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Cold and hypoxia are two stressors that are frequently combined and

investigated in the scientific literature. Despite the growing literature

regarding normobaric hypoxia (NH) and hypobaric hypoxia (HH), responses

between females and males are less often evaluated. Therefore, this study aims

to investigate the physiological sex differences following a cold-stress test

under normoxia, normobaric- and hypobaric hypoxia. A total of n = 10 females

(24.8 ± 5.1 years) and n = 10 males (30.3 ± 6.3 years) from a university

population volunteered for this study. The cold-stress test (CST) of the right

hand (15°C for 2 min) was performed using a randomised crossover design in

normobaric normoxia, NH and HH. The change (Δ) from baseline to post-CST

up to 15 min was analysed for cutaneous vascular conductance (CVC) and the

hands’ skin temperature, whilst the mean values across time (post-CST up to

15 min) were assessed for peripheral oxygen saturation (SpO2), thermal

sensation- and comfort. Pressure pain threshold (PPT) was assessed after

the post-CST 15 min period. The hands’ skin temperature drop was higher

(p= 0.01) in the female group (Δ3.3 ± 1.5°C) compared to themale group (Δ1.9 ±

0.9°C) only in NH. Females (−0.9 ± 0.5) rated this temperature drop in NH to feel

significantly colder (p = 0.02) compared to the males (−0.2 ± 0.7). No

differences were observed between sexes in NN, NH, and HH for ΔCVC,
SpO2, thermal comfort and PPT. In conclusion, females and males show

similar reactions after a CST under normoxia and hypoxia. Sex differences

were observed in the local skin temperature response and thermal sensation

only in NH.
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1 Introduction

Early studies from the 1950s have already demonstrated, that

cold stimulus provokes action potentials in peripheral nerve

endings (Hensel and Zotterman, 1951). Later studies then

demonstrated, that cold induces a Ca2+ influx, suggesting

direct opening of Ca2+-permeable ion channels by this thermal

stimulus (Suto and Gotoh, 1999; Reid and Flonta, 2002; Reid,

2005). The physiological response to local cooling is undoubtedly

a vasoconstriction, which is from a functional perspective part of

a thermoregulatory homeostatic response to reduce heat loss

(Cankar and Finderle, 2003). Although several mechanisms are

involved to minimize heat loss via control of skin blood flow, an

intact sympathetic system is necessary for the initial reflex

response (Ekenvall et al., 1988; Johnson et al., 2005). In case

of the cold-activated vasoconstrictive system, the transmitters

appear to be norepinephrine and other co-transmitters (Morris,

1999; Stephens et al., 2001; Stephens et al., 2004). Inhibition of

NO system, postsynaptic upregulation of alpha2c-receptors and

cold-sensitive afferents seem to be important elements to induce

vasoconstriction (Johnson and Kellogg, 2010). Although,

peripheral vasoconstriction is a powerful mechanism to reduce

heat loss, it can lead to a severe temperature drop in the

extremities as skin blood flow reduces (Daanen, 2003). After

initial vasoconstriction, cold-induced vasodilation occurs as a

physiological reaction to local cold exposure, followed by another

vasoconstriction (Daanen, 2003). Cyclic opening of arterio-

venous anastomoses, located in the fingers and toes, allows

the maintenance of blood flow and thus minimizing cold-

induced injuries (Cheung, 2015). To evoke this so called cold-

induced vasodilation, cold-water is most commonly used due to

its high thermal conductivity compared to e.g., air (Smith and

Hanna, 1975). The sympathetic activation and increased

peripheral resistance will also alter heart-rate and blood

pressure (Cui et al., 2002). The discharge of norepinephrine

triggers the cardiovascular system, leading to arteriolar

constriction, increased heart-rate and increased cardiac

contractility (Silverthorn and Michael, 2013). These combined

responses increase blood-pressure and are known as the pressor

response (Velasco et al., 1997). Beside cardiovascular responses,

cold applications are also known to have an influence on sensory

perception, especially pain perception. It is well known, that

tissue temperature reductions impact sensory and motor nerve

conduction velocity (Herrera et al., 2011). Cold water-

immersions, due to its high thermal conductivity, can

significantly reduce nerve-conduction velocity to induce a

hypoalgesic effect (Herrera et al., 2010).

