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Abstract

In the United States, new tuberculosis cases are increasingly concentrated within non-native-born 

populations. We estimated trends and differences in tuberculosis incidence rates for the non-U.S.-

born population, at a resolution unobtainable from raw data.

We obtained non-U.S.-born tuberculosis case reports for 2000–2016 from the National 

Tuberculosis Surveillance System, and population data from the American Community Survey and 

2000 U.S. Census. We constructed generalized additive regression models to estimate incidence 

rates in terms of birth country, entry year, age at entry, and number of years since entry into the 

United States and described how these factors contribute to overall tuberculosis risk.

Controlling for other factors, tuberculosis incidence rates were lower for more recent immigration 

cohorts, with an incidence risk ratio (IRR) of 10.2 (95 % confidence interval 7.0, 14.7) for the 

1950 entry cohort compared to its 2016 counterpart. Greater years since entry and younger age at 

entry were associated with substantially lower incidence rates. IRRs for birth country varied 

between 8.86 (6.78, 11.52) for Somalia and 0.02 (0.01, 0.03) for Canada, compared to all non-

U.S.-born residents in 2016. IRRs were positively correlated with WHO predicted incidence rate 

and negatively associated with wealth level for the birth country. Lower country wealth level was 

also associated with shallower declines in tuberculosis over time.
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Tuberculosis risks differ by several orders of magnitude within the non-U.S.-born population. A 

better understanding of these differences will allow more effective targeting of tuberculosis 

prevention efforts. The methods presented here may also be relevant for understanding 

tuberculosis trends in other high-income countries.
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1. Introduction

Most individuals infected with Mycobacterium tuberculosis develop a subclinical latent 

tuberculosis infection (LTBI), which can progress to active disease many years later (Barnett 

et al., 1971). In high-income, low tuberculosis (TB) burden countries in Western Europe, 

North America, and Australasia, cases of ‘reactivation TB’ are now the primary driver of TB 

incidence. Delayed progression is particularly relevant for individuals migrating from high- 

to low-disease prevalence settings, as high infectious exposure prior to migration can cause 

elevated incidence of clinical disease after arrival. This is increasingly the case for TB in 

higher-income countries of destination. Among 15 high-income countries in Western 

Europe, the percentage of TB cases occurring among non-native-born populations in 2018 

ranged from 51 % in Ireland to 90 % in Sweden (European Centre for Disease Prevention 

and Control, 2019; International Monetary Fund, 2019). In New Zealand and Australia this 

percentage was 78 % (Institute of Environmental Science and Research Ltd, 2015) and 86 % 

(Toms et al., 2017), respectively, for 2014. In the United States, the corresponding 

percentage has risen from 47 % to 70 % between 2000 and 2018 (U.S. Centers for Disease 

Control and Prevention, 2019) and epidemiological projections suggest continued increases 

(Menzies et al., 2018a). Evidence from transmission linkage studies suggests that the 

majority of new U.S. TB cases arise from reactivation of established LTBI, rather than recent 

infection (Yuen et al., 2016). Recent evidence also suggests that an increasing fraction of 

U.S. TB cases among non-U.S.-born persons arise among older individuals and those who 

have been in the United States for 10 years or more (Armstrong et al., 2019; Tsang et al., 

2017).

Given their major contribution to TB incidence, non-native-born individuals represent a 

priority group for TB prevention and enhanced case surveillance. However, in many high-

income countries, non-native-born individuals represent a substantial fraction of the 

population and targeting all such individuals for these services would require covering a 

large number of people. For example, non-U.S.-born individuals living in the United States 

in 2017 represented 13.7 % of the population, or 44.5 million individuals (U.S. Census 

Bureau, 2018). More precise approaches for targeting services could allow more efficient 

use of scarce prevention resources and reduce potential harms for those expected to receive 

minimal benefit from screening and treatment to prevent TB. In this study we report the 

distribution of TB incidence in the non-U.S.-born population between 2000 and 2016, in 

order to describe trends within and across migrating cohorts and identify high-risk groups 

that might benefit most from prevention and enhanced surveillance. We used case 
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notification data from the U.S. National TB Surveillance System (NTSS) (U.S. Centers for 

