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Urinary tract infection (UTI) caused by uropathogens is the most common

infectious disease and significantly affects all aspects of the quality of life of the

patients. However, uropathogens are increasingly becoming antibiotic-

resistant, which threatens the only effective treatment option available-

antibiotic, resulting in higher medical costs, prolonged hospital stays, and

increased mortality. Currently, people are turning their attention to the

immune responses, hoping to find effective immunotherapeutic interventions

which can be alternatives to the overuse of antibiotic drugs. Bladder infections

are caused by the main nine uropathogens and the bladder executes different

immune responses depending on the type of uropathogens. It is essential to

understand the immune responses to diverse uropathogens in bladder

infection for guiding the design and development of immunotherapeutic

interventions. This review firstly sorts out and comparatively analyzes the

immune responses to the main nine uropathogens in bladder infection, and

summarizes their similarities and differences. Based on these immune

responses, we innovatively propose that different microbial bladder infections

should adopt corresponding immunomodulatory interventions, and the same

immunomodulatory intervention can also be applied to diverse microbial

infections if they share the same effective therapeutic targets.
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Introduction

Urinary tract infection (UTI) is the most common infectious

disease of the urinary system caused by diverse uropathogens,

affecting females and males of all ages (1). In 2019, the overall

global incident cases of UTI were 4046.12 ✕ 105, with 871.90 ✕

105 for males and 3174.22 ✕ 105 for females (2). Notably, the

incident cases of UTI increased by 60.40% in the past thirty

decades. UTI results in dysuria, frequency, urgency, suprapubic

pain, hematuria, and serious sequelae including frequent

recurrences, pyelonephritis with sepsis, renal damage, and pre-

term birth and significantly affects all aspects of the quality of life

of the patients (3, 4). In addition, UTI ranges in severity from

mild self-limitation to severe sepsis, with 20-40% mortality (2).

UTI has been causing a huge burden on human health, medical

resources, and financial expenditure (2). In the United States

alone, UTI results in >10 million outpatient visits and $3.5

billion in societal costs per year (2, 5).

UTI is caused by main nine pathogens, epidemiologically

covering almost 100% of UTI confirmed cases (1). These

pathogens include uropathogen escherichia coli (UPEC), Klebsiella

pneumoniae (K. pneumoniae), Staphylococcus saprophyticus (S.

saprophyticus), Enterococcus faecalis (E. faecalis), Group B

Streptococcus (GBS), Proteus mirabilis (P. mirabilis), Pseudomonas

aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and

Candida spp. (Candida.) (1). Antibiotics are the first-line treatment

options for UTI but the effectiveness is being increasingly limited

due to the rise of bacterial resistance (6, 7) (Table 1). More than 80%

resistance of Escherichia coli (E. coli) isolated from UTI to

amoxicillin-clavulanic acid, ciprofloxacin, and trimethoprim-

sulfamethoxazole has been observed in developing countries (39).

In developed countries such as the United States, the resistance of

Enterobacteria to some antibiotics for UTI has exceeded 30% (39,

40). Both the World Health Organization (WHO) and the

Infectious Disease Society of America (IDSA) claimed the lack of

antibiotics for the main pathogens of UTI and urged countries

around the world to develop new drugs and therapies that can

replace the overuse of antibiotics (41, 42). Thus, people move their

sights on the immune responses hoping to find some effective

therapeutic targets to combat the infection (4, 43–45).

The bladder possesses a wide range of immune responses

against diverse uropathogens, including inhibitors of adhesion

and antimicrobial protein production (4, 43–45). The bladder

immune responses to invading uropathogens have some in

common but also show differences depending on the type of

uropathogens. For example, both UPEC and GBS stimulate

bladder epithelial cells (BECs) to produce the antimicrobial

peptide LL-37, and it is surprising that LL-37 has antibacterial

effects on UPEC, but promotes GBS infection in the bladder (46–

48). As such, individual immunomodulatory intervention

options for UTI should be taken based on immune responses

to the specific uropathogen in the bladder. Improved
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understanding of the bladder immune responses to diverse

uropathogens is cruc ia l for our abi l i ty to des ign

immunomodulatory interventions and target them properly.

In this Review, we comparatively analyzed the similar and

different immune responses triggered by the main nine

uropathogens in the bladder. Based on the immune responses,

we discussed the immune therapeutic targets with great

prospects in-depth and innovatively proposed that when the

bladder infection is treated through the modulation of immune

responses, different uropathogens should adopt corresponding

modulation options to improve the therapeutic effects.
The bladder immune responses to
the main nine uropathogens

Since the differences in virulence factors of the nine

uropathogens (Table 1), the immune responses against the

nine uropathogens are diverse in the bladder. In this section,

we summarize the characteristics and research status of immune

responses to the major nine uropathogens in bladder infection.
UPEC

UPEC is the most common uropathogen of bladder

infection (49). When UPEC ascends to the bladder along the

urinary tract, it adheres to the mannose receptors of BECs

through type I fimbriae (50). Tamm-Horsfall glycoprotein

(THP), the most abundant urine protein, plays a key role to

prevent the adhesion of UPEC to the BECs (51, 52). THP has a

high-mannose structure among its disaccharides, which binds to

the type I fimbriae and competes with the mannose receptors of

BECs, thereby reducing the adhesion and colonization of UPEC

to the bladder, and leading to the elimination of UPEC through

urination (53, 54). In addition, the THP can prevent excessive

inflammation in bladder infection via inhibition of the

chemotaxis and reactive oxygen species (ROS) production by

binding to sialic acid-binding Ig-like lectin-9 (Siglec-9) receptor

of the neutrophils (55). Once UPEC successfully adheres to

BECs, extracellular immune responses will be activated by

lipopolysaccharide (LPS) and type I fimbriae of UPEC via

binding to toll-like receptor 4 (TLR4) on BECs (56). The

activation of TLR4 stimulates BECs to secrete stromal-cell

derived factor 1 (SDF-1), and interleukin- 6 (IL-6) (57, 58).

SDF-1 can bind to the CXC-motif chemokine receptor 4

(CXCR4) on neutrophils and recruit them to accumulate to

the infection site (57). The aggregated neutrophils have the

ability to engulf UPEC and can be significantly enhanced by

BECs-secreted pentraxins (PTX3) (59). Cytokine IL-6 upon

activation of TLR4 promotes the expression of C-X3-C motif

chemokine 1 (CX3CL1) and recruits macrophages to the
frontiersin.org
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TABLE 1 Drug resistance and virulence factors of the main nine uropathogens.

