric form:

[ŵ] =

 0 −ŵ3 ŵ2
ŵ3 0 −ŵ1
−ŵ2 ŵ1 0

 (4)
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If
∣∣θ∣∣<< 1 [rad] ≈ 57.3 [deg] , then we can approximate:

exp([Φ]) ≈ I + [Φ] where Φ = ŵθ (5)

Using Equation (5), we obtain:

∆Xi = X′i − Xi = [Φ]Xi + P (6)

2.2. Projection of 3D Transfromation

We will now consider the projection of the 3D rigid body transformation given in
Equation (6) onto the image plane. Suppose the template and the target images are
photographs obtained by shooting the target with a perspective projection camera. In this
process, 3D coordinates Xi ∈ R3 and X′i ∈ R3 are projected to image coordinates qi and
q′i3, respectively.

By using the perspective projection model, we can relate Xi and its corresponding
image coordinate qi as follows:

qi = [ qix qiy 1 ]
T
= siXi (7)

Here, T denotes transpose, si = 1/zi and zi is the scaled depth (the third component
of point Xi divided by the focal length f of the camera).

Because qi = siXi, we calculate:

∆qi = ∆siXi + si∆Xi (8)

Because si = 1/zi, we calculate:

∆si = −∆zi/z2
i = −s2

i ∆zi = −s2
i (e

T
3 ∆Xi) (9)

By substituting Equation (9) into Equation (8) and using Equation (7), we obtain:

∆qi = si(I − qieT
3 )∆Xi (10)

Substituting Equation (6) into Equation (10), and using Equation (7) and the relation:
[Φ]qi = −[qi]Φ, we obtain:

∆qi ≡ q′i − qi = Fiη (11)

where Fi =
[
−(I − qieT

3 )[qi] si(I − qieT
3 )
]
, η =

[
Φ
P

]
2.3. Proposed Matching Measure

If the displacement of the image coordinates is not large, i.e., (
∣∣∣∣∆qi

∣∣∣∣<<
∣∣∣∣qi
∣∣∣∣), the

integrand of the SSD matching measure given in Equation (2) can be approximated by
Equation (12):

I(qi + ∆qi + d) ≈ I(qi + d) + (∂I/∂qi)
T
qi+d∆qi (12)

Here, we define ∂I/∂qi as a column vector and T denotes the transpose.
Substituting Equations (11) and (12) into the SSD matching measure given in Equation (2),

we get the proposed matching measure as Equation (13):

J(η) =
M

∑
i=1

(ai + Biη)
2 (13)

where ai = I(qi + d)− T(qi) and Bi = (∂I/∂qi)
T
qi+dFi.
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2.4. Proposed Algorithm Summary

Solving the first order necessary conditions for an optimization, i.e., ∂J/∂η = 0, the
value η that minimizes Equation (13) is given by Equation (14):

η = −(
M

∑
i=1

Bi
T Bi)

−1(
M

∑
i=1

Bi
Tai) (14)

By combining Equations (13) and (14), the proposed template matching procedures
can be summarized as follows.

For better understanding, a diagram showing the results of each step by applying
Algorithm 1 to the test image is given below. Figure 3 is a test image to find a right triangle
with a different angle of 90 degrees from the search image using the template for the
right triangle. Looking at Step 1 of Algorithm 1, the template image window is moved
to each pixel coordinate of the search image, and the image intensity distribution within
the template image window at the current position is analysed. The figure on the left in
the first row of Figure 3 shows the case where the template window is moved to the pixel
coordinate (i, j). Visualizing this, as shown in the middle figure, the template’s posture
will be expressed in the adjusted form at pixel coordinate (i, j). Step 2 of Algorithm 1 uses
the adjusted template parameters to calculate the matching measure value J (i, j) at pixel
coordinate (i, j). Visualizing this, the matching measure value J (i, j) at pixel coordinate (i, j)
is calculated using the image intensity distribution within the adjusted template window,
not the original template window.