Cold exposure can naturally occur in combination with

hypoxia during exposure to terrestrial altitude. Hypoxia

research has numerous applications, investigating pathogenesis

but also for developing medical treatment strategies (Grocott

et al., 2007; Saxer et al., 2019; Schneider et al., 2022). The

potential physiological difference between normobaric hypoxia

(NH) and hypobaric hypoxia (HH) is currently a topic of much

debate (Millet and Debevec, 2020; Richalet, 2020). It would be

expedient to assume that NH is a surrogate for HH (Conkin,

2016). However, conditions with a different fraction of inspired

oxygen (FiO2) and barometric pressure having the same partial

pressure of oxygen (PiO2) aren’t interchangeable (Conkin, 2016).

For example, ventilatory responses, fluid balance, acute

mountain sickness, nitric oxide metabolism and physical

performance differed between these conditions and suggest

that HH is a more severe environment compared to NH

(Millet et al., 2012). In accordance to these results, HH has

been demonstrated to induce a more pronounced sympathetic

effect compared to NH, probably due to an increased ventilatory

stimulus and larger desaturation (Aebi et al., 2020a). The

increased ventilatory response in HH compared to NH was

also observed by the same research group in another study

(Aebi et al., 2020b). Contradictory, no differences between

NH and HH have been observed regarding baroreflex

sensitivity and the authors concluded, that these conditions

might be used interchangeably to assess this outcome

(Bourdillon et al., 2017). Indeed, other physiological outcomes

like ventilatory responses, cardiovascular variables and arterial

partial pressure have also been demonstrated not to differ

between NH and HH (Naughton et al., 1995; Savourey et al.,

2007; Faiss et al., 2013). In a review study, it was highlighted that

the presence of confounding factors such as time spent in

hypoxia, temperature, humidity and small sample sizes might

limit profound conclusions (Coppel et al., 2015).

Despite these findings, evidence seems to be lacking with

respect to hypoxia on thermal perception in humans (Golja et al.,

2004). Additionally, the manner in which men and women

respond differently to physiological stressors are less well

investigated (Miller et al., 2019). The reduction in barometric

pressure and as a result the reduction in FiO2 lead to a decline in

arterial oxygen saturation (SpO2) (Rowell et al., 1989). Whilst

observing comparable O2 desaturation declines in both sexes,

males tend to have a higher sympathetic activation compared to

females under hypoxia (Botek et al., 2018). Some authors have

associated symptoms of acute mountain sickness with

sympathetic dominance in autonomic cardiac control

(Sutherland et al., 2017). Studies demonstrated that young

females have a different vasoconstrictive response compare to

men in hypoxia, possible due to female sex hormones (Patel et al.,

2014). From this perspective, it’s thinkable, that cardiovascular

reactions to cold exposure also might differ between sexes. The

physiological reactions to external stressors are dependent on an

intact nervous system and hypoxia has been demonstrated to

affect various physiological systems in the human body (Seech

et al., 2020; Blacker and McHail, 2022). Accordingly, it is

thinkable that hypoxia might also affect thermoregulatory

reactions and thermal sensitivity. Despite progression in

physiological research, male-only studies are predominantly

present in this area, compared to female-only studies (4:1) or
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don’t take the sex difference into account when interpreting the

results (Beery and Zucker, 2011; Ansdell et al., 2020). As a result,

future research is needed to investigate sex related differences

(Lamotte et al., 2021). Therefore, the aim of this study is to

evaluate the physiological sex differences following a cold-stress

test under normoxia, normobaric- and hypobaric hypoxia. Thus,

we want to contribute to highlighting the importance of research

diversity in this area.

2 Materials and methods

2.1 Participants

A total of n = 10 females (24.8 ± 5.1 years, 62.8 ± 6.4 kg,

168.6 ± 6.2 cm) and n = 10 males (30.3 ± 6.3 yrs, 84.5 ± 9.8 kg,

182.1 ± 5.4 cm) were recruited from a university population in

Switzerland. The participants were healthy, non-smokers,

recreationally trained, and free of any known medical

disorders. Participants were excluded in case of pregnancy,

exposure to altitude >1,000 m (including commercial flights)

for at least 1 month before the start of the experiments, or if they

have ever experienced any altitude-related negative effects (e.g.,

acute mountain sickness).