Drug resistance Main virulence factors Refs

Adherence Toxin Immune
evasion

Iron
acquisition

Others

Type 1 pili
Type 2 pili
P pili
Dr adhesion
S pili
F1C pili

HlyA
Cnf1

Capsule Aerobactin
Enterobactin
Salmochelin
Yersiniabactin

Flagella (8–10)

Type 1 pili
Type 3 pili

Lps Capsule Aerobactin
Enterobactin

(8, 9,
11–13)

than Aas adhesin
Ssp adhesin
SdrI adhesin
Uaf adhesin

Aas Urease (9, 14–
17)

Ebp pili
Esp pili
Ace adhesin

Protease SigV (9, 18–
21)

es is bH/C Capsule (22–
24)

MR/P pili HpmA
HlyA
Pta

Capsule
ZapA

Proteobactin
Yersiniabactin

Flagella
Urease

(25–
31)

Extracellular DNA
Exopolysaccharides

ExoU
ExoT
Elastase
Phospholipase
Rhamnolipids

ExoS Pyochelin
Pyoverdi

QS (32–
35)

Als proteins Phospholipase
B

(36,
37)

ClfA and ClfB (18,
38)

tors A and B, Cnf1: cytotoxic necrotizing factor 1, Ebp: endocarditis- and biofilm-associated, E.f, Enterococcus
cus, HlyA: a-hemolysin, Lps: lipopolysaccharide, HpmA: haemolysin, K.p, Klebsiella pneumoniae, MR/P pili:
ed pili, QS: Quorum sensing, S.a, Staphylococcus aureus, SdrI: a surface-associated collagen-binding protein,
d lipase, UafB: a cell wall-anchored protein, ZapA: an extracellular metalloprotease.
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UPEC Penicillin, tetracycline, vancomycin resistance is 100%, ampicillin resistance is 90%, and cefazolin, ceftriaxone, cefepime,
levofloxacin, and ciprofloxacin resistance reaches 70% in China.

K.m Ampicillin penicillin, tetracycline, vancomycin resistance is close to 100%, nitrofurantoin resistance exceeds 90%, and
Cefpidoxime is close to 80% in China.

S.s Cefuroxime resistance is 81%, Ceftazidime resistance is 76%, Amoxicillin-Clavulanic Acid, Gentamicin resistance is more
65% in Nigeria.

E.f The resistance to amikacin, gentamicin, cefuroxime, ciprofloxacin, and cotrimoxazole is close to 100% in Poland.

GBS Tetracycline resistance is over 74%, erythromycin resistance is 63%, and the resistance to clindamycin and fluoroquinolon
over 40% in China.

P.m Amoxicillin-clavulanat resistance is 100%, ampicillin and nitrofurantoin resistances are 75% in Nepal.

P.a Topiperacillin-tazobactam and ceftazidime resistances are 100%, cefepime resistance is 75% in Saudi Arabia.

Candida. Posaconazole resistance is 92% in Iran.

S.s Nitrofurantoin resistance is 100% in Poland.

Aas: a hemagglutinin-autolysinadhesin, Als: agglutinin-like sequence, bH/C: b-hemolysin/cytolysin, Candida.: Candida spp, ClfA/B: Clumping Fac
faecalis, Esp: enterococcal surface protein, ExoU/T/S: exoenzyme U/T/S, F1C pili: type 1-like immunological group C pili, GBS, Group B streptoco
mannose-resistant Proteus-like, P.a, Pseudomonas aeruginosa, Pta: Proteus toxic agglutinin, P.m, Proteus mirabilis, P pili: pyelonephritis-associa
SigV: extracytoplasmic function sigma factor, S.s, Staphylococcus saprophyticus, SssF, S. saprophyticus surface protein F; Ssp: a surface-associate
c
t
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epithelium, which kill UPEC by phagocytosis and lipocalin-2

(LCN2) (60). LCN2 can restrict access of UPEC to iron, one of

the key nutrients for the growth of UPEC, and starve them to

death (61). Besides, IL-6 can enhance the expression of

antimicrobial peptides (AMPs), such as ribonuclease 7 (RNase

7) and LL-37, which exert antibacterial effects by disrupting the

microbial membrane (47, 58, 62–64). In the bladder of mice

lacking RNase 7 and LL-37, the UPEC communities are

significantly increased (47, 63). (Figure 1)

Some UPEC survives from the extracellular immune

responses and invades BECs, which then initiate the

intracellular efflux immune responses (65, 66). Once BECs are

invaded, two waves of UPEC expulsion in an innate immune

signaling-orchestrated process occur (67). The first wave is

mediated by the activation of TLR4 between 4 and 6h after

infection followed by the second mucolipin transient receptor

potential 3 (TRPML3)-activated wave occurring around 8h after

infection (67). In the first wave of UPEC expulsion, UPEC is

encapsulated within RAB27b+ vesicle and activates TLR4 by type

I fimbriae (67, 68). Activation of TLR4 signaling advances the

K33-linked polyubiquitination of TNF receptor associated

factors (TRAF3), which is then sensed by the RalGDS-

activating exocyst complex to locate and tether vesicles (68).

After that, Sec 6 and Sec 15, two submit of the activated exocyst

complex, stimulate collaboration between Rab11a/Rab11FIP3/

Dynein and Rab27b/MyRIP/MyosinVIIa to transport UPEC-

containing vesicles (67, 69). In addition, the activation of TLR4

can lead to the increase of cyclic adenosine monophosphate

(cAMP) which subsequently stimulates the caveolin-1/Rab27b/
Frontiers in Immunology 04
PKA/MyRIP complex formation, and as a consequence, expels

UPEC from infected BECs (70). Once UPEC escapes the first

wave of efflux immune response by destroying the RAB27b+

vesicle, the second wave is initiated by lysosomal autophagy (71).

After the lysosome engulfed UPEC, the pH of the lysosome will

change from acid to neutral, and TRPML3 is able to sense the

UPEC-mediated lysosome neutralization of pH and release

calcium ions, which leads to the efflux of UPEC (71). (Figure 2)

BECs can adopt more intense immune responses against

UPEC by secretion of IL-6, IL-17, tumor necrosis factor-a
(TNF-a), C-X-C motif chemokine ligand 1 (CXCL1), CXCL2,