Disease Control and Prevention, 2016), and population estimates derived from the American 

Community Survey and 2000 Decennial Census (Ruggles et al., 2015). These data represent 

122, 118 non-U.S.-born TB cases, arising during more than 620 million person-years of 

exposure. This cohort is substantially larger than analogous cohorts from other similar 

settings (Aldridge et al., 2016; McBryde and Denholm, 2012; Chemtob et al., 2015; Menzies 

et al., 2018b) and provides a high-resolution description of differences in TB risk within the 

non-U.S.-born population.

2. Methods

2.1. TB case data

From the NTSS, we obtained all TB cases reported among non-U.S.-born individuals within 

jurisdictions comprising the 50 states and District of Columbia over 2000–2016. ‘Non-U.S.-

born’ was defined as reporting birthplace outside of the United States or U.S. territories, 

excluding individuals born to a U.S. citizen parent, consistent with U.S. Census definitions 

(US Census Bureau, 2019). Variables obtained included birth country, year the TB case was 

reported, current age, and number of years resident in the United States.

2.2. Population estimates

To derive population estimates for the non-U.S.-born population, we obtained individual-

level data from the American Community Survey from 2001 to 2016, and the 5% sample of 

the 2000 U.S. Census (Ruggles et al., 2015). We extracted variables for birth country, year of 

U.S. entry, current age, and survey analysis weights. We assumed smooth changes in total 

population within each entry-year cohort over time to reduce sampling uncertainty, and 

adjusted values for misclassification and underreporting biases (Jensen et al., 2015). A 

detailed description of methods to calculate population denominators for estimated 

incidence rates is provided elsewhere (Menzies, 2019).

2.3. Analysis strata

We tabulated TB cases and population estimates by birth country, entry year, age at entry, 

and years since entry. We bottom-coded entry year at 1949, and top-coded current age at 91. 

ISO 3166-1 alpha-3 codes (ISO3) were used to identify countries of birth. Individuals were 

assigned ISO3 codes according to their reported birth country. Where reported birth country 

referred to a dependent territory without an ISO3 code, individuals were assigned to the 

governing state of the dependent territory. Countries establishing independence after 2000 

(Kosovo, Montenegro, Serbia, South Sudan, Timor-Leste) were pooled with the state they 

were part of before independence (Yugoslavia, Sudan, Indonesia), to allow consistent 

definitions of birth country across the study period. We excluded individuals outside of the 

top 100 countries of birth according to average U.S. population over the study period, and 

individuals recorded as having their entry year before their birth year (4.4 % and 0.02 % of 

TB cases, and 1.7 % and 0.03 % of the population denominator, respectively). Two more 

countries were dropped as they no longer existed in 2016 (U.S.S.R., Yugoslavia). This 

tabulation produced 7.2 million unique strata. For TB case reports, number of years since 

entry was missing for 4.6 % of observations and age was missing for <0.01 %. We applied 
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multiple imputation (Honaker et al., 2011) to these missing values while enforcing the 

logical consistency requirement that number of years since entry be less than an individual’s 

age. Entry year was calculated as the difference between the year a case was reported and 

number of years resident in the United States.

2.4. Statistical analysis

We constructed two regression models predicting incident TB cases. The first model 

included entry year, age at entry, and number of years since entry as predictors. The second 

model included these terms as well as birth country. We included indicator variables for both 

year of and number of years since entry, rounded to the nearest decade (for example, 1960 as 

entry year) to adjust for recall bias spikes in respondents’ reporting in the raw data. We used 

a negative binomial model with a log-link function, and with population estimates included 

as offsets. The effect of covariates was described using generalized additive models (Hastie 

and Tibshirani, 1990), which extend the structure of generalized linear models with sums of 

smooth functions of covariates. Smoothing was implemented via thin-plate splines (Wood, 