Participants were instructed to refrain from alcohol and

other substances that might affect the cardiorespiratory

system, 72 h before the start of the experiment. The

participants were instructed to maintain their normal food

and water intake and to replicate these habits for each

subsequent trial. This study was approved by the Ethical

Committee of Zurich (project-ID:2019-00504) in accordance

with the Declaration of Helsinki (ICH-GCP), registered

(ClinicalTrial.gov Identifier: NCT04075565) and all

participants provided their written informed consent before

participation.

2.2 Experimental design

This study employed a randomized controlled crossover

design and was completed within 3 months to ensure that the

females were at the same menstrual phase in each trial. During

NN, the participants performed the experiment under laboratory

conditions, at ~550 m. During NH, participants were exposed to

a FiO2 of 0.1440 (equivalent to ~3,000 m) in the same laboratory,

15 min before the experimental baseline measurements were

conducted. The NH environment was created using a hypoxic

generator (Cloud 9, sporting edge UK LTD Basingstoke,

United Kingdom). For the hypobaric hypoxia (HH)

environment, participants conducted the experiments in

terrestrial altitude at a height of ~3,000 m at a mountain hut

in the Swiss Alps. The transportation of the participants (car and

cable car) to the mountain hut took about 135 min.

The participants were blinded to the NN and NH conditions,

which was confirmed by the exit questionnaire. During NN, the

participants wore the mask system from the altitude generator

but the tube was not connected to the running hypoxic generator.

The environmental calculations for the females and males are

shown in Table 1.

2.3 Study overview

Before their first visit, participants were familiarized with the

procedures, which were carried out in a seated position

throughout the experiment. Before each trial, participants

were instrumented and rested for the duration of 15 min

before the data collection started. In NH, the participants

were already breathing the hypoxic air during this time

period. Then, SpO2, local skin temperature of the hand,

microcirculation of the hand, blood pressure, thermal

sensation, and thermal comfort were assessed (all described

later).

After completion of the baseline measurements, the

participant’s right hand was immersed in cold water for

2 min for the cold-stress test (CST), where SpO2, skin

temperature, thermal sensation and comfort were assessed.

Directly after the CST, the follow-up measurements were

conducted which comprised SpO2, the hands’ skin

temperature, microcirculation, blood pressure, thermal

sensation- and comfort and the pressure pain threshold

(PPT). The follow-up measurements were conducted in

5 min intervals up to 15 min post-cooling. The total

duration for each measurement in each condition was

around 45 min. A washout period of at least 1 week was

between the conditions. A schematic representation of the

test protocol is presented in Figure 1.

2.4 Cold-stress test

The environmental temperature in the laboratory and the

mountain hut was intended to be neutral for the participants

to avoid heat conservation (resulting in vasoconstriction of

the hands’ skin) and heat loss (resulting in vasodilation of the

hand’s skin). As thermoneutrality varies among individuals

(Boudewyns, 1985), participants were allowed to adjust their

clothing layers to achieve their thermal comfort at baseline.

Before the beginning of the CST, the participant’s right hand

was placed into a thin small plastic to avoid direct water

contact with the skin. Then, the right hand was immersed up

to the wrist for 2 min at a water temperature of 15°C in a seated

position. The water temperature was monitored with a

thermometer (Voltcraft, MT52, Wollerau, Switzerland). The

participants were not allowed to actively move their hand

during the CST but to remain as still as possible. This CST
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protocol has been demonstrated to be reliable to assess cold

sensitization in healthy participants (House et al., 2015).

2.5 Peripheral oxygen saturation

Oxygen saturation in the blood was measured using pulse

oximetry (Nonin 7500, Nonin medical b.v., Amsterdam,

Netherlands) with an accuracy of ± 2%, from the left index

finger. Pulse oximetry is a non-invasive method that passes

red and infrared light through perfused tissue and detects the

fluctuating signals caused by arterial pulses. Well-oxygenated

blood is bright red, while poorly oxygenated blood is dark red.

The pulse oximeter determines functional oxygen saturation

of arterial hemoglobin (SpO2) from this colour difference by

measuring the ratio of absorbed red and infrared light as

volume fluctuates with each pulse. SpO2 measurement was

conducted after the resting period until a stable value was

reached. Pulse oximeters provide an estimate of arterial

haemoglobin oxygen saturation, that is, the percentage of

haemoglobin binding sites that are occupied at any one

time by oxygen (Luks and Swenson, 2011). Deoxygenated

TABLE 1 Environmental conditions. N = 20, one-way ANOVA.