Algorithm 1. Proposed template matching procedures

• For each row on the search image
For each column on the search image

- Step 1: Compute adjusted template parameters
ai = I(qi + d)− T(qi), Bi = (∂I/∂qi)

T
qi+dFi,

Fi =
[
−(I − qieT

3 )[qi] si(I − qieT
3 )
]

η = (
M
∑

i=1
Bi

T Bi)
−1(

M
∑

i=1
Bi

T ai)

- Step 2: Compute the matching measure using adjusted template parameters

J(d) =
M
∑

i=1
(ai + Biη)

2

END FOR
END FOR

Step 3: IF J(row∗, column∗) is minimum THEN
(row∗, column∗) is the matching position.
END IF

Then, move the template image window to the next pixel coordinate, and do the
same. The figures in the second row show examples of doing the same thing for pixel
coordinate (a, b), and the figures in the third row for pixel coordinate (k, l). Here, at each
pixel coordinate, the angle at which the template is adjusted is different. This is because the
image intensity distribution within the template window at its pixel coordinates is different.
After calculating the matching measure value for each pixel coordinate of the search image
in this way, as expressed in Step 3 of Algorithm 1, the smallest value is selected among
them. For this test image, J (a, b) will be minimal. Then the matching position will be (a, b).
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Figure 3. A test image of finding a right triangle with a different 90-degree angle from the template. Each step of Algorithm 1
was applied to the test image. The template window is moved to each pixel coordinate of the search image to analyze the
image intensity distribution within the template window. (The first, second, and third lines describe the case of the template
window at (i, j), (a, b), and (k, l), respectively.) Step 1 calculates the adjusted template parameters by analyzing the image
intensity distribution of the template window at each position. As a result, we have the effect of rotating the template
window at each position as shown in the middle figure of each row. Step 2 computes the matching measure value J for the
rotated template at each position. Step 3 selects the minimum value among the matching measure values calculated at each
position. In this test image, J (a, b) is minimal. Then the matching position will be (a, b).

3. Results

This section verifies the performance of the proposed template matching vision system
given in Figure 1. Methods of obtaining the depth of a template using stereo vision or a few
(two or more) template images or a short template video via mono vision are well known
in the vision literature and have been commercialized. Therefore, in this paper, we simply
adopt one of these methods for the ‘OFF-Line Pre-Process’ block in Figure 1 (in this section,
we apply the algorithm of [17] to a short template video to obtain depth). An experiment
is used to verify whether Algorithm 1 can effectively detect the position of various posed
objects in a given image. This section numerically verifies the performance of the proposed
method (Algorithm 1) against orientation and size differences between the template image
and the search image. These tasks are performed using a commercial numerical simulation
program on a computer with a clock speed of 3 GHz and 504 MB RAM. The experiment
video sequences are recorded using a monocular camera with known intrinsic parameters
that are assumed to remain unchanged throughout the sequence.

3.1. Conceptual Comparison of Proposed Method with Contemporary Methods

This subsection provides conceptual comparison of proposed method with contempo-
rary methods. Figures 4–6 show how the proposed method adapts a given template to the



Sensors 2021, 21, 8176 9 of 21

target image. The conceptual differentiation of the proposed method was highlighted by
comparing it with the correlation coefficient method [20] (dotted line) and the brute-force
method [21] (triple line), which are representative methods for correcting the difference
in direction and size between the object template and the object in the given image. The
first image in Figures 4–6 is the template. To clearly illustrate the shape of the adjusted
template, areas to be used as indicators of comparison are marked with white highlight
lines. In the target images, the area marked by the solid line (the proposed method) was
deformed to match the target image, like the area marked by the triple line (brute-force
method). On the other hand, the area indicated by the cross line (correlation method) was
not deformed.

In Figure 4, the target is a cube. The image size is 640 × 480. The cube in the first
image is the template. The visual detection problem is to find the cube in the second, third
and fourth images. The difficulty of this example is that it involves complex and abrupt 3D
motions.

In Figure 4, the correlation coefficient method does not consider the pose of the subject
(i.e., the pose of the template does not change according to the search image) and does
not match well (i.e., matched positions of the template and the search image are remote).
Even the correlation coefficient method fails to match in the second, third, and fourth
frames. Contrarily, the proposed method and the brute force method consider the pose of
the subject (i.e., the modified template has a pose similar to the search image) and match
well (i.e., the matched positions of the template and the search image are adjacent).

Table 1 shows the matching errors of the algorithms. Table 1 shows that the proposed
method reduces many the matching errors of the correlation method, and the brute force
method produces just slightly fewer matching errors than the proposed method.
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Figure 4. Conceptual comparison of the proposed method with contemporary methods. The leftmost
picture is the given template. Areas to be used as indicators of comparison are marked with white
highlight lines. In the target images given on the right, the area marked by the solid line (the
proposed method) was deformed to match the target image, like the area marked by the triple line
(brute-force method). On the other hand, the area indicated by the cross line (correlation method)
was not deformed.