2003), allowing considerable flexibility in fitting to multiple covariates, while 

simultaneously penalizing over-flexible fits. These smooth terms were specified for all 

continuous variables (entry year, age at entry, years since entry). Birth country was 

incorporated using random effects for intercept and slope. Model structure selection was 

guided by Akaike Information Criterion. We estimated regression models for five multiply-

imputed datasets, a number compatible with the small levels of missingness, and combined 

results using conventional methods (Rubin, 1987) to reflect uncertainty associated with 

missing values. Confidence intervals were simulated by sampling regression coefficients 

from a multivariate normal distribution defined by the estimated coefficient vector and 

variance-covariance matrix, and accounting for additional variance associated with multiple 

imputation. Analyses were performed in R v.3.5.1 (R Core Team, 2018) using the ‘mgcv’ 

library v.1.8–28 (Wood, 2017).

3. Results

The two regression models yielded smoothed TB incidence trends among the non-U.S.-born 

resident population, enabling stratification by age, entry year, and length of time in the 

United States, and, in the case of the second model, by birth country.

3.1. Comparison of model fit with raw data

Fig. 1 provides an example of raw versus smoothed estimates for total TB cases in 2016 by 

single year of age and stratified by epoch of entry into the United States. The model 

reproduces trends in the reported case counts.

3.2. Incidence trends for individual decade of entry cohorts

Fig. 2 shows estimated TB incidence trends over the period 2000–2016, stratified by 10-year 

age groups, for cohorts defined by their decade of entry into the United States (1950, 1960, 

1970, 1980, 1990, 2000). Because each panel depicts a separate cohort, incidence estimates 

by age group do not connect across panels. The panels reflect the changing demographics 

and TB profiles over historical waves of entrants. Solid lines indicate point estimates and 
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colored bands 95 % confidence intervals. Bands are progressively fewer moving to the right, 

corresponding to increasing age by the year 2000 and top-coding of age in the model. 

Confidence bands in the rightmost panels are wider, as expected, given fewer cases and 

smaller population sizes in the elderly. Incidence rates are high within the first years of 

arrival (leftmost panel only) and increase with age at entry. Rates generally declined within 

each cohort over the 17-year period, with a few exceptions: oldest age groups of the most 

recently arrived cohort and cohorts that arrived in 1950 and 1960. For all cohorts there was a 

monotonic relationship between incidence rate and age at entry, with older age at entry 

(cooler colors) consistently associated with higher incidence rates, compared to other 

individuals arriving in the same year. Across the cohorts shown in this figure, incidence rates 

varied from 3 to 300 per 100,000 per year.

3.3. Incidence predictions for cohort entering in 2016

Fig. 3 shows a heatmap of predicted incidence rates for the 2016 entry cohort, stratified by 

age at entry (vertical axis) and number of years since entry (horizontal axis). Warmer colors 

(red) indicate higher incidence rates and cooler colors (violet) lower rates. Moving in a 

horizontal line from left to right traces the trajectory of predicted future incidence rates with 

increasing duration of U.S. residence. For all ages of entry, rates are highest immediately 

after entry, and absolute incidence rates are highest for individuals at advanced age when 

they arrive in the United States. Predicted rates decrease with time for most ages of entry, 

rising again in later years for those who entered as adolescents and among some who entered 

at older ages. As with Fig. 2, incidence rate estimates differ by two orders of magnitude 

across the individual strata represented in the figure.

3.4. Changes in incidence between successive entry year cohorts

Fig. 4 illustrates the secular trend in TB among successive entry cohorts between 1950 and 

2016, controlling for other factors. Trends are represented by incidence risk ratios (IRRs) 

relative to TB morbidity in the 2016 entry cohort. The effect of controlling for birth country 

is apparent when comparing trends from the two regression models. For the analysis 

excluding birth country (blue curve), the IRR increases slightly between 1950 and 1980 (a 

period during which immigration shifted from predominantly European countries toward 

immigration from Asian and Latin American countries) and decreases thereafter. For the 

analysis including birth country (red curve), the IRR starts out in 1950 at 10.2 (95 % 

confidence interval 7.0, 14.7) relative to the rate in 2016 and decreases steadily for more 

recent entry years. The two curves decrease at similar rates per decade from 1980 onwards, 

except for 2000–2010, as shown by average annual percent changes calculated for each 

decade.

