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Abstract

Flowering and fruit set are important traits affecting fruit quality and yield in rabbiteye blue-

berry (Vaccinium ashei). Intense efforts have been made to elucidate the influence of ver-

nalization and phytohormones on flowering, but the molecular mechanisms of flowering and

fruit set remain unclear. To unravel these mechanisms, we performed transcriptome analy-

sis to explore blueberry transcripts from flowering to early fruit stage. We divided flowering

and fruit set into flower bud (S2), initial flower (S3), bloom flower (S4), pad fruit (S5), and cup

fruit (S6) based on phenotype and identified 1,344, 69, 658, and 189 unique differentially

expressed genes (DEGs) in comparisons of S3/S2, S4/S3, S5/S4, and S6/S5, respectively.

There were obviously more DEGs in S3/S2 and S5/S4 than in S4/S3, and S6/S5, suggest-

ing that S3/S2 and S5/S4 represent major transitions from buds to fruit in blueberry. GO and

KEGG enrichment analysis indicated these DEGs were mostly enriched in phytohormone

biosynthesis and signaling, transporter proteins, photosynthesis, anthocyanins biosynthe-

sis, disease resistance protein and transcription factor categories, in addition, transcript lev-

els of phytohormones and transporters changed greatly throughout the flowering and fruit

set process. Gibberellic acid and jasmonic acid mainly acted on the early stage of flowering

development like expression of the florigen gene FT, while the expression of auxin response

factor genes increased almost throughout the process from bud to fruit development. Trans-

porter proteins were mainly associated with minerals during the early flowering development

stage and sugars during the early fruit stage. At the early fruit stage, anthocyanins started to

accumulate, and the fruit was susceptible to diseases such as fungal infection. Expression

of the transcription factor MYB86 was up-regulated during initial fruit development, which

may promote anthocyanin accumulation. These results will aid future studies exploring the

molecular mechanism underlying flowering and fruit set of rabbiteye blueberry.
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Introduction

Flowering and fruit set are two of the most important events in the plant life cycle. The flower-

ing process is a transition from vegetative growth to reproductive development, which directly

affects fruit yield and quality. Falling flowers and fruits often lead to poor harvests. Under-

standing flowering and fruit set in blueberries will facilitate the improvement of fruit traits and

yield.

Flower development is the most important developmental event in the life cycle of higher

plants. The flowering pathway has been well studied in Arabidopsis (Arabidopsis thaliana) and

to some extent in other monocots and dicots. Transition to flowering is controlled by complex

genetic networks including the vernalization pathway [1], autonomous pathway [2], hormone

pathway [3], and photoperiodic pathway [4]. In Arabidopsis, the key genes integrating multi-

ple flowering pathways are FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRES-
SION OF CONSTANS1 (SOC1), and LEAFY (LFY). FT which is a florigen gene and SOC1
share the common upstream regulators CONSTANS (CO), a key component of the photoperi-

odic pathway, and FLOWERING LOCUS C (FLC), a flowering repressor integrating autono-

mous and vernalization pathways. Rice (Oryza sativa), a model plant for monocotyledon

molecular genetics, has two florigen genes, Headingdate3a (Hd3a) and RICEFLOWERINGLO-
CUST 1 (RFT1) [5]. There are two main genetic pathways in the photoperiod flowering path-

way in rice: the evolutionarily conserved OsGI–Hd1(heading date 1)–Hd3a pathway (similar

to the GI–CO–FT pathway in Arabidopsis) and the Ehd1(early heading date 1)-centered spe-

cific pathway, both of which are eventually integrated into two florigen genes [5]. The phyto-

hormone gibberellic acid (GA) seriously affects the development of male reproductive organs

in plants. In Arabidopsis and rice, low gibberellin content leads to stamen defects and male ste-

rility [6, 7]. The flowering pathway of woody plants shows differences from those of Arabidop-

sis and rice in some respects. VERNALIZATION INSENSITIVE (VIN) and SHORT
VEGETATIVE PHASE (SVP) transcriptionally inhibit the expression of FT in Arabidopsis,

while they combined with SOC1 to induce FT expression in Chimonanthus praecox [8]. Fruit

trees require chilling, which can promote flowering in Ziziphus jujuba [9], but is not a neces-

sary condition for flowering. Furthermore, the expression of C-REPEAT BINDING FACTOR
(CBF) is not significantly changed during chilling in pear [10]. Phytohormones also play an

import role in regulating flowering in woody plants. Of these phytohormones, GA regulates

plant flowering time; however, the genes related to GA biosynthesis have different expression

patterns in sweet apple [11]. Research on Vaccinium species (blueberry) has been conducted

over the past a few years. Transgenic blueberry with overexpression of Vaccinium corymbosum
FLOWERING LOCUS T (VcFT) has no chilling requirement for normal flowering [12],

although transgenic plants are smaller than untransformed plants. This suggests that VcFT is a

primary integrator, but hinders the growth development of blueberry. By comparing the tran-

scriptome and metabolome of leaves, flower buds, and mature flowers of ‘Mu-Legacy’ blue-

berry, many differentially expressed genes (DEGs) associated with cytokinin and GA

biosynthesis and signaling were identified [13]. Overexpression of DWARF AND DELAYED
FLOWERING 1 (VcDDF1), which is associated with delayed flowering in Arabidopsis, can

increase freezing tolerance with no effect on plant flowering time in blueberry [14].

Previous transcriptome analysis showed that the genes involved in phenylpropanoid bio-

synthesis and nitrogen metabolism, as well as cutin, suberin, and wax biosynthesis are up-reg-

ulated mainly in early blueberry fruit development, while genes involved in starch and sugar

metabolism are highly expressed at fruit ripening [15]. Cyanogenic glycoside (CG) biosyn-

thetic enzymes are highly expressed in green fruit, but a CG detoxification enzyme is up-regu-

lated during fruit ripening [16]. Genes related to sugar and organic acids are up-regulated
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during fruit development [17]. Genome-wide analysis showed that high expression levels of

Vaccinium corymbosum caffeic acid O-methyltransferase (VcCOMT) family genes during the

development of blueberry fruit may contribute to greater fruit firmness [18]. The process of

transition from flower to fruit involves the anthocyanin pathway, transcription factor-related

genes, sugar-related genes, hormone-related genes, and photosynthesis. Flavonoids accumu-

late from the early fruit stage to the maturation stage [19]. High levels of expression of genes

related to anthocyanin and carotene biosynthesis [20] may lead to pigment changes during

fruit development. Some transcription factor-related genes such as MYB transcription factor

(MYB) also have high expression levels at the fruit development stage. Glucose accumulates

promptly during fruit development [19, 20]; however, the expression of SUCROSE TRANS-
PORTER 2 (SUC2) and SWEET1, which encode sugar transporters, is down-regulated [19].