and CXCL5, which result in extensive neutrophil recruitment to

induction of BECs’ death and exfoliation (72–75). BECs’ death

and exfoliation carry a large amount of UPEC into the urine and

then excretes UPEC by urination (72–75). In addition, in

response to a-hemolysin, which is a virulence factor expressed

by UPEC, human BECs induce the production of IL-1b and IL-

18 through p38/ERK/ROS/NLRP3/caspase-1 signaling to recruit

mast cells, which can produce tryptase to promote the

exfoliation of BECs (76, 77). A point worthy of attention is

that ROS and inflammation associated with NOD-like receptor

thermal protein domain associated protein 3 (NLRP3) or

cyclooxygenase-2 (COX-2) also contribute to BECs’ exfoliation

(76–79). However, excessive ROS and inflammation are believed

to do more harm than good to the host, since the bladder

infection gradually intensifies with the increase of ROS and

inflammation (80, 81). Although the exfoliation of BECs

promotes the excretion of UPEC into the urine, it also exposes

deep immature epithelium, thus allowing UPEC to invade them
FIGURE 1

Extracellular immune responses to UPEC in the bladder. At the beginning of infection, THP reduces the adhesion of UPEC to the BECs. In
addition, the THP can prevent excessive inflammation and ROS production of neutrophils. Once adhesion, BECs secrete SDF-1, PTX3, and IL-6.
SDF-1 recruit neutrophils, T-cells, and NK cells to the site of infection. PTX3 promotes neutrophils to engulf UPEC, and IL-6 promotes the
expression of CX3CL1 to recruit macrophages which kill UPEC by phagocytosis and LCN2. IL-6 also enhances the release of AMPs through
phosphorylation of Stat3.AMPs, antimicrobial peptides; BEC, bladder epithelial cells; CXCR4, CXC-motif chemokine receptor 4; CX3CL1, C-X3-C
motif chemokine 1; LCN2, lipocalin-2; IL-6, interleukin 6; NK cells, natural killer cells; PTX3, Pentraxins; SDF-1, stromal cell-derived factor1;
Siglec-9, sialic acid-binding Ig-like lectin-9; Stat3, signal transducers and activators of transcription 3; THP, Tamm-Horsfall protein; UPEC,
Uropathogenic Escherichia coli.
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and form quiescent intracellular reservoirs (QIRs), which can

avoid immune responses and antibiotics (82). In order to

prevent the formation of QIRs caused by shedding, the

proliferation ability of the epithelial layer after shedding is

enhanced (83). This ability is mainly related to Th2 cells, as

Th2 cells have an ability to secret epidermal growth factor

(EGF), transforming growth factor-a (TGFa), and insulin-like

growth factors-1 (IGF-1), which contribute to epithelial

regeneration (84). The differentiation of Th2 cells in the

bladder mainly depends on dendritic cells (DCs) presenting

UPEC antigen to CD4+ T cells after infection (84). In addition,

sonic hedgehog (SHH) expressed by basal stem cells and

peroxisome proliferator-activated receptor-g (Pparg) expressed

by BECs also contribute to the regeneration and proliferation of

BECs (85–87). (Figure 3)
K.pneumoniae

K. pneumoniae, one of the most common pathogens of

intensive care unit infections, is the second leading cause of

UTI from community or hospital sources (1, 88–90). Similar to

the effects of THP on UPEC, THP exerts anti-adhesion and anti-

inflammation effects on K. pneumoniae (91). In the THP-

deficient mouse models, K. pneumoniae load in the urine and

bladder significantly increased, as well as the number of
Frontiers in Immunology 05
inflammatory cells (91, 92). Once K.pneumoniae adheres to

and invades BECs, intracellular immune defense mechanisms

are initiated to inhibit the internalization of K.pneumoniae and

promote its efflux. The first mechanism is initiated by TLR4,

which down-regulates Rho through the expression of cAMP,

and ultimately achieves the goal of inhibiting the invasion of

K.pneumoniae (92). The second mechanism is mediated by

high-mobility group protein N2 (HMGN2), which plays a key

role in the inhibition of K.pneumoniae internalization by

reduction of bacteria-induced activation of extracellular signal-

regulated kinase (ERK1/2) and the polymerization of actin (93,

94). The last mechanism is that the invasion of K.pneumoniae

promotes the synthesis of dual oxidase 2, which has the ability to

inhibit bacterial internalization by the production of

intracellular ROS (95, 96). The proper concentration of ROS

has antibacterial against invading pathogenic bacteria (95, 97–

99). (Figure 4A)

The type I fimbriae of K.pneumoniae is involved in the

triggering of multiple immune responses in the bladder, which

are very similar to UPEC type I fimbriae-induced immune

responses (91, 92). Both UPEC and K.pneumoniae can be

inhibited by the effect of THP against type I fimbriae, and they

can both increase cAMP through type I fimbriae to regulate actin

and ultimately promote bacterial efflux (53, 70, 91, 92). In addition,

the UPEC and K. pneumoniae type I fimbriae play similar roles in

the pathogenic process of bladder infection, as both of them rely on
FIGURE 2

Intracellular immune responses to UPEC in the bladder. After invading BECs, TLR4 is activated by UPEC to promote the K33-linked
polyubiquitination of TRAF3, which is sensed by the RalGDS-activating exocyst complex to locate and tether vesicles. Then, the Sec 6 and Sec 15
of the exocyst complex stimulate collaboration between Rab11a/Rab11FIP3/Dynein and Rab27b/MyRIP/MyosinVIIa to transport UPEC-containing
vesicles. Once the lysosome engulfs UPEC, TRPML3 senses the pH neutralization and then releases calcium ions, leading to the efflux of UPEC.
BEC, bladder epithelial cells; TLR4, toll-like receptor 4; TRPML3, transient receptor potential 3; UPEC, uropathogenic Escherichia coli.
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type I fimbriae to attach, invade, and form intracellular bacterial

communities (1). By comparing the nucleic acid sequences of

UPEC and K.pneumoniae type I fimbriae, they are highly

homologous, which can explain why UPEC and K. pneumoniae

type I fimbriae play similar roles in the pathogenicity and stimulate

resembling immune responses of bladder infection (100, 101).

However, K.pneumoniae carries the gene fimK but lacks the gene

fimX, leading to reduce expression of type I fimbriae, which may

explain K. pneumoniae form fewer intracellular bacterial

communities (IBCs) and have lower titers in the bladder than

UPEC and are more easily cleared by host defense response during

infection (102).
S.saprophyticus

Bladder infection caused by S.saprophyticus is most likely to

occur in sexually active, non-pregnant women (103). Generally

speaking, when S.saprophyticus contaminates the vaginal area, it

ascends through the urinary tract (103). In the ascending process,

S.saprophyticus uses citrate in urine to synthesize carboxylate

siderophores and obtain iron ions in urine to supply its nutrition

and growth (104). In order to limit the growth of S.saprophyticus,

the bladder maintains a weakly acidic urine environment to reduce

the activity of citrate synthase and thereby reduce the synthesis of

citrate, ultimately achieving the goal of limiting S.saprophyticus

from obtaining iron and starving them to death (104, 105). In

addition, THP in urine has the ability to inhibit the adhesion of
Frontiers in Immunology 06
S.saprophyticus to BECs, which is similar to the effects on UPEC

(53, 91). However, the antibacterial ability of urine is limited, as

some S.saprophyticus still survive from THP and the acidic

environment and adhere to BECs, stimulating BECs to increase

the expression of AMPs including regenerating islet-derived 3g
(RegIIIg) and RNase 7 (106, 107). RegIIIg is able to promote the

proliferation and repair of the injury epithelial cells (108, 109).