3.5. Incidence trends according to birth country

Table 1 gives raw incidence rates for persons from selected countries in 2016, as well as raw 

and adjusted IRRs compared to the overall non-U.S.-born rate in the same year. Results are 

shown for persons from the five countries with largest IRR, the five contributing most 

numbers of cases, and the five with smallest IRRs. The highest five IRRs range from 5.6 to 

8.9; the lowest five are virtually level at 0.02 to 0.03. Supplementary Table 1 provides 

estimates for all birth countries.
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Fig. 5 shows time trends in TB for successive immigration cohorts, stratified by birth 

country. These are represented as IRRs relative to the incidence rate for all non-U.S.-born 

residents in 2016. IRRs decline over time for most countries, consistent with the overall 

patterns in Fig. 4. Countries with IRRs estimated to increase over time were Myanmar, 

Liberia, Sudan, Sierra Leone, Guatemala, and South Africa.

Fig. 5 also describes the relationship between wealth level in the birth country (measured as 

2016 per capita GDP (The World Bank, 2018)), and TB trends for individuals from that 

country residing in the United States. Countries are organized in the figure by increasing per 

capita GDP, with countries in the lowest wealth tertile on the left, then mid-tertile countries, 

and the highest wealth tertile on the right. Across these panels the average 2016 IRR 

decreases from 3.68 for the poorest tertile to 0.59 for the wealthiest tertile. The average 

annual percentage change in these IRRs goes from −1.9 % in the poorest tertile to −5.0 % in 

the wealthiest tertile. In short, TB incidence is lower and declines more rapidly for non-U.S.-

born residents from wealthier countries.

3.6. Relationship to TB incidence in birth country

Fig. 6 compares IRR estimates relative to overall non-U.S.-born for persons from each birth 

country to the World Health Organization’s (WHO) TB incidence estimates for those 

countries in 2016 (World Health Organization, 2019). Countries are represented in the 

bubble plot by the size of their population in the United States. While there is a clear 

positive relationship between IRR and estimated TB incidence in the birth country, a number 

of countries deviate from this trend. Some countries with high rates of TB, such as South 

Africa (ZAF) have U.S. rates close to the overall non-U.S.-born population. Although 

Mexico (largest dot in Fig. 6) represents the birth country for about one-fifth of cases among 

non-U.S.-born persons, the U.S.-incidence rate among persons born in Mexico is below that 

of the overall non-U.S.-born population. By contrast, Guatemala (GTM), with a similar TB 

rate to Mexico, has rates in the United States higher than the overall average for non-U.S.-

born. Noted on the edges of the scatterplot are Barbados (BRB), with an IRR much higher 

than would be predicted by its WHO incidence rate, and Belarus (BLR), with an IRR lower 

than would be predicted by its WHO incidence rate.

4. Discussion

In recent decades the epidemiology of TB in the United States has shifted towards 

reactivation of latent infection as the main driver of new cases of disease. The majority of 

new TB cases now arise among the non-U.S.-born population, reflecting elevated exposure 

to infection before U.S.-arrival. As TB becomes increasingly concentrated in the non-U.S.-

born population, it is important to distinguish differences in risk within this population, to 

better understand the current state of the TB epidemic in the United States.

For this study we analyzed data on 122,118 non-U.S.-born TB cases arising over 620 million 

person-years of exposure between 2000 and 2016. This large dataset allowed us to document 

major differences in TB risk within the non-U.S.-born population as a function of age and 

entry year, years since entry, and birth country. The interaction of these factors produces 

incidence risks for individual population strata that differ by several orders of magnitude and 

Hill et al. Page 6

Epidemics. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggests clear opportunities for TB prevention programs. These granular insights would not 

have been possible to discern directly from the raw data of case counts; a previous analysis 

which pooled case data over several years to address sparse counts had much more limited 

ability to resolve the epidemiology of TB among the non-U.S.-born (Cain et al., 2008).