Table 1. Average position errors (in pixels) of the entire Figure 4 experiment.

Proposed Correlation Brute-Force

1.6832 16.8401 1.3462

In Figure 5, the target is a PC. The image size is 640 × 480. The PC in the first image
is the template. The visual detection problem is to find the PC in the second, third, and
fourth images. In contrast to the first example scenario, in which a fixed camera records a
moving object, the second example scenario is designed to treat multiple stationary objects
recorded by a moving camera. While the correlation coefficient method matches well in
the second and the third frames, it fails to match in the fourth frame of Figure 5.

Table 2 shows the matching errors of the algorithms. Whereas the brute force method
produces the smallest matching errors, the proposed method also produces small matching
errors that are close to those of the brute force method.

Table 2. Average position errors (in pixels) of the entire Figure 5 experiment.

Proposed Correlation Brute-Force

1.9759 11.9480 1.2286
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Figure 5. Conceptual comparison of the proposed method with contemporary methods. The leftmost
picture is the given template. Areas to be used as indicators of comparison are marked with white
highlight lines. In the target images given on the right, the area marked by the solid line (the
proposed method) was deformed to match the target image, like the area marked by the triple line
(brute-force method). On the other hand, the area indicated by the cross line (correlation method)
was not deformed.

Using the two example scenarios, we evaluated the performance of the proposed
method for various objects. The purpose of these two example scenarios is to show that the
proposed method is not confined to just a human face, and is applicable to more general
objects. Now, we finally consider a human face in the third example scenario, shown in
Figure 6. In Figure 6, the target is a human face. The human face in the first image is the
template. The visual detection problem is to find the human face in the second, third and
fourth images.

Figure 6 shows the correlation coefficient method fails to match in the third frame
where pose mismatches between the template and the search image are large. The proposed
method and the brute force method match well in all frames.

Table 3 shows the matching errors of the algorithms. In this table, the matching errors
produced by the proposed method are much less than those of the correlation method. In
this table, the matching errors for the three methods are on the same order as those shown
in Tables 1 and 2.

Table 3. Average position errors (in pixels) of the entire Figure 6 experiment.

Proposed Correlation Brute-Force

0.6403 2.3631 0.2332
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Figure 6. Conceptual comparison of the proposed method with contemporary methods. The leftmost
picture is the given template. Areas to be used as indicators of comparison are marked with white
highlight lines. In the target images given on the right, the area marked by the solid line (the
proposed method) was deformed to match the target image, like the area marked by the triple line
(brute-force method). On the other hand, the area indicated by the cross line (correlation method)
was not deformed.

The matching results of Figures 4–6 show that the proposed method and the brute force
method have almost the same accuracy. However, the proposed method has much more
computational efficiency than the brute force method. The correlation method performs
one-time template matching using a given template. The proposed method performs
one-time template matching using the adjusted template. The brute-force method performs
a large number of templates matching, transforming a given template for each possible
direction and size.

3.2. More Systematic Comparison

For a more systematic analysis, we conduct an experiment with two open data sets
(each data set contains 537 and 1344 images) and compare the results with the latest
template matching method, Fast Affine Template Matching (FATM) [12]. FATM uses a 2D
affine transform to improve performance for direction differences.

In our experiments so far, we have used the data set we have prepared. In our
experiments from now on, we will use the open standard data set. An open dataset
introduces a new level of difficulty in that the experimental conditions cannot be controlled.
The first open data set used in the experiment is the ‘David’ data set [22] shown in Figure 7.
The second open standard data set is the ‘Sylvester’ data set [23] given in Figure 8. In the
open data set, too, to emphasize that the proposed method is applicable to various types of
targets, a cat doll (Sylvester) and a human face (David) were selected.

Figure 7 shows template matching for detection performed on an open data set called
‘David’ [22]. Then, this experiment searched the ‘David’ template in the target image
(320 × 240 size), extracted from one of the 537 images. Figure 7a shows the template
and Figure 7b–g show the selected ones of the template matching results. In Figure 7, the
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detected area is marked with a rectangular box as in the general detection problem. The
proposed method and FATM are denoted by solid and dotted lines, respectively.
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Figure 7. Selected results of face detection using David open data sets [22]. The first image (a) is the
template. The face detection problem is to find the same person as the template in various images
with different poses and sizes from the template, such as images (b–g).