RNase 7 mainly binds to the negatively charged bacterial cell

membrane through cationic residues on its surface, destroys the

physical and physiological functions of the bacteria, and ultimately

kills the bacteria (62). In addition to AMPs, BECs mediate the

production of cytokines, such as TNF-a, macrophage inflammatory

protein-1 (MIP-1), IL-1, IL-6, and IL-12, to recruit themacrophages

(14). Macrophages depend on genes associated with retinoid-IFN-

induced mortality-19 (GRIM-19), a component of the

mitochondrial respiratory chain, to phagocytize S.saprophyticus

(110, 111). In GRIM-19-deficient macrophages, the expression of

IL-1, IL-6, IL-12, interferon-g (INF-g) cytokines, and phagocytic

ability are significantly reduced (110). (Figure 4B)

The immune responses to S.saprophyticus in bladder

infection have differences from these to other uropathogens, as

the urine pH and GRIM-19 have abilities to inhibit the growth of

S.saprophyticus (104, 110). Acidic urine reduces the synthesis of

citrate, consequently resulting in inhibition of S.saprophyticus

growth, and GRIM-19 molecule exerts immune defense effects

by regulating the phagocytic ability of macrophages in bladder

infection (104, 110). Therefore, modulating urine pH and

GRIM-19 is a promising target for S.saprophyticus UTI.
FIGURE 3

The exfoliation and regeneration of BECs in UPEC bladder infection. Cytokines from BECs are released to recruit neutrophils to induce cell
death and exfoliation. Besides, Type 1 fimbriated UPEC activates TLR4 and causes the expression of COX-2, which promotes inflammation and
exfoliation of BECs. Moreover, a-hemolysin produced by UPEC recruits mast cells through the ROS/NLRP3/caspase-1/IL-1b, which produces
tryptase to mediate the BECs exfoliation. To repair shed BECs, transitional BECs will regenerate under the influence of EGF, TGF-a, IGF-1, SHH,
and Pparg. BECs, bladder epithelial cells; EGF, epidermal growth factor; ERK, extracellular signal-related kinase; IGF-1, insulin-like growth
factors-1; IL-1b, interleukin 1b; JNK, c-Jun-NH2-terminal kinase; NLRP3, NOD-like receptor thermal protein domain associated protein 3; PAR2,
Protease-activated receptor 2; Pparg, peroxisome proliferator-activated receptor-g; ROS, reactive oxygen species; SHH, sonic hedgehog; TGF-
a, transforming growth factor-a; UPEC, uropathogenic Escherichia coli.
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E.faecalis

E.faecalis is one of the most resistant gram-positive bacteria

in UTI, which has caused great trouble for clinical treatment

(112). Current research on the immune responses to E.faecalis

bladder infection are more about the responses of macrophages,

DCs, and Natural killer (NK) cells (113, 114).

Under normal circumstances, activation of TLR2-Toll/

interleukin-1 receptor (TIR) on macrophages can trigger the

production of chemokines dependent on the NF-kB signaling

pathway, and recruit immune cells in the bladder (115, 116).

However, E.faecalis has a TIR domain-containing protein

structure, which is similar to the TIR domain of TLR2 on

macrophages (113, 117). Hence, the TIR domain-containing

protein of E.faecalis (TcpF) has an ability to compete with the

TIR domain of human TLR2 to form TLR dimers, thereby

further eliminating downstream signals and ultimately

inhibiting the immune responses of macrophages in the
Frontiers in Immunology 07
bladder (113, 117). Therefore, immune responses of

macrophages to E.faecalis and UPEC co-infected in the

bladder are significantly inhibited compared to the infection of

UPEC alone, consequently promoting UPEC virulence during a

mixed-species bladder infection (113, 118).

Different from immunosuppressive effects on macrophages,

E.faecalis has the ability to intensify the proliferation and

activation of NK cells, which in turn promote the maturation

and differentiation of DCs (114). In addition, NK cells also can

be activated by E.faecalis-induced DC-derived effectors signals.

E. faecalis specific DC/NK interaction is necessary for the killing

of transformed or infected cells in E.faecalis bladder infection

(114). (Figure 5A) The adaptive immune responses in the

bladder are limited, widely assumed to the restricted ability of

mature DCs to capture and present antigens in the bladder (119,

120). Exogenously regulating the DC/NK interaction may be one

of the effective strategies to enhance bladder adaptive

immune responses.
FIGURE 4

Immune responses to K. pneumoniae and S.saprophyticus in the bladder. (A) In the urine, THP exerts anti-adhesion and anti-inflammation
effects on K. pneumoniae. Once adhered, K. pneumoniae lipopolysaccharide activates TLR4 to initiate AC-3/cAMP/PKA signaling pathway, then
down-regulates Rac-1 and abrogates the endocytic lipid raft. HMGN2 also can inhibit K. pneumoniae internalization by inhibiting the attachment
of bacteria and reducing bacterial-induced ERK1/2 activation and actin polymerization. In addition, the ROS promoted by oxidase 2 can inhibit
endocytosis. (B) Before adhesion, RegIIIg, RNase 7, and THP have anti-adhesion and sterilization abilities to S. saprophyticus. The acidic urine
environment suppresses S. saprophyticu uptake and utilization of iron thus limiting its growth. After the adhesion, BECs produce TNF-a, MIP-1,
IL-1, IL-6, and IL-12 to recruit macrophages. Upon the activation of TLR4 by PAMP, macrophages phagocytize S.saprophyticus depending on
genes associated with GRIM-19. AC-3, adenylyl cyclase-3; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular-regulated kinase 1/2;
GRIM-19, genes associated with retinoid-IFN-induced mortality-19; HMGN2, high-mobility group protein N2; IL-1, interleukin-1; INF-g,
interferon-g; K.pneumoniae, Klebsiella pneumoniae; MIP-1, macrophage inflammatory protein-1; PAMP, pathogen-associated molecular pattern;
PKA, protein kinase A; RegIIIg, regenerating islet-derived 3g; RNase 7, ribonuclease 7; ROS, reactive oxygen species; S.saprophyticus,
Staphylococcus saprophytes; THP, Tamm-Horsfall protein; TLR4, toll-like receptor 4; TNF-a, tumor necrosis factor-a.
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GBS

GBS is a common commensal of the human genitourinary

tract in healthy people (121). Nevertheless, this bacterium can

cause life-threatening hazards to pregnant women, the elderly,

and immunocompromised individuals (122–124).

When the immune function of the body is compromised,

GBS in the urethra will express a variety of virulence factors to

damage and adhere to the bladder tissue (122–124). AMPs in the

urine are the first line of defense, however, LL-37, one of the

AMPs, has no antibacterial effect on GBS (46). On the contrary,

the load of GBS increases with the rise of LL-37 (46). Under the

action of LL-37, GBS further adheres to the BECs, and this

adherence promotes the expression of many cytokines, including

IL-8, IL-1b, IL-1a, IL-6, TNF-a, granulocyte-macrophage

colony-stimulating factor (GM-CSF) to mediate the occurrence

of inflammation and recruit the immune cells including

neutrophils, macrophages, and DCs to the infected sites (22,

125, 126). Neutrophils reach the focal point of infection

producing anti-infective effects through various biological

effects such as phagocytosis and cytokine production (125–

128). Macrophages and DCs also make significant

contributions to host defenses by secretion of IL-1b and IL-18

through the activation of the NLRP3 inflammasome, deficiency

of which has GBS communities increased (129, 130). (Figure 5B)

However, immune responses of neutrophils and macrophages

can be inhibited by GBS virulence factors, as the cytokines

production of macrophages and neutrophils increased when

the bladder was infected by the virulence factor capsule sialic

acid-deficient GBS (23, 131).