Our approach allowed us to estimate the component of TB risk attributable to the year in 

which an individual moved to the United States. We found that earlier entry cohorts 

experienced a higher risk of incident TB between 2000–2016, controlling for other factors 

associated with TB risk. For each of these arrival cohorts non-U.S.-born rates were found to 

be highest in the first few years since entry and increase with age at the time of arrival. 

While this is a well-known feature of TB epidemiology in the non-U.S.-born, our analytic 

approach allowed us to project these trends over the lifetime of an individual arrival cohort, 

demonstrating incidence risk to continue declining up to 40 years after arrival (though at a 

slower rate than observed shortly after entry). Within a given entry cohort, incidence rates 

were found to drop quickly with years since entry for those entering at a younger age, a 

finding consistent with the fact that infants and young children with TB would have 

developed disease as a result of recent infection. By contrast, older entrants retain a higher 

level of risk over time since entry, reflective of higher rates of reactivation from infection in 

the past. Rates were projected to rise again in later years among some who entered in 2016 

at older ages and this is consistent with the upturn observed among older entrants in cohorts 

arriving in 1990 and 2000.

Comparison of the two regression models confirmed the importance of accounting for birth 

country to understand differences in TB incidence rates between successive cohorts. By 

doing so, our model incorporates the changing demographics over time of the originating 

countries, where more immigrants came from Western Europe in the mid-20th century as 

opposed to greater proportions of arrivals from Latin America and Asia in the latter part of 

the 20th century through to the present day. A steady decrease of IRR relative to incidence in 

2016 has mostly prevailed since 1950 for individual countries of birth and failing to control 

for birth country was found to mask this phenomenon.

Per capita GDP of the birth country was found to be a strong predictor of incidence rates in 

the United States, with the top five countries by IRR falling in the bottom third of countries 

with respect to per capita GDP. While the top five countries in terms of annual cases 

(Mexico, Philippines, India, Vietnam, China) currently receive greater attention in the 

United States, there remain smaller populations within the United States whose TB 

incidence rates are considerably higher (U.S. Centers for Disease Control and Prevention, 

2019; Tsang et al., 2020). If these populations are relatively localized in the United States, 

these groups might benefit from additional TB prevention and control resources. It is 

noteworthy that Mexico and China are in the middle tertile of per capita GDP and have rates 

below the overall non-U.S.-born rate (IRR < 1) whereas the Philippines, India, and Vietnam 

are all in the lower per capita GDP tier and have rates above the average. The model also 

identifies birth countries for which more recent entry cohorts have higher TB incidence, 

controlling for age at entry and years since entry. In particular, more recent entrants from 

Myanmar (MMR), Liberia (LBR), and Kenya (KEN) are predicted to face greater TB risks 

than earlier entrants from these countries.
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Our analytic approach has limitations associated with estimation of population denominators 

which have previously been discussed (Menzies, 2019). While NTSS data are largely 

complete and consistent (Yelk Woodruff et al., 2015) notwithstanding small levels of 

missingness noted here, data sources informing the numerator and denominator are subject 

to biases, for example in NTSS with recall peaks for initial or mid-years of decades and 

some data discontinuities in first year since entry reporting. We attempted to correct for 

these expected sources of bias, but our models would not capture unexpected disruptive 

events affecting denominators (for example, refugee inflows in certain years) or numerators 

(such as the unexpected drop in TB cases in 2008–09 (Winston et al., 2011)).

Model results for a specific calendar year describe only those individuals in historic entry 

cohorts who have survived to that year. Results should not be interpreted as referring to the 

complete cohort arriving in any past year. Estimates could thus be biased if there were, for 

example, higher survival rates among those from higher income or lower TB prevalence 

countries, in which instance we would be underestimating rates among historic entry 

cohorts.