Hormone pathways display complex regulation at this stage. Genes related to ethylene [19]

and cytokinins [11, 20] are up-regulated when plants transition from flower to fruit. On the

contrary, genes related to IAA and auxin are down-regulated [11]. The regulation of GA is par-

ticularly complicated during the flowering process. Expression of GA2OX is up-regulated [19],

while expression of some other genes is down-regulated [11]. Photosynthesis may not matter

during the transformation stage, as evidenced by many genes related to photosynthesis being

expressed at lower levels from flowering to fruit set [11].

Many researchers have reported on changes in gene expression at the flower stage and fruit

stage; however, few researchers have reported on the relationship between flowering and fruit

set in blueberry. Gene expression patterns may be unique at different stages from bud to fruit.

For example, SVP and MAFs, which are involved in vernalization, have a high expression level

from the bud to the flower stage [21] but this decreases later. Blueberry yield depends not only

on pollen performance but also on genes related to hormones and on nutrition supplementa-

tion during the flower-fruit transition. In the present study, we generated RNA-seq data for

five different stages of blueberry flower development from bud to fruit. We took advantage of

techniques employed in Cufflinks using the genomic sequence of blueberry published in 2019

[15]. We aimed to determine the critical genes at each stage of blueberry development from

bud to fruit, which will provide new insight into the mechanism of flowering and fruit set in

blueberry and enable effective breeding of flowering and fruit set in blueberries.

Results

Identification and functional annotation of DEGs

We explored the expression levels of genes involved in blueberry flower and fruit set at six

stages (Fig 1A) using Cuffdiff software instead of edgeR. After filtering (false discovery rate

FDR<0.05) (S1 Table), a total of 34 genes were differentially expressed, among which seven

were down-regulated and 27 were up-regulated, in the S2 stage compared with the S1 stage

(leaf bud to flower bud) (S2 Table). A total of 2,298 genes showed differential expression, with

1,389 up-regulated and 909 down-regulated, in S3 compared with S2 (flower bud to initial

flower) (Fig 1C and S3 Table). The comparison of S4 with S3 (initial flower to bloom flower)

revealed 453 DEGs, with 180 up-regulated and 273 down-regulated (Fig 1C and S4 Table). A

total of 1,692 genes displayed differential expression in S5 compared with S4 (bloom flower to

pad fruit), with 784 up-regulated and 908 down-regulated (Fig 1C and S5 Table). The compari-

son of S6 with S5 (pad fruit to cup fruit) identified 621 genes showing differential expression,

with 323 up-regulated and 298 down-regulated (Fig 1C and S6 Table). The number of DEGs

in S3/S2 and S5/S4 was dramatically higher than that for the other three pairs.

The Venn diagram displays a comparative analysis of the DEGs described above (Fig 1B).

We identified 5,098 DEGs associated with transitions to different developmental stages from
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bud to fruit setting, with 1,344, 69, 658, and 189 DEGs being unique to S3/S2, S4/S3, S5/S4,

and S6/S5, respectively (Fig 1B and S7–S10 Tables). These data showed that there were obvi-

ously more DEGs at S3/S2 and S5/S4 than at S4/S3, and S6/S5, suggesting that S3/S2 and S5/S4

represented major transitions from buds to fruit in blueberry.

Principal component analysis

Our principal component analysis (PCA) shown in Fig 2 indicated that Comp.1 (30.37%) and

Comp.2 (16.95%) best described the sources of variance between the samples at different

stages. In general, replicate samples belonging to a given developmental stage clustered more

closely together than samples belonging to different stages, except for leaf bud and flower bud

(Fig 2). This result is consistent with the number of DEGs identified. As shown above, 2,298

DEGs were identified between S2 and S3 stages, which was dramatically higher than the num-

ber between other stages (Fig 1C and S3 Table).

PCA analysis of all the transcripts in 18 samples revealed that those belonging to stages S2,

S3, S4, S5, and S6 were well separated from each other, indicating that gene expression patterns

Fig 1. Analysis of Differentially Expressed Genes (DEGs) between each library pair. (A) Samples of Vaccinium ashei for RNA-seq. S1, leaf bud; S2, flower bud;

S3, initial flower; S4, bloom flower; S5, pad fruit; S6, cup fruit. (B) Venn diagram of the DEGs in comparisons of five samples (numbers in circles represent the

numbers of DEGs in different stages). (C) Numbers of up-regulated (up) and down-regulated (down) genes in the comparisons of five samples.

https://doi.org/10.1371/journal.pone.0259119.g001
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were different between buds, flowers, and fruit. However, S1 and S2 were not separated from

each other very well, because leaf bud and flower bud had similar phenotypes, which may lead

to accidental mis-sampling or misidentification. The process from leaf buds to flower buds

does not represent two consecutive developmental stages as well, for that leaf buds will differ-

entiate into either leaf or flower buds. What’s more, the number of DEGs between S1 and S2

was only 34 genes (S2 Table). To make the results more accurate, we have removed S1 sample

in our analysis above and below.

GO analysis for different flower developmental stages

To determine the biological classification of DEGs, we performed functional and pathway

enrichment analyses using ClusterProfiler R packages. Gene ontology (GO) analysis was per-

formed by stage. Comparing S3 with S2, 2,298 (S3 Table) DEGs were significantly enriched in

“aromatic compound catabolic process”, “cytoskeleton organization”, and “vegetative to repro-

ductive phase transition of meristem” in the Biological Process category (Fig 3A). The GO

terms “vesicle” and “thylakoid” were prominent in the Cellular Component category, whereas

Fig 2. Principle Component Analysis (PCA) of variability in DEGs observed across samples. Colors are used to

differentiate between samples: purple, blue, brown, red, green, and cyan represent leaf bud, flower bud, initial flower,

bloom flower, pad fruit, and cup fruit, respectively.

https://doi.org/10.1371/journal.pone.0259119.g002

PLOS ONE Transcriptome analysis of genes associated with flowering and fruit set in rabbiteye blueberry

PLOS ONE | https://doi.org/10.1371/journal.pone.0259119 October 28, 2021 5 / 18

https://doi.org/10.1371/journal.pone.0259119.g002
https://doi.org/10.1371/journal.pone.0259119


“adenyl nucleotide binding” and “active transmembrane transporter activity” were the appar-

ent molecular functions of the DEGs. Comparing S4 with S3, “response to jasmonic acid”,

“programmed cell death”, and “response to organonitrogen compounds” were notable under

the Biology Process category (Fig 3B). In the comparison of S5 with S4, “mitotic cell cycle”,

“cytoskeleton organization”, and “cell division” were dominant terms in the Biology Process

category (Fig 3C). All these GO terms were related to cell growth, inferring that the number of

cells began to rise at this stage. Abiotic and biotic stress related pathways also played an impor-

tant role at the S5/S4 stage. Abiotic stress includes “response to water”, “response to light

intensity”, and “response to heat” while biotic stress includes “response to virus”. The “flavo-

noid biosynthetic process” was another dominant term in pad fruit compared with bloom

flower, indicating that flavonoids began to accumulate from the bloom stage to the early fruit

stage. In the Cellular Component category, “intrinsic component of membrane” and “plant-

type cell wall” were predominant terms. For the Molecular Function category, “ATP binding”

and “adenyl nucleotide binding” were the most strikingly enriched terms. In the comparison

of S6 with S5, “mitotic cell cycle”, “cytoskeleton organization”, and “cell division” were domi-

nant terms in the Biology Process category, mostly similar to the bloom flower/pad fruit transi-

tion (Fig 3D). The difference between these comparisons was that stages S5 and S6 focused on

organ development such as “regulation of post-embryonic development” and “regulation of

shoot system development”.