PiO2 (mmHg) FiO2 (fraction) PB (mmHg) PH2O (mmHg) RT (°C) p-value

NNm 146.5 ± 1.3 0.2093 720.6 ± 6.0 20.9 ± 0.8 22.8 ± 0.7 All >0.05
NNf 145.5 ± 1.6 0.2093 715.4 ± 7.6 20.4 ± 0.7 22.5 ± 0.5

NHm 100.9 ± 0.6 0.1440 721.1 ± 4.4 20.5 ± 0.5 22.6 ± 0.4 All >0.05
NHf 100.6 ± 0.8 0.1440 719.1 ± 6.0 20.1 ± 0.8 22.2 ± 0.7

HHm 105.7 ± 0.4 0.2093 522.6 ± 1.3 17.4 ± 2.0 20.0 ± 2.1 All >0.05
HHf 105.4 ± 0.4 0.2093 522.2 ± 0.4 18.6 ± 1.9 21.0 ± 1.6

Abbreviations: NN, normobaric normoxia; NH, normobaric hypoxia; HH, hypobaric hypoxia; m, males; f, females; PiO2, inspired oxygen tension; FiO2, fraction of inspired oxygen; PB,

barometric pressure; PH2O, water vapour pressure; RT, room temperature, values are means ± SD.

FIGURE 1
Schematic representation of the experimental protocol. NN: normobaric normoxia, NH: normobaric hypoxia, HH: hypobaric hypoxia, MAP:
mean arterial pressure, TS: thermal sensation, TC: thermal comfort, CST: cold-stress test, PPT: pressure pain threshold.
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and oxygenated haemoglobin absorb light at different

wavelengths (660 and 940 nm respectively), and the

absorbed light is processed by a proprietary algorithm in

the pulse oximeter to display a saturation value (Torp

et al., 2022). SpO2 was measured throughout each

experimental trial and the mean value was taken to assess

the difference between sexes in the different environments.

Pulse oximetry has been demonstrated to be a valid

measurement tool until a desaturation value of 85% is

reached in a hypoxic environment (Kolb et al., 2004).

2.6 Local skin temperature

The skin temperature of the right dorsal hand was assessed

using a conductive iButton (model: DS1922L) system (iButton,

Maxim Integrated). The temperature logger was taped on the

skin, centred over the third metacarpal bone. To avoid water

contact, the participant’s hand was placed into a thin plastic bag

during the CST. Skin temperature was assessed at baseline,

during the CST in 1 min intervals (up to 2 min), and after the

CST in 5 min intervals (point measurements). The change in

local skin temperature (Δskin temperature [°C]) from baseline

was then calculated and used for the analysis. It has been

demonstrated that the iButton system is a valid and reliable

instrument for measuring skin temperature in humans

(Hasselberg et al., 2013).

2.7 Microcirculation of the skin

The microcirculation of the skin of the right dorsal hand was

assessed with a calibrated laser speckle contrast imaging device

(moorFLPI2, Moor instruments, Millwey, United Kingdom). The

dorsal part of the hand was used because the skin temperature of the

dorsal and palmar part of the hand have been shown to strongly

correlate. To obtain standardized and valid perfusion values, the

micro-vascularization of the right dorsal handwas investigated up to

the wrist. Due to good temporal and spatial resolutions with a high

frame rate, laser speckle contrast imaging allows measurements of

acute changes in superficial skin bloodflow overwide skin areas with

very good inter-day reproducibility compared to traditional

assessment technologies such as laser Doppler perfusion imaging

and laser Doppler flowmetry (Roustit et al., 2010; Cracowski and

Roustit, 2016). Cutaneous vascular conductance (CVC) was

calculated at baseline, and after the CST in 5 min intervals (point

measurement) from normalized microcirculation (flux) and MAP

(mmHg) values. The normalized change in CVC (ΔCVC
[flux.MAP−1, flux.mmHg−1]) from baseline was then used for the

analysis. A representative picture series of n = 1 female and n =

1 male participant of the microcirculation assessment in one

condition (normobaric normoxia) can be seen in the

Supplementary Figure S1.