Table 4 shows the average matching errors for the entire Figure 7 experiment. Table 4
shows that the matching errors of the proposed method are much smaller than FATM.

Table 4. Average position errors (in pixels) of the entire Figure 7 experiment.

Experiment Proposed FATM

Figure 7 1.9092 6.0512
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Figure 8. Selected results of object detection using Sylvester open data sets [23]. The first image
(a) is the template. The object detection problem is to find the same object as the template in various
images with different poses and sizes from the template, such as images (b–h).

In Figure 7b,e, the template and the matching image have similar size and pose. In this
case, both methods succeeded in face detection. However, it can be seen that the positional
error of the detected face obtained by FATM is larger than the proposed template matching
method in the remaining matching images having a pose or size different from that of
the template.

The next experiment is performed on an open dataset called ‘Sylvester’ [23] that
contains 1344 pictures. Then this experiment searched the ‘Sylvester’ template in the target
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image (320× 240 size), extracted from one of the 1344 images. Figure 8a shows the template
and Figure 8b–h show the selected ones of the template matching results.

In Figure 8b–d, the template and the matching image have similar size and pose. In
this case, both methods succeeded in object detection. However, the positional error of the
detected object obtained by FATM is larger than the proposed template matching method
in Figure 8c, presenting a pose different from that of the template. In Figure 8e,g,h, where
the pose and size of the template and the matching image differ more, FATM fails to detect
the object. In contrast, the proposed template matching method succeeded in detecting the
object in all of Figure 8e,g,h.

Figures 7 and 8 show that the proposed method well detected the position of the target
regardless of 2D direction, 3D direction, and size differences. FATM also detected target
positions well when the direction and size differences were small (see Figure 7b,e and
Figure 8b–d). However, the larger the difference in direction and size, the greater the target
position error than the proposed method (see the remaining figures in Figures 7 and 8).
This is because the underlying 2D affine transformation model of FATM has limitations
in estimating the 3D transformation (combination of size, 2D and 3D direction differ-
ences) of the target, and thus an estimation error occurs. The estimation error due to the
approximated model increases as the difference value increases.

Table 5 shows the average matching errors for the entire Figure 8 experiment. Table 5
shows that the matching errors of the proposed method are much smaller than FATM. The
difference in matching errors is greater in the Figure 8 experiment than Figure 7 experiment.
This is because the Figure 8 experiment contains more cases where object detection failed,
as shown in Figure 8e,g,h.

Table 5. Average position errors (in pixels) of the entire Figure 8 experiment.

Experiment Proposed FATM

Figure 8 2.2100 42.0112

Figure 9 shows the result of performing template matching and plotting error metric
values for images of a target object in various postures different from the template while
rotating the object in 3D space. Looking at this plot, it can be seen that the proposed method
has consistently fewer error values and more stable form than FATM. (The Sylvester video
given in Figure 8 was used as the selected target object for this purpose).
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4. Proposed Template Matching Method Optimized for Home Multi-Purpose Image
Detection Device (Qualitative Comparison with CNN)

In the problem where the subject is limited to the face, deep learning-based methods
such as CNNs are widely used for face recognition. CNN increases the recognition rate
by performing pre-training on a specific object using vast image data. Therefore, it can be
used only when the object is specified in advance and massive image data for the object is
obtained. On the other hand, the proposed template matching method does not use a large
amount of image data and can conveniently change the object at any time. Since these two
methods are different types, direct comparison is difficult. Moreover, the accuracy of CNN
depends on the image data used in the pre-training process of a specific object. For this
reason, it is difficult to make a quantitative comparison in the theme of this study for multi-
purpose image detection that changes the object at any time. However, if we qualitatively
analyse the characteristics of the two methods, we can find application examples where the
proposed method is better than CNN. One example is the multi-purpose image detection
device for home use, which will be described in this section.

If only the face recognition rate is considered, CNN outperforms other methods.
However, in order to obtain a good recognition rate, a large quantity of time, big image
data, and expert’s efforts are required for pre-training the target object. Moreover, this
pre-training task must be repeated every time the target changes. Such pre-training tasks
are difficult for non-experts to perform at home. Due to these characteristics, when the
CNN is used as home equipment, it is difficult to make it a multi-purpose device that
non-experts can change the target from time to time, and it must be made in the form of an
embedded system in which the target is pre-determined.