GO analysis indicated that DEGs enriched at the early flowering development stage (S3/S2)

were involved in similar functions to those enriched at the early fruit development stage (S5/

S4 and S6/S5), such as “cytoskeleton organization”. The difference was that the S3/S2 stage

DEGs were also enriched in "aromatic compound catabolic process" and "vegetative to repro-

ductive phase transition of meristem", preparing for flowering, while the S5/S4 and S6/S5

DEGs were mainly concentrated in “abiotic and biotic stress”-related pathways and “flavonoid

biosynthesis”, which was consistent with the results of the following kyoto encyclopedia of

genes and genomes (KEGG) analysis.

DEGs related to flowering process in blueberry

We further conducted an overview hierarchical clustering analysis of the DEGs at each stage.

DEGs in different replicates of the same stage exhibited similar expression patterns. However,

comparisons of the same DEGs at different stages revealed differences in expression patterns

(Fig 4).

DEGs related to transporters, phytohormone biosynthesis and signaling, and photosynthe-

sis showed considerable changes in expression from bud stage to initial flower stage (S3/S2)

(Fig 4A). Some transfer genes were up-regulated at this developmental stage, such as those

encoding the MATE efflux family protein (MATE), heavy metal transport/detoxification

superfamily protein and high affinity K+ transporter 5 (HAK5), indicating that blueberry

requires mineral elements during the transition from buds to initial flowers. Expression of

genes encoding sugar transporter proteins (SUT4 and STP7) was also up-regulated, while that

of genes encoding nitrate transporters (NRT1.5) was down-regulated, suggesting that an

increase in C/N ratio is beneficial for flower bud formation and flowering. This was consistent

with findings in orchid, where C/N ratio played an important role in shaping structure of flow-

ers [22]. DEGs related to GA (GASA1), auxin (AUX2, SAUR−like auxin−responsive protein

family), jasmonic acid (JAZ1), and abscisic acid (ABA) (ABA3, ABA4) were up-regulated while

genes related to ethylene (ERF1) and IAA (IAA11, IAA29) were down-regulated. DEGs related

to photosynthesis such as AGAMOUS-like 20 (AGL20) and chlorophyll A−B binding family
protein (CAB) were down-regulated.
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A great many DEGs related to phytohormone signaling such as auxin, GA, and JA showed

expression changes from initial flowers to bloom flowers (S4/S3) (Fig 4B). More interestingly,

all phytohormones related genes were down-regulated in this stage except auxin response

Fig 3. GO analysis between developmental stages in blueberry. (A) S3/S2; (B) S4/S3; (C) S5/S4; (D) S6/S5. S2, S3, S4, S5, and S6 represent flower bud, initial

flower, bloom flower, pad fruit, and cup fruit, respectively.

https://doi.org/10.1371/journal.pone.0259119.g003
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Fig 4. Gene expression profiles of differentially expressed genes in four comparisons. (A) S3/S2; (B) S4/S3; (C) S5/S4; (D) S6/S5. S2, S3, S4, S5, and S6 represent

flower bud, initial flower, bloom flower, pad fruit, and cup fruit, respectively. Green represents genes down-regulated and red represents genes up-regulated. The

abbreviations and full names of the genes involved are shown below: HAK5 (high affinity K+ transporter 5), MATE (multidrug and toxic compound extrusion efflux
family protein efflux family protein), SUT4 (sucrose transporter 4), STP7 (sugar transporter protein 7), NRT1.5 (nitrate transporter 1.5), GASA1 (GAST1 protein
homolog 1), AUX2 (auxin transporter−like protein 2), JAZ1 (jasmonate−zim−domain protein 1), ABA4 (abscisic acid (aba)−deficient 4), ABA3 (molybdenum
cofactor sulfurase (LOS5)), ERF1 (ethylene response factor 1), IAA29 (indole-3-acetic acid inducible 29), IAA11 (indole-3-acetic acid inducible 11), AGL20
(AGAMOUS−like 20), CAB (chlorophyll A−B binding family protein), ARF19 (auxin response factor 19), ABP19A (auxin−binding protein ABP19a), JRG21
(jasmonate−regulated gene 21), GILP (GSH−induced LITAF domain protein), AGL104 (AGAMOUS−like 104), CLH1 (chlorophyllase 1), CHI (chalcone−flavanone
isomerase family protein), CRF4 (cytokinin response factor 4), ARF18 (auxin response factor 18), ERF4 (ethylene−responsive transcription factor 4), ERF2 (ethylene
−responsive transcription factor 2), CAB-10A (chlorophyll a−b binding protein CP24 10A, chloroplastic), SUC2 (sucrose−proton symporter 2), STP14 (sugar
transporter 14), ABC (ABC transporter family protein), ABCG4 (ABC−2 type transporter family protein), PR5 (pathogenesis−related protein 5), JAZ10 (jasmonate-
zim-domain protein 10), CIA2 (chloroplast import apparatus 2), CNX1 (calnexin 1), TPS9 (trehalose-phosphatase/synthase 9), PGSIP1 (plant glycogenin−like starch
initiation protein 1), GH9B13 (glycosyl hydrolase 9B13), MYB86 (myb domain protein 86), BHLH70 (basic helix-loop-helix 70), LAT52 (anther−specific protein
LAT52), NAC031 (Protein CUP-SHAPED COTYLEDON 3), AGL31 (AGAMOUS−like 31), FCA (flowering time control protein FCA), COL9 (CONSTANS−like 9).

https://doi.org/10.1371/journal.pone.0259119.g004
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factor 19 (ARF19). The DEGs related to pollen growth such as AGAMOUS-like 104 (AGL104)

were expressed lower. The DEGs related to photosynthesis such as chlorophyll a-b binding pro-
tein 13 and chlorophyllase 1 (CLH1) were down-regulated as well.