2.8 Blood pressure measurement

Blood pressure was measured from the left brachial artery

using an automated sphygmomanometer monitor (Beurer

BM77, Beurer GmbH, Ulm, Germany). Mean arterial pressure

(MAP, in mmHg) was calculated (Crisafulli et al., 2003) and

assessed at baseline and after the CST in 5 min intervals (point

measurements). Then, the change in MAP (ΔMAP) from

baseline was used for the analysis.

2.9 Thermal sensation and thermal
comfort

The ratings of thermal sensation and thermal comfort were

conducted according to ISO 10551 standards (International

Organization for Standardization, 1995). The participants had to

rate their thermal sensation according to the following scale: 4 = very

hot, 3 = hot, 2 = warm, 1 = slightly warm, 0 = neutral, −1 = slightly

cool, −2 = cool, −3 = cold, −4 = very cold. The scale to rate the

individual thermal comfort consisted of: 0 = comfortable, 1 = slightly

uncomfortable, 2 = uncomfortable, 3 = very uncomfortable, 4 =

extremely uncomfortable. Thermal sensation and comfort were

assessed at baseline, during the CST in 1 min intervals (up to

2 min), and after the CST in 5 min intervals (up to 15 min).

2.10 Pressure pain threshold

The PPT was determined using a handheld algometer with a

probe area of 0.8 cm2. The pressure increased linearly, by around

20 kPa/sec. The measurements were performed at 1 cm distal from

the medial knee joint line with the knee flexed at 90°. The

participants were not allowed to see the algometer display at any

moment and, as soon as the participants experienced a painful

sensation, they said “stop”. The PPT assessment was always

conducted by the same researcher. The first measurement in

each environmental condition was performed at baseline and was

considered only as a trial. The PPT measurement at the end of the

CST follow-up time point (after 15 min) was used for the analysis.

Pressure algometry has been demonstrated to have excellent

reliability when applied to the medial part of the knee (Pelfort

et al., 2015).

2.11 Statistical analysis

The assumption of normality was assessed using the Shapiro-

Wilk test. A one-way ANOVA was performed for each

environment (NN, NH, HH) to assess the differences between

sexes (females, males) for SpO2, PPT, ΔCVC, and Δskin
temperature (mean ± SD). The Kruskal-Wallis ANOVA was

used to analyse the differences between the sexes (females, males)
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for each environment (NN, NH, HH) across time for thermal

sensation and thermal comfort (median±SE). The statistical

analyses were performed using the Statistical Package for the

Social Sciences (SPSS), version 28.0 (SPSS Inc., Armonk,

United States) with the level of significance set at p < 0.05.

3 Results

3.1 Peripheral oxygen saturation

For SpO2 (Figure 2A), no differences were observed between

females and males in NN (females: 95.6 ± 1.1%, males: 95.8 ±

1.2%, p = 0.68), NH (females:91.2 ± 1.5%, males: 91.0 ± 2.1%, p =

0.83) or HH (females: 89.6 ± 1.8%, males: 89.2 ± 2.1%, p = 0.68).

3.2 Local skin temperature

The results of the change in skin temperature can be seen

in Figure 2B. The skin temperature values at baseline, the end

of the CST (2 min) and the end of the follow-up period

(15 min) can be seen in Table 2. The drop in skin

temperature due to the CST was higher (p = 0.01) during

the NH environment in the female population compared to

the males (females Δskin temperature: 3.3 ± 1.5°C, males Δskin
temperature: 1.9 ± 0.9°C). In NN, no significant differences

(p = 0.08) could be observed between females (Δskin
temperature: 3.4 ± 2.2°C) and males (Δskin temperature:

2.6 ± 0.7°C). Also in the HH environment, there were no

differences (p = 0.1) for the changes in skin temperature

between females and males (Δskin temperature: 3.9 ± 1.3°C

vs. 3.2 ± 0.6°C).

3.3 Cutaneous vascular conductance

The analysis (Figure 2C) revealed no differences between

females and males for ΔCVC in NN (0.19 ± 0.12 flux.mmHg−1

vs. 0.13 ± 0.24 flux.mmHg−1, p = 0.45), NH (0.20 ±

0.18 flux.mmHg−1 vs. 0.06 ± 0.25 flux.mmHg−1, p = 0.18)

and HH (0.13 ± 0.14 flux.mmHg−1 vs. 0.16 ±

0.07 flux.mmHg−1, p = 0.54). The absolute values for MAP

and microcirculation can be seen in Table 2.