Compared with the anti-bacterial effects of LL-37 on UPEC

infection, LL-37 plays an opposite role in GBS infection, which

promotes GBS growth and proliferation (46, 47, 132). The role of

NLRP3 may also differ between GBS and UPEC infection, as

NLRP3-deficient mice weremore susceptible to GBS infection and

have GBS load increased.Whereas UPEC burden was significantly

reduced in NLRP3-deficient BECs (76, 129). As these colonization

differences between GBS and UPEC were observed based on the

different NLRP3-deficient cells but have not been validated in the

same cells and in vivo yet, which needs to be further explored (76,

129). Due to the differences in immune responses of the bladder

between UPEC and GBS infection, when treating bladder

infection caused by GBS, we should adopt different

immunomodulation options from that of UPEC.
P.mirabilis

P.mirabilis, which showed high resistance rates to ampicillin,

nitrofurantoin, and amoxicillin-clavulanate, is the sixth most

common pathogen of uncomplicated UTI (1, 25). When the

P.mirabilis reaches the mouth of the urethra, it moves up the
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urethra through the swing of the flagella and reaches the bladder

(133). During the ascending process, many immune mediators

in the urine including complement (C1q and C3), LL-37, and

human b-defensin (hBD) are hydrolyzed by ZapA (Mirabilysin),

which is a 54-kDa extracellular proteolytic enzyme with broad-

spectrum degradation activity encoded by P.mirabilis (26).

Similar to the effects on UPEC and K.pneumoniae, THP and

RNase 7 in the urine resist the adhesion and invasion of

P.mirabilis to BECs (106, 134). Some P.mirabilis survive from

THP and RNase 7 and adhere to BECs through fimbriae (135).

Once the P.mirabilis successfully adhere, a number of leukocytes

migrate to the epithelium mediated by the production of c-c

chemokine ligand 20 (CCL20), CXCL2, and CCL2 under the

stimulation of flagella (136). However, the migration of

leukocytes is demonstrated ineffective in clearing P.mirabilis

(136). (Figure 6A)

There are very few reports on the immune responses to the

effective inhibition of P.mirabilis in bladder infection. Two

broad-spectrum antibacterial mediators, THP and RNase 7, in

the urine have been reported to inhibit the growth of P.mirabilis

(106, 134). However, many immune responses and immune

mediators in the urine are suppressed by ZapA (26). In addition,

it has been reported that the anti-MrpA (structural subunit of

MR/P fimbriae) antibodies in urine and serum can be

neutralized by P.mirabilis (137). Therefore, the antibacterial

immune responses to P.mirabilis in bladder infection remain

lacking and need more to be explored in the future.
P.aeruginosa

Of all uropathogens in bladder infection, P.aeruginosa is a

relatively small pathogenic bacterium in UTI, but it has caused

great trouble for clinical treatment, as many antibiotics such as

topiperacillin-tazobactam, ceftazidime, and cefepime, which are

effective against other uropathogens, hardly have effects on

P.aeruginosa (32). The current research on the immune

responses to P.aeruginosa in the bladder is extremely limited.

Before P.aeruginosa adhere to the bladder, the growth of

P.aeruginosa is firstly affected by iron restriction and THP (34,

138, 139). Surprisingly, the burden of P.aeruginosa and

histopathological conditions in the bladder and kidney

increase under iron-restricted conditions. Consistently, in vitro

experiments showed that iron-restricted media increases the

adhesion of P.aeruginosa to the BECs and inhibits macrophage

to phagocytose P.aeruginosa (138). The reason why iron

restriction can aggravate the P.aeruginosa bladder infection

may be attributed to the enhancement of quorum sensing

(QS) signaling molecules under iron deficiency conditions

(140, 141). Furthermore, when mice are infected with THP-

coated P.aeruginosa, the bacterial burden and pathological

changes in the kidney are significantly enhanced (139).

Therefore, THP and iron restriction have beneficial effects on
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P.aeruginosa colonization (34, 138, 139). Once the bladder is

colonized by P.aeruginosa, it will increase the expression of MIP-

1a to recruit neutrophils, which can effectively decrease the

burden of P.aeruginosa in the bladder (142). (Figure 6B)

Many immune responses that have spectral antibacterial

effects on other uropathogens have no effects on P.aeruginosa,

or may even aggravate the infection of P.aeruginosa. In addition,

many antibiotics, which are effective against other uropathogens,

do not affect P.aeruginosa bladder infection (32). Hence, it is

pretty urgent to continue to explore the effective immune

defenses for P.aeruginosa in bladder infection so that propose

some feasible immunomodulatory interventions.
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Candida.

Candida. is a common uropathogenic fungus in UTI,

especially in immunocompromised patients (143). Generally

speaking, Candida. mainly causes disease through its hyphae,

Candida. adheres to the BECs through the agglutin-like

sequence (Als3) glycoprotein structure on the hyphae in the

bladder (144, 145). To combat this adhesion process, the THP

already present in the bladder urine binds to Als3, thereby

inhibiting the adhesion of Candida. to the BECs (144). In

addition to THP, LL-37 binds to the Xog1p glycoprotein of

the Candida. cell wall to reduce adhesion to BECs (146, 147).

However, once Candida. adheres to the BECs, COX-2 will be

induced in BECs through the EGFR-ERK/p38-RSK-CREB-1

pathway, the upregulation of which leads to the synthesis of

prostaglandins, triggering inflammation (148, 149). (Figure 6C)