DEGs related to anthocyanin biosynthesis, phytohormone signaling, photosynthesis, and

sugar transporters showed significant changes in expression from bloom flowers to pad fruit

(S5/S4) (Fig 4C). Genes encoding anthocyanin regulatory C1 protein−like and CHI (Chalcone

−flavanone isomerase family protein) were expressed more highly in pad fruit than at the

bloom stage. Some genes related to cytokinins (CRF4) and auxin (ARF18 and auxin efflux car-
rier family protein) were up-regulated, and some genes related to ethylene (ethylene-responsive
transcription factor 2 and ethylene-responsive transcription factor 4) were down-regulated (Fig

4C). Down-regulation of genes encoding ethylene-responsive transcription factors at this stage

may reduce the content of ethylene to avoid early fruit falling. DEGs related to photosynthesis

(chlorophyll a/b binding protein precursor, CAB-10A, and CAB) were expressed at higher levels

in pad fruit than in bloom flowers. Genes encoding transporters such as sugar transporters

(SUC2 and STP14) and ABC transporters (ABC and ABCG4) were all down-regulated in pad

fruit compared with bloom flowers. What was particularly interesting was that expression of

phytohormone genes related to auxin was increased during both the bud to flower transition

and the flower to fruit transition (Fig 4A and 4C), while expression of genes encoding trans-

porters for sugar was increased at the bud to flower transition (SUT4 and STP7) (Fig 4A) but

decreased at the flower to fruit transition (SUC2 and STP14) (Fig 4C).

Expression levels of DEGs related to pathogenesis, phytohormone signaling, photosynthe-

sis, sugars, transcriptional factors, and floral organ development were changed significantly in

cup fruit (S6) compared with pad fruit (S5) (Fig 4D). Genes encoding disease-resistance pro-

teins and pathogenesis-related protein (PR5) were down-regulated in cup fruit compared with

pad fruit. DEGs related to GA (Gibberellin−regulated family protein) and JA (JAZ10) were also

down-regulated, while auxin-related genes such as SAUR-like auxin-responsive protein family

were mainly up-regulated throughout the whole process from bud to fruit. Transporter genes

such as those encoding MYB86 and Zinc finger/C3HC4-type family protein were up-regulated

while that encoding BHLH70 was down-regulated at the cup fruit stage compared with the

pad fruit stage. NAC031 is involved in the molecular mechanisms regulating shoot apical meri-

stem (SAM) formation and acts as an inhibitor of cell division [23]. AGAMOUS-like 31
(AGL31) acts as a floral repressor [24]. Flowering time control protein FCA regulates flowering

time, seed size, and cell volume. CONSTANS-like 9 (COL9) may be involved in the light input

to the circadian clock [25]. All of these genes, NAC031, AGL 31, FCA, and COL9, were down-

regulated during the pad fruit to cup fruit transition, indicating that the flowering process was

just completed at this stage.

Changes in DEGs related to phytohormone biosynthesis and signaling, transporter pro-

teins, photosynthesis, anthocyanin biosynthesis, disease resistance proteins, and some tran-

scription factors (TFs) represented the major changes during the development from bud to

fruit.

Validation of DEGs by quantitative reverse-transcription PCR (qRT-PCR)

To confirm the accuracy of the RNA-seq results, we examined the transcription of nine puta-

tive genes involved in flower development through a supporting qRT-PCR experiment (Fig 5).

Transcriptional levels of AUX2 (auxin transporter-like protein 2) and CHI (chalcone-flavanone
isomerase family protein) were significantly up-regulated (p<0.05) during the process of flow-

ering and fruit set compared with earlier developmental stages, in agreement with the alter-

ations in gene expression detected by the transcriptome analysis. The transcriptional level of
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CAB (encoding chlorophyll A-B binding family protein) decreased from the bud stage to pad

fruit and then increased slightly again in cup fruit. The transcriptional level of chlorophyllase I
peaked at the pad fruit stage and then decreased. These nine genes provided more evidence to

support the reliability of our RNA sequencing data.

Fig 5. Validation of gene expression by qRT-PCR. Expression levels of nine candidate genes—ABA3 (molybdenum cofactor sulfurase (LOS5)), AUX2
(auxin transporter-like protein 2), CAB (chlorophyll A-B binding family protein), CHI (chalcone-flavanone isomerase family protein), CLH1 (chlorophyllase 1),

Disease resistance protein (CC-NBS-LRR class) family member, IAA11 (indole-3-acetic acid inducible 11), MATE (encoding a MATE efflux family protein),

and SUT4 (sucrose transporter 4)—were determined at each stage using qRT-PCR analyses. S2, S3/S2, S4/S2, S5/S2 and S6/S2 represent flower bud, initial

flower, bloom flower, pad fruit and cup fruit, respectively. The bars and error bars (Standard Deviation) represent the qPCR while the line represents the

results of RNA-seq.

https://doi.org/10.1371/journal.pone.0259119.g005
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Discussion

Uncovering the rules for flowering and fruit set in blueberry will facilitate improvement of

fruit traits. The rapid advances and reduction in cost of sequencing offer exclusive opportuni-

ties for exploring the molecular mechanisms underlying flowering and fruit set processes in

blueberry species. Furthermore, recent publication of the genomic sequence of blueberry

increases the accuracy of transcriptome analysis [15]. Previous studies have only focused on

three stages during the development of flowering in blueberry [26]. The lack of comparative

transcriptome analysis between different stages of flowering and fruit set in blueberry impedes

further functional genomics and molecular biology research. In this study, we divided flower-

ing and fruit set into five phases distinguished by the morphology of flowers, including bud

stages, flower stages, and fruit stages.

Comparing the number of DEGs at different stages, we found significantly more genes reg-

ulated from flower bud to flower and from flower to fruit than during other stage transitions

(Fig 1B and 1C). The genes differentially expressed during these two transitions may play

important roles in reproductive growth in blueberry.

Aromatic compound catabolic process pathways are involved in the breakdown of aromatic

secondary metabolites, which have high content in plants. DEGs were remarkably enriched in

the “aromatic compound catabolic process” from bud to initial flower stages indicating that a

large number of secondary metabolites began to accumulate (Fig 3A). ABA can enhance the

accumulation of betaine aldehyde dehydrogenase 2 (BADH2), which is related to flower fra-

grance in most plants [27]. In this study, ABA3, which acts as a key regulator of ABA biosyn-

thesis [28], was up-regulated in initial flowers of blueberry (Fig 4A). We speculated that

aromatic compounds were increased through regulating the content of ABA. Phytohormone-

related genes have complicated roles throughout the flowering and fruit set period. Phytohor-

mones contribute to flower development, such as outgrowth of organs, development of male

and female gametophytes and cell elongation. The gene encoding Gibberellin-regulated pro-

tein 1 (GAST1) [29], which may be involved in seed germination, flowering, and seed matura-

tion was up-regulated in our study. IAA11 proteins act as repressors of early auxin response

genes [30]. Down-regulation of IAA11 and up-regulation of genes encoding auxin transporter

proteins suggests that the auxin content increased during this stage. Auxin response genes

were up-regulated, consistent with previous reports [31], showing the importance of auxin at

the initial flower stage. Photosynthesis-related genes such as chlorophyll A-B binding family
protein (CAB) were down-regulated, consistent with previous reports [11], indicating that

photosynthesis may have little effect on the transition from buds to initial flowering. Consis-

tent overexpression of FT protein may impede further development of blueberry flowers [32].