Country-specific IRRs defined as the WHO-estimated TB incidence rate divided by the non-

U.S.-born rate for that country were recently published elsewhere (Tsang et al., 2020). These 

IRRs should not be confused with ours which are relative to the overall non-U.S.-born rate 

in a given year; comparators are explicitly stated throughout the manuscript whenever IRRs 

are stated. An IRR > 1 here indicates elevated rates for a specific country whereas in (Tsang 

et al., 2020) it indicates a lower rate for the country in question (when compared to the 

WHO rate).

In this work we adopted an analytic approach that attempted to separate systematic trends in 

the data from the sampling uncertainty associated with small population strata and observed 

reporting biases. This led us to specify flexible functions to describe the relationship 

between continuous predictors and incidence rates, and random effects to regularize the 

estimates for individual countries of birth. Our approach required analytic decisions that 

might have led to both over- or underfitting of the data. As an example of the former, it is 

possible that the sharp increase in incidence rates 10 years after entry for individuals aged 75 

years old in the 2000 entry cohort (Fig. 2, top left) results from over-fitting to random 

variation in the empirical data. For the latter, our decision to include different countries of 

birth in the same model may have hidden patterns specific to individual countries. More 

closely-fitted models could be developed in future work, with the usual tradeoffs in 

interpretability and accuracy (Caruana et al., 2015). Indeed, development of models 

specifically for individual countries of birth or sub-national geographies within the United 

States could be useful for identifying population groups most at risk of TB, or revealing 

epidemiological patterns not addressed in this analysis.

These results provide a nuanced description of TB epidemiology for a population group 

currently contributing over two-thirds of new TB cases in the United States. These findings 

support the development of TB services that could accelerate progress towards TB 

elimination in the United States and may also be relevant for understanding trends in other 

high-income countries.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study was funded by the U.S. Centers for Disease Control and Prevention, National Center for HIV/AIDS, 
Viral Hepatitis, STD, and TB Prevention Epidemiologic and Economic Modeling Agreement#5NU38PS004644.

References

Aldridge RW, Zenner D, White PJ, Williamson EJ, Muzyamba MC, Dhavan P, et al., 2016 
Tuberculosis in migrants moving from high-incidence to low-incidence countries: a population-
based cohort study of 519,955 migrants screened before entry to England, Wales, and Northern 
Ireland. Lancet 388, 2510–2518. [PubMed: 27742165] 

Armstrong LR, Winston CA, Stewart B, Tsang CA, Langer AJ, Navin TR, 2019 Changes in 
tuberculosis epidemiology, United States, 1993–2017. Int. J. Tuberc. Lung Dis 23 (7), 797–804. 
[PubMed: 31439110] 

Barnett G, Grzybowski S, Styblo K, 1971 Present risk of developing active tuberculosis in 
Saskatchewan according to previous tuberculin and X-ray status. Bull. Int. Union Tuberc. Lung Dis 
45, 51–74.

Cain KP, Benoit SR, Winston CA, Mac Kenzie WR, 2008 Tuberculosis among foreign-born persons in 
the United States. J. Am. Med. Assoc 300 (4), 405–412.

Intelligible models for Healthcare: predicting pneumonia risk and Hospital 30-day readmission. In: 
Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N (Eds.), 2015 21st ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining.

Chemtob D, Mor Z, Grotto I, 2015 Tuberculosis screening programmes for migrants to low-incidence 
countries—the Israeli experience. Lancet Infect. Dis. 15 (8).

European Centre for Disease Prevention and Control, 2019 Tuberculosis Surveillance and Monitoring 
in Europe, 2018. Available from: https://ecdc.europa.eu/en/publications-data/tuberculosis-
surveillance-and-monitoring-europe-2018.

Hastie T, Tibshirani R, 1990 Generalized Additive Models. Chapman & Hall.

Honaker J, King G, Blackwell M, 2011 Amelia II: a program for missing data. J. Stat. Softw 45 (7), 1–
47.