Candida. is the only fungus among the nine major

uropathogens and the bladder executes different mechanisms

of immune responses to Candida. from those to bacteria. For

example, THP and LL-37 exert an anti-adhesion effect on both

Candida. and other bacteria, THP targets the hyphae to inhibit

the adhesion of Candida (144–146).. In bacterial infection, THP

targets the fimbriae (52, 91, 134). LL-37 reduces adhesion of the

Candida. by binding to its glycoprotein, in bacterial infection,

LL-37 exerts anti-adhesion by disrupting the bacterial

membrane (47, 146).
S.aureus

S.aureus is the most common gram-positive bacteria in

hospital-acquired infections, which mainly occur in catheter-

induced UTI (150, 151). The immune responses of the

bladder to S.aureus are blank. However, there are many

patients with cystitis caused by S.aureus, which is highly

resistant to antibiotics (1, 18, 152). It is necessary to carry

out research work on the immune responses to S.aureus in

bladder infection.
Potential individual
immunomodulatory interventions

Based on the above summarized immune responses to

diverse uropathogens in bladder infection, we deemed that

maybe an immune target has antibacterial effects on a variety

of uropathogens in bladder infection, and on the other side,

some immune mediators play opposite roles in bladder infection

(Table 2) . In this section, we discuss the potential

immunomodulatory interventions for bladder infection caused

by different uropathogens.
FIGURE 5

Immune responses to E. faecalis and GBS in the bladder. (A)
Initially, RNase 7 in the urine binds to the E. faecalis and plays a
bactericidal effect. Once E. faecalis adheres to BECs, TcpF of
which binds to the TIR on macrophages, eliminating
downstream MyD88 and NF-kB signals and suppressing the
immune responses. However, the proliferation and activation of
NK cells are intensified, which promote the maturation and
differentiation of DCs. In turn, NK cells can be specifically
activated to kill E. faecalis through derived effectors signals from
infected DCs. (B) In the urine, LL-37 sticks to GBS and promotes
its growth and adhesion. After adhesion, GBS induces the
expression of IL-8, IL-1b, IL-1a, IL-6, TNF-a, GM-CSF to recruit
immune cells and mediate inflammation. Macrophages and DCs
secrete IL-1b and IL-18 against the GBS infection under the
activation of the NLRP3 inflammasome by b-hemolysin/cytolysin
of GBS. Neutrophils engulf GBS to play an antibacterial effect.
DCs, dendritic cells; E. faecalis, Enterococcus faecalis; GBS,
Group B Streptococcus; GM-CSF, granulocyte-macrophage
colony-stimulating factor; IL-8, interleukin-8; MyD88,
myeloiddifferentiationfactor88; NF-kB, Nuclear factor kappa
beta; NK cells, natural killer cells; NLRP3, NOD-like receptor
thermal protein domain associated protein 3; RNase 7,
ribonuclease 7; TcpF, TLR2-Toll/Interleukin-1 receptor domain-
containing protein of E. Faecalis.
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Inhibition of adhesion

THP, a broad-spectrum anti-infective protein in bladder

infection, has the ability to against many uropathogens, inclusive

of UPEC, K.pneumoniae, P.mirabilis, S.saprophyticus, and Candida

(91, 134, 144, 145, 153, 154). It plays the antibacterial effect mainly

by reducing the colonization of uropathogens on BECs, as THP can

occupy the binding sites of uropathogens to BECs (91, 134, 144, 145,

153, 154). Therefore, the upregulation of THP may be an excellent

intervention option for the bladder infection caused by UPEC,

K.pneumoniae, P.mirabilis, S.saprophyticus, and Candida. Clinical

experiments showed that the level of THP in patients who take

cranberry extract orally increases, and the urine from these patients

has a stronger inhibitory effect on the adhesion of UPEC (52, 155).

However, whether this intervention is effective for bladder infection

caused by P.aeruginosa is not determined, as the THP can lead to an

increase in P.aeruginosa load (139). In conclusion, the upregulation

of THP is an excellent way to combat the bladder infection of

UPEC, K.pneumoniae, S.saprophyticus, P.mirabilis, and Candida.
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Scavenging of ROS

Over accumulated ROS is involved in the induction of

BECs injury and death in bladder infection, but the proper

concentration of ROS has antibacterial effects (76, 77, 95, 97–

99). Uropathogens including UPEC, K.pneumoniae ,

S.saprophyticus, P.mirabilis, P.aeruginosa, and Candida.

induce an increase in ROS level in bladder infection (156).

Reducing the expression of ROS seems to have a therapeutic

effect on UTI (157, 158). The results of a systematic review

showed that vitamin C, a drug candidate with antioxidant

capacity, has the ability to prevent the occurrence of UTI, and

anthocyanins can inhibit ROS to treat UTI caused by

K.pneumoniae and P.aeruginosa (157, 158). Among the

anthocyanin extracts of all plants, blueberry is an excellent

candidate because of its very rich anthocyanin content (159,

160). We conclude that reducing the content of ROS through

the use of antioxidant drugs is a promising intervention for

bladder infection.
FIGURE 6

Immune responses to P. mirabilis, Paeruginosa and Candida spp. in the bladder. (A) Before adhesion, THP and RNase 7 resist the adhesion and
invasion of P.mirabilis to the bladder, and P.mirabilis has countermeasures by expressing extracellular metalloprotease ZapA, which has
hydrolytic activity. In addition, ZapA can hydrolyze complement (C1q and C3), LL-37, and human hBD in the urine. Notably, BECs can produce
CCL20, CXCL2, and CCL2, and then promote numbers of leukocytes migrate to the epithelium, the specific role of which is not determined.
(B) Under the iron restriction, P.aeruginosa has a stronger colonization ability on BECs. Once P.aeruginosa adheres to the BECs, the BECs
increase the expression of MIP-1a to recruit neutrophils, which against the bladder infection of P.aeruginosa. (C) In the urine, THP and LL-37
respectively bind to the Als3 and Xog1p glycoprotein of Candida to inhibit adhesion. After Candida adhesion, BECs express COX-2 through
EGFR-ERK/p38-RSK-CREB-1 pathway, leading to the synthesis of prostaglandins, which mediate the occurrence of inflammation. BECs, bladder
epithelial cells; Candida, Candida spp; CCL20, c-c chemokine ligand 20; COX-2, cyclooxygenase-2; CREB-1, cAMP-response element-binding
protein-1; CXCL2, C-X-C motif chemokine ligand 2; EGFR, epidermal growth factor receptor; ERK, extracellular regulated protein kinases; hBD,
b-defensin; MIP-1a, macrophage inflammatory protein-1a; P.aeruginosa, Pseudomonas aeruginosa; P. mirabilis, Proteus mirabilis; RNase 7,
ribonuclease 7; RSK, ribosomal s6 kinase; THP, tamm-horsfall protein.
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Iron restriction

Iron restriction, as another broad-spectrum antibacterial

method, inhibits the growth of a variety of uropathogens in

bladder infection, including UPEC, K.pneumoniae ,

S.saprophyticus, and P.mirabilis (61, 104, 161–163). Exogenous

regulation of iron content in urine is an excellent immune

regulation target for the treatment of bladder infection.