AGAMOUS-like 20 (AGL20), involved in the FT-regulated pathway, may integrate signals

from the photoperiod, vernalization, and autonomous floral induction pathways [33]. In our

study, we identified no significant difference in expression of genes related to FT, except

AGL20, from the bud to initial flower stages (Fig 4A). Expression of AGL20 decreased, suggest-

ing that the flowering process was regulated by FT just before the initial flower stage or even

earlier. Overexpression of FT may lead to abnormal flowering in blueberry [12]. Photoperiod

and florigen FT have little effect on flower development at this stage, and FT can even prevent

flowering. This was similar to GA and jasmonic acid (JA) in our study (Fig 4). GA can promote

vegetative growth to reproductive growth, but it can inhibit growth from the initial stage of

reproductive growth to the flowering stage [34]. JA produces herbivore-induced volatiles to

attract predatory insects [35], in preparation for attracting insects.

The transition from flowering to fruit set is another important transition in blueberry.

Genes encoding Anthocyanin regulatory C1 protein-like and CHI, both involved in the
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anthocyanin biosynthesis pathway [36, 37], were upregulated during this transition. Anthocya-

nins may well set out to synthesize from pad fruit stage for the content of anthocyanins can be

detected in green fruit in our previous and others’ research [38, 39]. We discovered that photo-

synthesis increases from initial flower stage to pad fruit stage, suggesting that supplementation

of carbohydrate accumulation is required for growth of young fruit. Despite plentiful evidence

for functional photosynthesis in young fruit [40, 41], studies on tomato have shown that fruit

photosynthesis was not necessary for fruit development but beneficial for seed development, at

least under ambient conditions [41].

From the pad fruit to the cup fruit stage, the fruit expands quickly and then remains in the cup

stage for a long time. There were many similar results between our research and that of Colle

et al. [15] at this stage. In our research, “mitotic cell cycle”, “cytoskeleton organization”, and “cell

division” were the main GO terms associated with DEGs between pad fruit and cup fruit (Fig

3D), indicating that genes associated with cell division and cell wall biosynthesis were differen-

tially expressed during the earliest fruit developmental stage. This result was consistent with Col-

le’s reports [15]. Genes regulating defensive response-related genes were also highly up-regulated

during young fruit development in the research of Colle [15]; however, in our study, expression

of genes encoding the disease resistance protein (CC-NBS-LRR class) family and pathogenesis-

related protein 5 decreased significantly form pad to cup fruit (Fig 4D). Rabbiteye blueberry are

susceptible to infection by the fungus Exobasidium maculosum on young fruit [42], while mature

fruit tends to be infected by blueberry red ringspot virus (BRRV) during the ripening period in

the spring [43]. Furthermore, bluberry fruits infected by Monilinia vaccinia-corymbosi are unfit

for processing [44]. We speculated that rabbiteye blueberry may well be vulnerable to fungal

infection at the cup fruit stage. The expression of genes encoding disease resistance protein

increased from bloom to pad fruit according to our qRT-PCR results (Fig 5). The difference

between the results obtained by Colle et al. and our results may be due to the sampling time.

Most of phytohormone related gene were down-regulated from initial flower stage to

bloom stage. The AGL104 involves in the regulation of pollen maturation and pollen tube

growth [45]. The expression of AGL104 decreased (Fig 4B) indicated that pollen has already

been developed during the initial flower stage. And MYB86 gene expression was up-regulated

during initial fruit development (Fig 4D). MYB86 expression was found to be concurrent with

anthocyanin accumulation in fruits of Fragaria vesca [46]. Therefore, MYB86 may function as

anthocyanin accumulation in blueberry. However, this needs further research to confirm.

In this study, we demonstrated that phytohormones, anthocyanin, and pathogenesis are

involved in the blueberry flowering and fruit set process. Phytohormones may have a complex

function because expression of genes encoding hormones changed frequently at different devel-

opmental stages. For example, Expression of GA-related genes peaked at the early stage of flower

development, but decreased later. Expression of auxin-related genes increased nearly throughout

the process from bud to fruit, like that expression of AUX2 increased steady through the whole

flower and fruit set process in blueberry. This was identified through both RNA-seq data and

qRT-PCR, suggesting that AUX2 plays an important role in the flowering process. Expression of

genes related to anthocyanin was increased during later stages of blueberry flowering while that of

pathogenesis-related genes was decreased, which may suggest that anthocyanin makes up some

deficiency caused by lack of pathogen resistance. However, this needs further research.

Materials and methods

Blueberry materials

Nine-year-old shrubs of rabbiteye ‘Brightwell’ blueberry (Vaccinium ashei) were cultivated in

Nanling County, Anhui Province, China. Flowering and fruit set were divided into six stages
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based on morphological characterization (Fig 1A). Leaf bud (S1) and flower bud (S2) were col-

lected in early and late March, respectively. Initial flower (S3) and bloom flower (S4) were col-

lected in April when the blueberry was flowering. Pad fruit (S5) was collected in late April

when fruit began to form and looked similar to a pad. Cup fruit (S6) was collected in early

May and represented a stage present for a long time. Considering that blueberry flowers are

racemes, the developmental levels of their flowers on the top and bottom are not uniform. The

samples were based on individual florets rather than whole inflorescences, ensuring that the

developmental levels of samples collected at each stage were consistent. The S4 flowers were

almost pollinated, and all parts of the S4 flowers in Fig 1A were sequenced, including the infe-

rior ovary and sepals. All samples were manually picked to prevent any mechanical damage

and then frozen immediately in liquid nitrogen, followed by storage at -80˚C until use. Each

sample had three replicates. About 200 mg of each replication was taken, of which 100 mg was

used for RNA extraction.

Construction of cDNA library and Illumina sequencing

Total RNA was extracted using Trizol reagent (Invitrogen), and genomic DNA contamination

was removed using DNase I (TaKaRa, Dalian, China). RNA quality was verified using agarose

gel electrophoresis and a Bioanalyzer 2100 (Aglient Technologies, Palo Alto, CA, USA). The

RIN of the 18 RNA samples was in the range from 9.0 to 9.6. For cDNA library construction,

mRNA was enriched using oligo (dT) magnetic beads and then broken into smaller pieces

using fragmentation buffer (GeneChip1WT Terminal labeling kit; Affymetrix; P/N 900671).

cDNA libraries were sequenced using an Illumina HiSeq2000 platform at WeiFen GENE Co.,

ChaoHu, China to generate 150-bp paired-end reads. The raw reads data are available at the

National Center for Biotechnology Information NCBI sequence read archive database

(PRJNA745351). The reference genome and gene model annotation files were downloaded

directly from the blueberry genome website (https://www.vaccinium.org/crop/blueberry) [15].

An index of the reference genome was built using Bowtie software (v2.2.8). Raw reads were fil-

tered to obtain high-quality reads by removing low-quality reads with Q30 no less than 89.65%

(both Q20 and Q30 were used in S1 Table). The high-quality reads were mapped onto the

highbush blueberry (Vaccinium corymbosum) reference genome using TopHat [47]. Assem-

bled transcripts were annotated using the Cuffcompare program from the Cufflinks package.