Contrarily, the template matching method can be applied to a variety of targets
(individual objects, faces, etc.) without requiring any hardware or software adjustments.
Therefore, there is no need for a lot of expensive hardware specialized for each type of the
targets. In addition, there is no need for a specific reinstallation or reset procedure for each
type of the subjects that an expert carries out.

In this respect, the proposed template matching method is more suitable for home
multipurpose image detection devices than CNN, although the CNN method shows
higher accuracy than the proposed method in the face recognition problem. The following
points support this situation. The proposed method shows higher accuracy than the
existing template matching method because the sensitivity problem for direction and size
difference is compensated. Household products have a lower requirement for accuracy
than military or medical applications. Instead, they are inexpensive, compact, lightweight,
and convenient to use without professional care.

The multipurpose image detection device should be easily applied to various kinds
of targets since the target is not limited to the face. To be applied in home appliances, the
image detection device must operate in a home appliance environment, such as home
PCs and home digital cameras, without specialized and expensive hardware. Given the
lack of supervision of qualified workers at home, the image detection device should be
easy to install and manage. When considering the low performance of home appliances,
the automatic image detection system should be computationally efficient. Considering
the conditions of such home-use multi-purpose image detection devices, a qualitative
comparison between the proposed template matching method and CNN is as follows.

First, in order to have a good face recognition success rate, the deep learning method
requires customized big data for each type of target, and pre-training using the big data is
required. Although real-time speed can be achieved in the face recognition process, the pre-
training process requires a lot of computation and professional management. Therefore,
deep learning methods can be used only when the large data for pre-training can be
obtained, and when a lot of pre-training time can be obtained. In most cases, experts are
needed to oversee this complex pre-training process. These constraints can only be met
mainly in laboratories or companies, but not in the average person or household.
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On the other hand, the proposed template matching method only needs to change the
template image when the type of the target is changed and does not require a pre-training
process. Whenever the target is changed, CNN requires a huge amount of training images
to model the changed target, whereas in the proposed method, two or three images are
sufficient to create a template of the changed target. The usage of the proposed method
is extremely simple compared to deep learning methods, and is performed automatically
without the need for an expert.

Second, since the proposed method is a simple algorithm-type template matching
method, it is convenient to implement with VLSI hardware. These VLSI hardware imple-
mentations offer significant speed gains, making real-time implementations easier, less
expensive, and significantly smaller in size and weight.

Third, household products have a lower requirement for accuracy than military or
medical applications. Instead, they are inexpensive, compact, lightweight, and convenient
to use without professional care.

Currently, deep learning is also being developed in the form of embedded devices or
mobile devices. However, the hardware of an embedded or mobile device consists of a
microprocessor with an embedded operating system, and deep-learning algorithms are
mounted in the microprocessor as application software. This form is a kind of software
implementation, which is different from the hardware implementation mentioned in
this paper.

In contrast, the template matching method including the proposed method may be
implemented as digital logic gates of VLSI, not software mounted in a microprocessor.
These VLSI digital logic gate implementations not only have significantly improved speeds
thousands of times more than software implementations on microprocessors, but they are
also much less expensive, extremely small and light. Thus, compared to embedded devices
with deep learning methods, the VLSI digital logic gate implementation of the template
matching method can greatly reduce the cost of home appliances, and it is much more
advantageous to be manufactured as a wearable accessory because of its small size and
light weight.

By comparing and analyzing the qualitative characteristics described above, it can be
seen that the proposed template matching method is better (more suitable) for a multipur-
pose image detection appliance for home use.

5. Conclusions and Future Work

In this paper, we studied the template matching method. To reduce the sensitivity of
the conventional template matching methods to pose mismatches between the template
image and the matching image, the proposed method adjusts the pose of the template
image to that of the matching image. By reducing errors incurred from pose mismatches
between the template image and the matching image, the accuracy in the matching results
is enhanced. Moreover, contrary to other contemporary methods, the proposed method
does not employ any short-cut models for the projection model and the 3D rotation model.
For this reason, a better matching accuracy can be obtained. Nevertheless, the additional
module that adjusts the template image is designed to have a closed form. Because the
additional module has a closed form, the additional increase in the computational time is
simply small. Since the proposed template matching method is a region-based matching
approach, it can be applied to more general objects as well as human faces, contrary to the
other feature-based matching approaches.
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