Animal experiments showed that the dietary restriction of iron

significantly reduces the iron content, followed by bacterial

burden, bacteriuria, as well as inflammatory responses

decreasing in UPEC bladder infection, and the exogenous

injection of lactoferrin, an iron-binding glycoprotein, also

significantly reduces the UPEC load and the infiltration of

neutrophils (164, 165). However, the intervention effects of

iron restriction on UTI caused by P.aeruginosa are not

verified, because iron restriction does not inhibit the growth of

P.aeruginosa, but increases the bacterial load in the bladder

(138). In conclusion, restricting access to iron is a promising

intervention for bladder infection caused by UPEC,

K.pneumoniae, S.saprophyticus, and P.mirabilis, which may not

apply to P.aeruginosa.
Increase of AMPs

AMPs are a large class of compounds that participate in a

variety of innate immune responses and are considered to be

promising compounds to deal with antimicrobial resistance

(166). RNase 7 has antibacterial effects on UPEC,

S.saprophyticus, and P.mirabilis, RegIIIg has antibacterial

effects on S.saprophyticus, LCN2 has antibacterial effects on

UPEC, and LL-37 has antibacterial effects on UPEC and

Candida (47, 58, 61, 106, 107, 147). Therefore, RNase 7,

RegIIIg, LCN2, and LL-37 may have therapeutic effects against

the above uropathogens in bladder infection. Notably, different

AMPs and even different segments of the same AMP have

different antimicrobial effects. Taking RNase 7 as an example,

fragments of RNase 7 have different antibacterial effects on

uropathogens, the F:1-97 fragment has the most antibacterial

activity against UPEC and S.saprophyticus, while all N-terminal

fragments except the F:1-45 fragment have the most

antibacterial activity against P.mirabilis (106). Notably, LL-37

does not have a killing effect on GBS, on the contrary, it will

promote GBS bladder infection (46).
Regulation of hormones

Among hormones, insulin has the ability to promote the

secretion of RNase 7, RNase4, and LCN2, which are proven to be

against bladder infection caused by a variety of uropathogens (167,

168). In addition, insulin reduces the risk factor of blood sugar,
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thereby reducing the susceptibility of diabetic patients to bladder

infection of UPEC, K.pneumoniae, E.faecalis, GBS, S.aureus, and

Candida (124, 169–173).. However, a prospective study showed that

diabetic patients who used insulin for a long time had a higher risk

of UTI than diabetic patients who did not use insulin. The reason

for the inconsistency may be that the blood and urine sugar of

patients taking insulin is higher than that of patients without taking

insulin (174). Insulin may not be suitable for people with low blood

sugar, because it can cause hypoglycemia and lead to undesirable

consequences such as coma (175). Except for insulin, estrogen also

changes the bacterial burden in bladder infection (176–178).

Female, compared with male, had lower bacterial burdens and

stronger immune responses (178). This may be because of the

increase of IL-17mediated by estrogen, as IL-17 initiates many anti-

bacterial pathways, including antimicrobial peptide and chemokine

expression and the direct killing effects on bacteria (178–181).

Differently, exogenous androgen can increase the burden of

UPEC and mediate the development of cystitis into

pyelonephritis (176, 177).
Enhancement of intracellular
efflux bacteria

cAMP plays an important role in the efflux of UPEC and

K.pneumoniae from BECs in bladder infection (70, 92). Many

drugs, that are proven by US-Food and Drug Administration

certification (like Liraglutide, Terbutaline, and so on) can increase

the production of cAMP. Liraglutide, a glucagon-like peptide-1

(GLP-1) receptor agonist, is shown to increase cAMP to inhibit

the replication of the hepatitis C virus (182). Terbutaline can

reduce LPS-induced human pulmonary microvascular endothelial

cell damage by increasing cAMP (183). cAMP is proven to be a

potential immunomodulatory target for bacterial bladder

infection, but there is a lack of research to prove their

therapeutic effects, further research is needed (70).
Urothelium repair

BECs play important roles as the first line of defense in bladder

infection, because it produces many immune factors to mediate the

immune responses, and meanwhile, it prevents the invasion of

bacteria into the deep immature epithelium to form QIRs (184).

Hyaluronic acid (HA), a highmolecular weight glycosaminoglycan,

not only induces the production of LCN2 and IL-8 in HA/flagellin-

challenged epithelial cells but is also involved in the enhancement

of the physical barrier of BECs (185). As clinical data showed that

intravesical injection of HA can indeed achieve the purpose of

treatment for infected humans (186–188). Similar to HA, clinical

trials showed that 25-hydroxyvitamin D3 also has the role of

protecting the bladder epithelial integrity in postmenopausal

women, as 25-hydroxyvitamin D3 induces expression of occludin
Frontiers in Immunology 12
and claudin-14, which are the tight junction proteins in the urinary

tract (189). In addition to protecting mature epithelial integrity, the

measures to promote the regeneration of immature epithelium

should be taken into consideration. Briefly, HA, 25-

hydroxyvitamin D3 and so on which can repair urothelium are

excellent targets to combat the infection of UPEC.
Anti-inflammation

COX-2 and NLRP-3 were shown to favor infections by

exacerbating inflammation (76–79, 148, 149, 190). Inhibiting

the synthesis of COX-2 or NLRP-3 can protect mice from cystitis

induced by uropathogens, but except GBS-induced cystitis,

because GBS colonized more in NLRP-3-deficient mice

compared with wild type mice (76–79, 129, 148, 149, 190).

Therefore, inhibiting inflammation by targeting COX-2 or

NLRP-3 theoretically has a certain therapeutic value against

uropathogens except for GBS (129). However, a randomized

controlled trial with a sample size of 253 showed that targeting

COX-2 by using NSAIDs is less effective than antibiotics and

may even promote the progression of cystitis to pyelonephritis

(191). Another randomized controlled trial with a sample size of

383 also showed that NSAIDs are less effective than antibiotics in

the treatment of bladder infections, and may even lead to

pyelonephritis and serious adverse events (192). To sum up,

although the basic experiments confirmed the value of anti-

inflammatory in the intervention of bladder infection, it should

be cautious in clinical application for UTI.
Immunization with vaccines

Vaccination holds a promising approach against different

microbial bladder infections. Many vaccines designed against

individual-specific uropathogens are currently in the stage of

basic or clinical trials (193–195). For UPEC bladder infection,

there are vaccines targeting type 1 fimbriae, hemolysins,

siderophore receptors, cytotoxic necrotizing factor 1 (CNF1),

and LPS (194, 196–198). For P.mirabilis bladder infection, there

are vaccines targeting MR/P fimbriae and hemolysins (199, 200).

For E. faecalis bladder infection, there is endocarditis- and

biofilm-associated (Ebp) fimbriae vaccine (201). To make the

vaccines against the diversity of uropathogens, the vaccines can be

extracted from a range of uropathogens to form a multivalent

vaccine. For example, Urovac (Solco Basel Ltd, Basel, Switzerland)

consists of 10 heat-killed uropathogens, including 6 serotypes of

UPEC, P.vulgaris, K.pneumoniae, and E.faecalis (202). Although

most vaccines have been demonstrated highly efficacious in

reducing the incidence and severity of UTI in animal models,

there is a lack of large-scale clinical trials to prove their efficacy

and safety. As the purpose of vaccination is to induce immune

memory of the specific pathogens, the vaccines are effective on the
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corresponding uropathogens but not on others. If a broad anti-

infective effect is desired in the treatment of bladder infection,

then a multivalent vaccine is an option.
Probiotic interventions

Probiotics can inhibit the adherence, growth, and colonization

of uropathogens and reduce inflammation in the urinary tract by

producing antibacterial substances such as lactic acid and

hydrogen peroxide, or by directly competing for the adhesion

sites between UPEC and the BECs (203–205). The efficacy and

safety of probiotics in the treatment of bladder infection have been

confirmed by extensive clinical trials, which include Lactobacillus

rhamnosus, Lactobacillus acidophilus, Lactobacillus fermentum,

Lactobaci l lus reuteri , Bifidobacterium bifidum , and

Bifidobacterium lactis (206–209). However, different probiotics

were demonstrated to have diverse antibacterial effects.