Gene expression was quantified in terms of reads per kilobase of exon model per million

mapped reads (RPKM) values. Cuffdiff (v2.1.1) was used to calculate RPKM of mRNAs. The R

package cummeRbund was used to count the number of reads mapped to each gene. The

RPKM value for each gene was then calculated based on the length of the gene and the number

of reads mapped to it. Cuffdiff command, a part of cufflink software, was used to select the

DEGs; therefore, transcripts with adjusted p-value <0.05 (significant parameter was set by

default) were considered to be significantly differentially expressed.

GO analysis and identification of DEGs

A GO functional analysis was performed to identify the biological processes most strongly rep-

resented by the DEGs. GO enrichment analysis of all the DEGs of each stage was performed

using the ClusterProlifer package in R software [48]. The DEGs of each stage were generated

by Cuffdiff by using database Org.At.tair.db. After identifying the DEGs between S2/S1, S3/S2,

S4/S3, S5/S4, and S6/S5, respectively, a Venn diagram was constructed to show the overlap

between DEGs of four comparisons (S3/S2, S4/S3, S5/S4, and S6/S5) to identify unique DEGs

between each stage except S2/S1 for further analysis.
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Variation in DEGs between samples was studied using PCA which was based on Fragment

per Kilobase Million (FPKM). Samples were grouped using transcriptional data analyzed by

Cufflinks, including all the isoforms (252,060) present in each sample, for PCA analysis. The

PCA was performed using the R program.

Validation of RNA-seq data by quantitative reverse-transcription PCR

The reliability of DEGs/transcripts identified through RNA sequencing was evaluated through

quantitative RT-PCR analysis of nine selected transcripts. There were two criteria used to

select the nine transcripts for qRT-PCR: (1) The transcripts were related to the phytohormone

or photosynthesis pathways or encoded transporters or disease resistance protein, which

played a crucial role or changed considerably during flowering and fruit set.; (2) The tran-

scripts showed relatively high expression levels and kept stable in RNA-seq data of samples to

make PCR amplification easier. Every sample used flower bud as the internal control for

qRT-PCR. Actin was used as an internal control to normalize expression levels of the analyzed

genes.

Reverse transcription of RNA to cDNA was performed using SuperScript II reverse tran-

scriptase (Invitrogen). The resulting cDNA from 1 μg of RNA was diluted in water, and 1 μl of

sample (25 ng) was used for each PCR. Three replicated RNA samples from the flower tissues

of each blueberry stage were used. Primers were designed using Primer premier v5.0 software

(Applied Biosystems, Foster City, CA, USA) (S11 Table). Quantitative RT-PCR was performed

in triplicate using the SYBR Green System (Thermo Fisher). Each 25 μl reaction mixture con-

tained 25 ng cDNA, 100 nM primers, and 12.5 μl of 2×SYBR Green master mix. Reaction con-

ditions for all primer pairs were 95˚C for 10 min, 40 cycles of 30 s at 95˚C, 60 s at 60˚C, and 60

s at 72˚C, followed by 1 cycle of 60 s at 95˚C, 30 s at 55˚C, and 30 s at 95˚C. The specificity of

the reaction for each primer pair was determined using a melting curve. Relative expression

was normalized using the eukaryotic translation initiation factor 3 subunit H and was calcu-

lated using the 2−ΔΔCt method.

Conclusions

The phytohormones play an essential role in regulating flowering and early fruit development

during the blueberry flowering and fruit set process. Expression of GA-related genes was up-

regulated at the initial flower stage but decreased at later stages, suggesting that regulation of

GA may only be effective during the early stage of the flowering process. Expression of auxin-

related genes increased almost throughout the process from bud to fruit, suggesting that auxin

is vital in the flowering process. Of particular interest, expression of FT, an inducer of flower-

ing, showed no significant change during the bud to fruit stage. AGL20, which is regulated by

FT, was down-regulated from the bud to initial flower stage, suggesting that FT may only affect

the flowering process at the early stage, similar to GA and JA. Anthocyanin accumulation may

begin at the pad fruit stage because anthocyanin biosynthesis was up-regulated at this stage.

Flowering-development-related genes were constitutively expressed after the flower bloom,

inferring that the flowering process is not finished until the growth of the pad fruit. Genes

encoding pathogenesis-related proteins were down-regulated at the cup fruit stage, suggesting

that this blueberry may be susceptible to disease.

Supporting information

S1 Table. Summary of the transcriptome characteristics of blueberry flowers and fruit.

(XLSX)

PLOS ONE Transcriptome analysis of genes associated with flowering and fruit set in rabbiteye blueberry

PLOS ONE | https://doi.org/10.1371/journal.pone.0259119 October 28, 2021 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s001
https://doi.org/10.1371/journal.pone.0259119


S2 Table. Differentially expressed genes between stages S2 and S1.

(XLSX)

S3 Table. Differentially expressed genes between stages S3 and S2.

(XLSX)

S4 Table. Differentially expressed genes between stages S4 and S3.

(XLSX)

S5 Table. Differentially expressed genes between stages S5 and S4.

(XLSX)

S6 Table. Differentially expressed genes between stages S6 and S5.

(XLSX)

S7 Table. List of differentially expressed genes unique to stages S3 and S2.

(XLSX)

S8 Table. List of differentially expressed genes unique to stages S4 and S3.

(XLSX)

S9 Table. List of differentially expressed genes unique to stages S5 and S4.

(XLSX)

S10 Table. List of differentially expressed genes unique to stages S6 and S5.

(XLSX)

S11 Table. RT-qPCR genes and primers used for validation of RNA-seq data.

(XLSX)

Acknowledgments

We thank International Science Editing (http://www.internationalscienceediting.com) for

editing this manuscript.

Author Contributions

Data curation: Lida Wang.

Funding acquisition: Xuan Gao.

Resources: Hong Zhang.

Software: Guosheng Lv.

Visualization: Bo Zhu.

Writing – original draft: Xuan Gao.

Writing – review & editing: Jiaxin Xiao.

References
1. Aaron Greenup WJP, Elizabeth S. Dennis, Trevaskis* B. The molecular biology of seasonal flowering-

responses in Arabidopsis and the cereals. Annals of Botany. 2009; 103(8):p.1165–72. https://doi.org/

10.1093/aob/mcp063 PMID: 19304997

2. Auge GA, Blair LK, Karediya A, Donohue K. The autonomous flowering-time pathway pleiotropically

regulates seed germination in Arabidopsis thaliana. Ann Bot. 2018; 121(1):183–91. Epub 2017/12/28.

https://doi.org/10.1093/aob/mcx132 PMID: 29280995; PubMed Central PMCID: PMC5786223.