FIGURE 2
Differences between females and males in NN, NH and HH for SpO2 (A), Δ skin temperature (B), Δ CVC (C), PPT (D). Values demonstrate the
median, iqr, min, max values. Dots indicate the individual values of each participant. #p = 0.01 between females and males.
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3.4 Pain pressure threshold

The mean pain pressure threshold (Figure 2D) was not

different between females and males in NN (496.1 ±

183.7 kPa vs. 455.4 ± 111.2 kPa, p = 0.55), NH (464.5 ±

193.9 kPa vs. 511.2 ± 118.8 kPa, p = 0.52) and HH (481.1 ±

148.2 kPa vs. 528.4 ± 108.4 kPa, p = 0.55).

3.5 Thermal sensation and thermal
comfort

The female participants rated their immersed hand to feel

colder during NH (−0.9 ± 0.5 vs. -0.2 ± 0.7, p = 0.02, Figure 3A)

whilst no differences were observed in NN (−1.1 ± 5.6 vs. −0.4 ±

0.8, p = 0.05) and HH (−1.7 ± 0.9 vs. −1.2 ± 0.6, p = 0.18).

Thermal comfort ratings were not different between females and

males (all p >0.05, Figure 3B). The values across time can be

observed in Table 2.

4 Discussion

This study aimed to investigate potential sex differences

in the physiological and perceptual response to a CST in a

NN, NH and HH environment. The main findings of this

study are, that the skin’s temperature drop (Figure 2B) and

the perception of cold (Figure 3A), in response to the CST,

were more pronounced in females compared to the male

population only in the NH environment. There were no

sex differences present in SpO2, CVC, PPT, and thermal

comfort in response to the CST in NN, NH and the HH

environment.

The current findings reveal that the CST induce no

differences between sexes under normoxic conditions. This

finding is partially in line with another study that investigated

sex differences during a CST (Kilgour and Carvalho, 1994). In

this study, the investigators conducted a more severe CST of

the hand (5–7°C for 6 min) and concluded that the skin’s

finger temperature didn’t differ between females (Δfemales:

16.8 ± 1.1°C, Δmales: 18.4 ± 0.9°C). However, the rise in

systolic and diastolic pressure was maintained for a longer

time in males compared to females in this study, which was

attributed to the changes in systemic vascular resistance and

the negligible alteration in cardiac output (Kilgour and

Carvalho, 1994). In contrast, another research group found

significant lower skin temperature values in women (25.2 ±

1.6°C) compared to men (27.1 ± 1.4°C) after a hand CST (15°C

for 15 min) (Bartelink et al., 1993). Generally, the response to

acute cooling is peripheral vasoconstriction, which is a

necessary, physiological response to prevent heat loss, but

results in a strong temperature decrease in the skin (Daanen,

2003). However, findings from the late 1970s have indicated

that females have a severe thermoregulatory disadvantage

compared to males in cold environments due to their

increased heat loss-to-production (surface-to-mass) ratio

(Burse, 1979). Although women have in general a higher

percentage of body fat than men (Blaak, 2001), this

insulative effect does not provide an advantage in

preventing heat loss from the extremities. The less

pronounced and less prolonged cold-induced

vasoconstriction in males and the changes in female

TABLE 2 Descriptive data in function of time.

Baseline CST 2 min Follow-up 15 min

NN temperature (°C)
Males 31.3 ± 0.4 25.7 ± 1.1 30.6 ± 1.5
Females 30.2 ± 2.2 24.7 ± 1.7 27.5 ± 1.4

NH temperature (°C)
Males 30.4 ± 0.8 25.6 ± 1.1 30.2 ± 1.9
Females 30.3 ± 2.8 25.0 ± 1.7 27.5 ± 1.3

HH temperature (°C)
Males 29.7 ± 1.7 23.6 ± 1.0 27.7 ± 2.9
Females 29.3 ± 1.4 23.6 ± 0.7 25.9 ± 1.1

NN microcirculation (flux)
Males 73.8 ± 27.6 71.0 ± 16.9 59.0 ± 19.2
Females 50.3 ± 27.3 50.1 ± 23.2 36.0 ± 23.4