Lactobacillus acidophilus has an average inhibition zone of

16 mm for UPEC but for E.faecalis was 12mm (210).

Lactobacillus salivarius UCM572 had anti-adhesion effects

against UPEC, however, the anti-adhesion effect on other

uropathogens was not demonstrated (211). Furthermore, the

anti-adhesion effects of different Lactobacillus strains against

Candida, K.pneumoniae, P.aeruginosa, and Proteus were

reported to be different (212). Therefore, when probiotics are

used to treat different microbial bladder infections, appropriate

probiotic strains should be selected according to the specific

uropathogens in bladder infection.

Further research

Because of the diverse effects of immunomodulatory

interventions on different uropathogens, corresponding

immunotherapies should be taken for different uropathogenic

bladder infections for better therapeutic effects. However,

compared with great advances in the understanding of bladder

immune responses trigged by UPEC, understanding of the

bladder immune responses caused by other uropathogens

remains relatively limited, which results in relatively few

individual immunomodulatory options for other uropathogens

which we came up with. Further research needs to pay more

attention to the immune responses to other uropathogens besides

UPEC. In addition, most of the immunomodulatory interventions

were proven efficacious in animal models, further clinical research

needs to demonstrate the consistency of the effects, and then

which will achieve better therapeutic effects in the future.
Conclusion

Antibiotic therapy is the only option for UTI treatment but in

recent years it is becoming more limited due to the increasing
Frontiers in Immunology 13
resistance of UTIs to routinely applied antibiotics.

Immunomodulatory interventions have been suggested to be

alternatives. However, the bladder executes different immune

responses depending on the type of uropathogens, thus one

immunomodulatory target has diverse effects on different

uropathogens. The similarities and differences in immune

responses to the main nine uropathogens in bladder infection were

sorted out and comparably analyzed in this Review. To improve the

effects of immunomodulatory interventions on different microbial

bladder infections, specific uropathogenic bladder infections should

adopt corresponding immunomodulatory targets to intervene, and

one immunomodulatory intervention can be applied to diverse

microbial infections, under the condition that they share the same

effective therapeutic targets. Only through individual treatments in

different uropathogenic bladder infection by immunomodulatory

interventions can achieve better therapeutic results as alternatives

for antibiotics in the future.
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Glossary

Aas a hemagglutinin-autolysinadhesin

AC-3 adenylyl cyclase-3

Als agglutinin-like sequence

AMPs antimicrobial peptides

anti-MrpA structural subunit of MR/P fimbriae

BECs bladder epithelial cells;

bH/C b-hemolysin/cytolysin

cAMP cyclic adenosine monophosphate;

Candida. Candida spp.

CCL20 C-C chemokine ligand 20

ClfA/B Clumping Factors A and B

CNF1 cytotoxic necrotizing factor 1

COX-2 cyclooxygenase-2

CREB-1 cAMP-response element-binding protein-1;

CXCL1 C-X-C motif chemokine ligand 1

CXCL2 C-X-C motif chemokine ligand 2

CXCL5 C-X-C otif chemokine ligand 5

CX3CL1 CX3-C motif chemokine 1

CXCR4 CXC-motif chemokine receptor 4

DCs dendritic cells

Ebp endocarditis- and biofilm-associated

E. coli Escherichia coli

E.f Enterococcus faecalis

E.faecalis Enterococcus faecalis

EGF epidermal growth factor

EGFR epidermal growth factor receptor

ERK extracellular regulated protein kinases

Esp enterococcal surface protein;

ExoU/T/S exoenzyme U/T/S

F1C pili type 1-like immunological group C pili

GBS Group B Streptococcus

GLP-1 glucagon-like peptide-1

GM-CSF granulocyte-macrophage colony-stimulating factor

GRIM-19 genes associated with retinoid-IFN-induced mortality-19

HA Hyaluronic acid;

hBD human b-defensin

HlyA a-hemolysin

HMGN2 high-mobility group protein N2

HpmA haemolysin

IBCs intracellular bacterial communities;

LCN2 lipocalin-2

IDSA Infectious Disease Society of America

IGF-1 insulin-like growth factors-1

IL-1 interleukin-1

IL-6 interleukin 6

IL-8 interleukin-8

INF-g interferon-g

JNK c-Jun-NH2-terminal kinase

(Continued)
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K.p Klebsiella pneumoniae

K.
pneumoniae

Klebsiella pneumoniae

INF-g interferon-g

LPS lipopolysaccharide

MIP-1 macrophage inflammatory protein-1

MIP-1a macrophage inflammatory protein-1a

MR/P pili mannose-resistant Proteus-like

MyD88 myeloiddifferentiationfactor88;

NF-kB Nuclear factor kappa beta

NK cells natural killer cells

NLRP3 NOD-like receptor thermal protein domain associated protein 3

P.a Pseudomonas aeruginosa

PAMP pathogen-associated molecular pattern;

PAR2 Protease-activated receptor 2

PKA protein kinase A

P.m Proteus mirabilis

Pparg peroxisome proliferator-activated receptor-g

P pili pyelonephritis-associated pili

Pta Proteus toxic agglutinin

PTX3 Pentraxins

QIRs quiescent intracellular reservoirs

QS quorum sensing;

RegIIIg regenerating islet-derived 3g

RNase 7 ribonuclease 7

ROS Reactive oxygen species

RSK ribosomal s6 kinase

S.a Staphylococcus aureus

SDF-1 stromal cell-derived factor1

SdrI a surface-associated collagen-binding protein

SHH sonic hedgehog

Siglec-9 sialic acid-binding Ig-like lectin-9;

SigV extracytoplasmic function sigma factor

S.s Staphylococcus saprophyticus

Ssp a surface-associated lipase

SssF S. saprophyticus surface protein F

Stat3 signal transducers and activators of transcription 3;

TcpF TLR2-Toll/Interleukin-1 receptor domain-containing protein of
E. Faecalis

TGF-a transforming growth factor-a

THP Tamm-Horsfall protein

TIR TLR2-Toll/interleukin-1 receptor

TLR4 toll-like receptor 4;

TNF-a tumor necrosis factor-a

TRPML3 transient receptor potential 3;

UafB a cell wall-anchored protein

UPEC Uropathogenic Escherichia coli;

UTI Urinary tract infection

WHO World Health Organization

ZapA an extracellular metalloprotease, Mirabilysin.
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