PLOS ONE Transcriptome analysis of genes associated with flowering and fruit set in rabbiteye blueberry

PLOS ONE | https://doi.org/10.1371/journal.pone.0259119 October 28, 2021 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259119.s011
http://www.internationalscienceediting.com/
https://doi.org/10.1093/aob/mcp063
https://doi.org/10.1093/aob/mcp063
http://www.ncbi.nlm.nih.gov/pubmed/19304997
https://doi.org/10.1093/aob/mcx132
http://www.ncbi.nlm.nih.gov/pubmed/29280995
https://doi.org/10.1371/journal.pone.0259119


3. Wang J, Li Z, Lei M, Fu Y, Zhao J, Ao M, et al. Integrated DNA methylome and transcriptome analysis

reveals the ethylene-induced flowering pathway genes in pineapple. Sci Rep. 2017; 7(1):17167. Epub

2017/12/08. https://doi.org/10.1038/s41598-017-17460-5 PMID: 29215068; PubMed Central PMCID:

PMC5719354.

4. Dutta S, Biswas P, Chakraborty S, Mitra D, Pal A, Das M. Identification, characterization and gene

expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC

Genomics. 2018; 19(1):190. Epub 2018/03/11. https://doi.org/10.1186/s12864-018-4571-7 PMID:

29523071; PubMed Central PMCID: PMC5845326.

5. Zhou S, Zhu S, Cui S, Hou H, Wu H, Hao B, et al. Transcriptional and post-transcriptional regulation of

heading date in rice. New Phytol. 2021; 230(3):943–56. Epub 2020/12/21. https://doi.org/10.1111/nph.

17158 PMID: 33341945; PubMed Central PMCID: PMC8048436.

6. Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, et al. Potential sites of bioactive gibberellin

production during reproductive growth in Arabidopsis. Plant Cell. 2008; 20(2):320–36. Epub 2008/03/

04. https://doi.org/10.1105/tpc.107.057752 PMID: 18310462; PubMed Central PMCID: PMC2276448.

7. Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, et al. Reduction of gibberel-

lin by low temperature disrupts pollen development in rice. Plant Physiol. 2014; 164(4):2011–9. Epub

2014/02/27. https://doi.org/10.1104/pp.113.234401 PMID: 24569847; PubMed Central PMCID:

PMC3982758.

8. Li Z, Liu N, Zhang W, Wu C, Jiang Y, Ma J, et al. Integrated transcriptome and proteome analysis pro-

vides insight into chilling-induced dormancy breaking in Chimonanthus praecox. Horticulture Research.

2020; 7(1):198. https://doi.org/10.1038/s41438-020-00421-x PMID: 33328461

9. Michal M, Vanessa R, Eran R, Simon B, Noemi T-Z. Dormancy release and flowering time in Ziziphus

jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling. J Plant Physiol 2016.

10. Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T. Transcriptome analysis of Japanese pear (Pyrus

pyrifolia Nakai) flower buds transitioning through endodormancy. Plant Cell Physiol. 2013; 54(7):1132–

51. Epub 2013/04/30. pct067 [pii] https://doi.org/10.1093/pcp/pct067 PMID: 23624675.

11. Liu K, Feng S, Pan Y, Zhong J, Chen Y, Yuan C, et al. Transcriptome Analysis and Identification of

Genes Associated with Floral Transition and Flower Development in Sugar Apple (Annona squamosa

L.). Front Plant Sci. 2016; 7:1695. Epub 2016/11/25. https://doi.org/10.3389/fpls.2016.01695 PMID:

27881993; PubMed Central PMCID: PMC5101194.

12. Gao X, Walworth AE, Mackie C, Song GQ. Overexpression of blueberry FLOWERING LOCUS T is

associated with changes in the expression of phytohormone-related genes in blueberry plants. Hortic

Res. 2016; 3:16053. Epub 2016/11/08. https://doi.org/10.1038/hortres.2016.53 PMID: 27818778;

PubMed Central PMCID: PMC5080838.

13. Song GQ, Walworth A. An invaluable transgenic blueberry for studying chilling-induced flowering in

woody plants. BMC Plant Biol. 2018; 18(1):265. Epub 2018/11/02. https://doi.org/10.1186/s12870-018-

1494-z PMID: 30382848; PubMed Central PMCID: PMC6211425.

14. Song GQ, Gao X. Transcriptomic changes reveal gene networks responding to the overexpression of a

blueberry DWARF AND DELAYED FLOWERING 1 gene in transgenic blueberry plants. BMC Plant

Biol. 2017; 17(1):106. Epub 2017/06/21. https://doi.org/10.1186/s12870-017-1053-z [pii]. PMID:

28629320; PubMed Central PMCID: PMC5477172.

15. Colle M, Leisner CP, Wai CM, Ou S, Bird KA, Wang J, et al. Haplotype-phased genome and evolution

of phytonutrient pathways of tetraploid blueberry. GigaScience. 2019; 8(3). Epub 2019/02/05. https://

doi.org/10.1093/gigascience/giz012 PMID: 30715294; PubMed Central PMCID: PMC6423372.

16. Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, et al. RNA-Seq analysis and annotation of

a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of

bioactive compounds, and stage-specific alternative splicing. GigaScience. 2015; 4:5. Epub 2015/04/

02. https://doi.org/10.1186/s13742-015-0046-9 PMID: 25830017; PubMed Central PMCID:

PMC4379747.

17. Li X, Li C, Sun J, Jackson A. Dynamic changes of enzymes involved in sugar and organic acid level

modification during blueberry fruit maturation. Food Chem. 2020; 309:125617. Epub 2019/11/14.

https://doi.org/10.1016/j.foodchem.2019.125617 PMID: 31718833.

18. Liu Y, Wang Y, Pei J, Li Y, Sun H. Genome-wide identification and characterization of COMT gene fam-

ily during the development of blueberry fruit. BMC Plant Biol. 2021; 21(1):5. Epub 2021/01/08. https://

doi.org/10.1186/s12870-020-02767-9 PMID: 33407129; PubMed Central PMCID: PMC7789564.

19. Domingos S, Fino J, Paulo OS, Oliveira CM, Goulao LF. Molecular candidates for early-stage flower-to-

fruit transition in stenospermocarpic table grape (Vitis vinifera L.) inflorescences ascribed by differential

transcriptome and metabolome profiles. Plant Sci. 2016; 244:40–56. Epub 2016/01/27. S0168-9452

(15)30116-3 [pii] https://doi.org/10.1016/j.plantsci.2015.12.009 PMID: 26810452.