NH microcirculation (flux)
Males 71.4 ± 25.2 71.7 ± 13.6 67.4 ± 37.3
Females 52.3 ± 27.0 49.0 ± 18.4 32.4 ± 14.4

HH microcirculation (flux)
Males 98.1 ± 70.2 96.1 ± 35.2 77.7 ± 65.7
Females 44.3 ± 19.1 53.6 ± 21.1 29.5 ± 13.3

NN MAP (mmHg)
Males 94.2 ± 6.6 95.5 ± 6.1 94.9 ± 4.4
Females 94.1 ± 9.7 96.8 ± 9.9 95.6 ± 12.1

NH MAP (mmHg)
Males 93.9 ± 5.4 95.1 ± 5.9 93.5 ± 5.1
Females 93.6 ± 10.7 95.5 ± 10.9 96.5 ± 10.7

HH MAP (mmHg)
Males 98.1 ± 8.1 99.7 ± 9.4 95.7 ± 7.0
Females 97.5 ± 9.4 98.3 ± 8.7 96.3 ± 9.2

NN TS (4 to −4)
Males 1.0 ± 0.1 −2.5 ± 0.3 0.0 ± 0.1
Females 0.0 ± 0.3 −2.5 ± 0.2 0.0 ± 0.2

NH TS (4 to −4)
Males 1.0 ± 0.1 −2.5 ± 0.2 0.0 ± 0.2
Females 0.5 ± 0.3 −3.0 ± 0.3 0.0 ± 0.2

HH TS (4 to −4)
Males −1.0 ± 0.2 −3.0 ± 0.2 −1.0 ± 0.2
Females −1.0 ± 0.4 −3.0 ± 0.4 −1.0 ± 0.3

NN TC (0–4)
Males 0.0 ± 0.1 1.0 ± 0.1 0.0 ± 0.0
Females 0.0 ± 0.2 1.0 ± 0.2 0.0 ± 0.1

NH TC (0–4)
Males 0.0 ± 0.0 1.0 ± 0.1 0.0 ± 0.0
Females 0.0 ± 0.2 1.0 ± 0.2 0.0 ± 0.1

HH TC (0–4)
Males 0.0 ± 0.2 2.0 ± 0.2 0.0 ± 0.1
Females 0.5 ± 0.2 1.0 ± 0.2 0.0 ± 0.1

Abbreviations: CST, cold-stress test; NN, normobaric normoxia; NH, normobaric

hypoxia; HH, hypobaric hypoxia; MAP, mean arterial pressure; TS, thermal sensation;

TC, thermal comfort, values are means ± SD (temperature, microcirculation, MAP) and

medians±SE (TS, TC).
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hormonal levels might contribute to the different responses

between sexes (Bartelink et al., 1993). A plausible explanation

is the influence of the female hormones on the peripheral

adrenergic synapses. An elevation of estrogen levels have been

associated with an upregulation of vasoconstrictive α-
adrenoreceptors (Bartelink et al., 1993). It is also described

that the females’ basal hand blood flow is lower compared to

men (Cooke et al., 1990). These authors concluded that the

increase in sympathetic activation is the main factor for sex

differences regarding blood flow differences, rather than local

structural differences (Cooke et al., 1990). In summary,

previous research has shown that variations during cooling

are related to the above-mentioned sex differences and

morphological differences in the extremities (Havenith

et al., 1992; Jay and Havenith, 2004; Lunt and Tipton, 2014).

Interestingly, our results show a higher skin temperature drop in

the hands in females compared to males, only in normobaric

hypoxia but not in hypobaric hypoxia. The decrease in arterial

PO2 stimulates peripheral and central chemoreceptors. This

stimulation occurs when the inspired PO2 is lowered to

approximately 122 mmHg or at an altitude of 1,524 m (Institute

of Medicine Committee on Military Nutrition, 1996), which also

occurred in our study at an altitude of around 3,000 m. One of the

several physiological responses that occur under acute hypoxia is the

stimulation of the sympathetic nervous system, a principal secretion

of catecholamines like norepinephrine (Brooks et al., 1991; Mazzeo

et al., 1991). By stimulating the chemoreceptors, which are

responsible for the sympathetic drive, the resulting

vasoconstrictive effect is responsible to maintain blood flow (e.g.,

coronary and cerebral) to the tissues (Heistad and Abboud, 1980;