PLOS ONE Transcriptome analysis of genes associated with flowering and fruit set in rabbiteye blueberry

PLOS ONE | https://doi.org/10.1371/journal.pone.0259119 October 28, 2021 16 / 18

https://doi.org/10.1038/s41598-017-17460-5
http://www.ncbi.nlm.nih.gov/pubmed/29215068
https://doi.org/10.1186/s12864-018-4571-7
http://www.ncbi.nlm.nih.gov/pubmed/29523071
https://doi.org/10.1111/nph.17158
https://doi.org/10.1111/nph.17158
http://www.ncbi.nlm.nih.gov/pubmed/33341945
https://doi.org/10.1105/tpc.107.057752
http://www.ncbi.nlm.nih.gov/pubmed/18310462
https://doi.org/10.1104/pp.113.234401
http://www.ncbi.nlm.nih.gov/pubmed/24569847
https://doi.org/10.1038/s41438-020-00421-x
http://www.ncbi.nlm.nih.gov/pubmed/33328461
https://doi.org/10.1093/pcp/pct067
http://www.ncbi.nlm.nih.gov/pubmed/23624675
https://doi.org/10.3389/fpls.2016.01695
http://www.ncbi.nlm.nih.gov/pubmed/27881993
https://doi.org/10.1038/hortres.2016.53
http://www.ncbi.nlm.nih.gov/pubmed/27818778
https://doi.org/10.1186/s12870-018-1494-z
https://doi.org/10.1186/s12870-018-1494-z
http://www.ncbi.nlm.nih.gov/pubmed/30382848
https://doi.org/10.1186/s12870-017-1053-z
http://www.ncbi.nlm.nih.gov/pubmed/28629320
https://doi.org/10.1093/gigascience/giz012
https://doi.org/10.1093/gigascience/giz012
http://www.ncbi.nlm.nih.gov/pubmed/30715294
https://doi.org/10.1186/s13742-015-0046-9
http://www.ncbi.nlm.nih.gov/pubmed/25830017
https://doi.org/10.1016/j.foodchem.2019.125617
http://www.ncbi.nlm.nih.gov/pubmed/31718833
https://doi.org/10.1186/s12870-020-02767-9
https://doi.org/10.1186/s12870-020-02767-9
http://www.ncbi.nlm.nih.gov/pubmed/33407129
https://doi.org/10.1016/j.plantsci.2015.12.009
http://www.ncbi.nlm.nih.gov/pubmed/26810452
https://doi.org/10.1371/journal.pone.0259119


20. Singh VK, Garg R, Jain M. A global view of transcriptome dynamics during flower development in chick-

pea by deep sequencing. Plant Biotechnol J. 2013; 11(6):691–701. Epub 2013/04/05. https://doi.org/

10.1111/pbi.12059 PMID: 23551980.

21. Wang S, Li Z, Jin W, Fang Y, Yang Q, Xiang J. Transcriptome analysis and identification of genes asso-

ciated with flower development in Rhododendron pulchrum Sweet (Ericaceae). Gene. 2018; 679:108–

18. Epub 2018/09/04. S0378-1119(18)30952-1 [pii] https://doi.org/10.1016/j.gene.2018.08.083 PMID:

30176315.

22. Brzosko E, Bajguz A, Chmur M, Burzynska J, Jermakowicz E, Mirski P, et al. How Are the Flower Struc-

ture and Nectar Composition of the Generalistic Orchid Neottia ovata Adapted to a Wide Range of Polli-

nators? Int J Mol Sci. 2021; 22(4). Epub 2021/03/07. https://doi.org/10.3390/ijms22042214 PMID:

33672302; PubMed Central PMCID: PMC7926835.

23. Fang ZZ, Zhou DR, Ye XF, Jiang CC, Pan SL. Identification of Candidate Anthocyanin-Related Genes

by Transcriptomic Analysis of ’Furongli’ Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-

Seq. Front Plant Sci. 2016; 7:1338. Epub 2016/09/16. https://doi.org/10.3389/fpls.2016.01338 PMID:

27630660; PubMed Central PMCID: PMC5005409.

24. Rosloski SM, Jali SS, Balasubramanian S, Weigel D, Grbic V. Natural diversity in flowering responses

of Arabidopsis thaliana caused by variation in a tandem gene array. Genetics. 2010; 186(1):263–76.

Epub 2010/06/17. https://doi.org/10.1534/genetics.110.116392 PMID: 20551443; PubMed Central

PMCID: PMC2940291.

25. Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, et al. Coordinated transcriptional regulation underlying

the circadian clock in Arabidopsis. Nat Cell Biol. 2011; 13(5):616–22. Epub 2011/04/19. https://doi.org/

10.1038/ncb2219 PMID: 21499259.

26. Song GQ, Chen Q. Comparative transcriptome analysis of nonchilled, chilled, and late-pink bud reveals

flowering pathway genes involved in chilling-mediated flowering in blueberry. BMC Plant Biol. 2018; 18

(1):98. Epub 2018/06/02. https://doi.org/10.1186/s12870-018-1311-8 [pii]. PMID: 29855262; PubMed

Central PMCID: PMC5984463.

27. Khandagale KS, Chavhan R, Nadaf AB. RNAi-mediated down regulation of BADH2 gene for expression

of 2-acetyl-1-pyrroline in non-scented indica rice IR-64 (Oryza sativa L.). 3 Biotech. 2020; 10(4):145.

Epub 2020/03/18. https://doi.org/10.1007/s13205-020-2131-8 PMID: 32181107; PubMed Central

PMCID: PMC7052105.

28. Bittner F, Oreb M, Mendel RR. ABA3 is a molybdenum cofactor sulfurase required for activation of alde-

hyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem. 2001; 276(44):40381–

4. Epub 2001/09/13. https://doi.org/10.1074/jbc.C100472200 PMID: 11553608.

29. Herzog M, Dorne AM, Grellet F. GASA, a gibberellin-regulated gene family from Arabidopsis thaliana

related to the tomato GAST1 gene. Plant Mol Biol. 1995; 27(4):743–52. Epub 1995/02/01. https://doi.

org/10.1007/BF00020227 PMID: 7727751.

30. Liscum E, Reed JW. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol

Biol. 2002; 49(3–4):387–400. Epub 2002/05/31. PMID: 12036262.

31. Sun R, Wang S, Ma D, Li Y, Liu C. Genome-Wide Analysis of Cotton Auxin Early Response Gene Fami-

lies and Their Roles in Somatic Embryogenesis. Genes (Basel). 2019; 10(10). Epub 2019/09/25.

https://doi.org/10.3390/genes10100730 PMID: 31547015; PubMed Central PMCID: PMC6827057.

32. Walworth AE, Chai B, Song GQ. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpres-

sing Blueberry Plants. PLoS One. 2016; 11(6):e0156993. Epub 2016/06/09. https://doi.org/10.1371/

journal.pone.0156993 PONE-D-16-09377 [pii]. PMID: 27271296; PubMed Central PMCID:

PMC4896415.

33. Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, et al. The AGAMOUS-LIKE 20 MADS domain protein

integrates floral inductive pathways in Arabidopsis. Genes Dev. 2000; 14(18):2366–76. Epub 2000/09/

20. https://doi.org/10.1101/gad.813600 PMID: 10995392; PubMed Central PMCID: PMC316936.

34. Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M, et al. Gibberellin acts positively then

negatively to control onset of flower formation in Arabidopsis. Science (New York, NY). 2014; 344

(6184):638–41. Epub 2014/05/09. https://doi.org/10.1126/science.1250498 PMID: 24812402.
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