Hansen and Sander, 2003). Interestingly, one study result showed

that the latency for achieving peak response to isocapnic

hypoxaemia was significantly shorter in females compare with

men (Jones et al., 1999). Consistent with the more rapid

responses observed in women, females show increased dopamine

and NA turnover in carotid body and brainstem NA cell groups in

response to hypoxia compared to males, however these results are

based on animalmodels (Pequignot et al., 1997). It is well established

that a hypoxic environment triggers changes in autonomic nervous

system reactions (Hainsworth et al., 2007). In this context,

interesting results were observed from a research group,

investigating sex differences during hypoxia on autonomic

nervous system responses. The results indicated that males tend

to have higher sympathetic responses compared to females (Botek

et al., 2018), which is in accordance to our results. In line with the

literature (Millet et al., 2012), our results suggest that the HH

environment seems to be a more severe environment compared

to NH, and triggered the sympathetic nervous systemmore inmales

compared to females (Botek et al., 2018). Our results show a higher

skin temperature drop inHH compared toNH inmales (males HH:

Δ3.2 ± 0.6°C vs. males NH: Δ1.9 ± 0.9°C) compared to the (females

HH: Δ3.9 ± 1.3°C vs. females NH: Δ3.3 ± 1.5°C). From another

perspective, the more pronounced skin temperature drop in NH

compared to HH in the female group might be due to the instant

hypoxic stimulus. The hypoxic stimulus occurred only instantly in

the NH set-up, once the participants breathed the hypoxic air

through the mask system. In the HH group, the hypoxic

stimulus occurred in a more moderate way but over a longer

time period, because travelling to the terrestrial target altitude

took much more time (Figure 1). Therefore, it can’t be excluded

that the instant hypoxic effect might have influenced the current

results. It is also conceivable that the additional stimulation of the

adrenergic system by the acute hypoxia intensifies the cold-induced

vasoconstriction and vice versa. Indeed, results from earlier studies

also show that systemic hypoxaemia leads, compared to normoxic

conditions, to a blunted cold-induced vasodilation and skin

temperature (Takeoka et al., 1993; Daanen and van Ruiten,

2000). The females rated the water temperature to feel colder

compared to the men in the NH group. This finding is in line

with the findings of a research group where females and males

underwent a thermal stress test (Averbeck et al., 2017).In this study,

females were more sensitive to thermal detection and also thermal

FIGURE 3
Differences between females andmales in NN, NH and HH for thermal sensation (A) and thermal comfort (B). Dots indicate the individual values
of each participant. #p = 0.02 between females and males.
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pain threshold. Interestingly, independent of sex, thermal detection

thresholds were dependent on the baseline temperature,

demonstrating complex processing of “cold” and “warm” inputs

in thermal perception (Averbeck et al., 2017).

A limitation of this study is, that the participants’ core

temperature was not assessed. Other researchers have

demonstrated, that a slight increase in core temperature leads to

an enhanced cold-induced vasodilation (Daanen et al., 1997).

Another limitation is, that the hypoxic dose was different

between NH and HH. Whilst the participants in NH were

exposed to the targeted hypoxic level instantly, in HH the

systemic hypoxaemia occurred over a longer time until the

equivalent hypoxic level was reached. It is possible that the age

factor might attributed to the current results, as the females were

statistically younger (p= 0.047) compared to themales. Age has been

demonstrated to influence the sympathetic tone in young women to

physiological stressors (Miller et al., 2019). Albeit our aim was to

have the exact same PiO2 in NH and HH, the hypoxic dose was

slightly higher in NH compared to HH (around 5 mmHg), which

should be taken into account. Future studies should consider

increasing the normobaric hypoxic stimulus in a time period

comparable to that of summit ascent under real conditions.

Furthermore, future studies should consider investigating sex

differences between normobaric and hypobaric conditions under

more severe hypoxic environments.

5 Conclusion

The cold-stress test led to sex differences only under

normobaric hypoxia, where the females’ skin temperature

dropped to a larger amount, and the thermal sensation of

cold was higher, compared to the males. Females and males

showed similar physiological and perceptual responses to the

cold-stress test in normobaric normoxia, normobaric- and

hypobaric hypoxia. These findings might help to better

understand the physiological and perceptual responses to

hypoxic and cold stressors between females and males.
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