Institute of Environmental Science and Research Ltd, 2015 Tuberculosis in New Zealand: Annual 
Report 2014, 2019.08.19 Available from: https://surv.esr.cri.nz/PDF_surveillance/AnnTBReports/
TBAnnualReport2014.pdf.

International Monetary Fund, 2019 World Economic Outlook Database, October 2018, 2019.09.09. 
Available from: https://www.imf.org/external/pubs/ft/weo/2018/02/weodata/index.aspx.

Jensen EB, Bhaskar R, Scopilliti M, 2015 Demographic Analysis 2010: Estimates of Coverage of the 
Foreign-Born Population in the American Community Survey. Working Paper No. 103. Available 
from: https://www.census.gov/content/dam/Census/library/working-papers/2015/demo/POP-
twps0103.pdf.

McBryde ES, Denholm JT, 2012 Risk of active tuberculosis in immigrants: effects of age, region of 
origin and time since arrival in a low-exposure setting. Med. J. Aust 197, 458–461. [PubMed: 
23072243] 

Menzies NA, 2019 High-resolution Estimates of the Foreign-born Population and International 
Migration for the United States. arXiv:190601716 [Internet].

Menzies NA, Cohen T, Hill AN, Yaesoubi R, Galer K, Wolf E, et al., 2018a Prospects for tuberculosis 
elimination in the United States: results from a transmission dynamic model. Am. J. Epidemiol 
187 (9), 2011–2020. [PubMed: 29762657] 

Menzies NA, Hill AN, Cohen T, Salomon JA, 2018b The impact of migration on tuberculosis in the 
United States. Int. J. Tuberc. Lung Dis 22 (12), 1392–1403. [PubMed: 30606311] 

Hill et al. Page 9

Epidemics. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ecdc.europa.eu/en/publications-data/tuberculosis-surveillance-and-monitoring-europe-2018
https://ecdc.europa.eu/en/publications-data/tuberculosis-surveillance-and-monitoring-europe-2018
https://surv.esr.cri.nz/PDF_surveillance/AnnTBReports/TBAnnualReport2014.pdf
https://surv.esr.cri.nz/PDF_surveillance/AnnTBReports/TBAnnualReport2014.pdf
https://www.imf.org/external/pubs/ft/weo/2018/02/weodata/index.aspx
https://www.census.gov/content/dam/Census/library/working-papers/2015/demo/POP-twps0103.pdf
https://www.census.gov/content/dam/Census/library/working-papers/2015/demo/POP-twps0103.pdf


R Core Team, 2018 R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria.

Rubin DB, 1987 Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

Ruggles S, Genadek K, Goeken R, Grover J, Sobek M, 2015 Integrated Public Use Microdata Series: 
American Community Survey. Version 6.0. 2018.03.07.

The World Bank, 2018 GDP per capita.2018, 07.31. Available from: https://data.worldbank.org/
indicator/NY.GDP.PCAP.CD.

Toms C, Stapledon R, Coulter C, Douglas P, the National Tuberculosis Advisory Committee for the 
Communicable Diseases Network Australia, the Australian Mycobacterium Reference Laboratory 
Network, 2017 Tuberculosis notifications in Australia, 2014. Commun. Dis. Intell 41 (3), E247.

Tsang CA, Langer AJ, Navin TR, Armstrong LR, 2017 Tuberculosis among foreign-born persons 
diagnosed > 10 years after arrival in the United States, 2010–2015. Morbidity Mortality Weekly 
Report 66, 295–298. [PubMed: 28333913] 

Tsang CA, Langer AJ, Kammerer J, Navin TR, 2020 US Tuberculosis Rates among Persons Born 
Outside the United States Compared with Rates in Their Countries of Birth, 2012–2016. Emerg. 
Infect. Dis. 26 (3), 533–540. 10.3201/eid2603.190974. [PubMed: 32091367] 

U.S. Census Bureau, 2018 Table S0501: selected characteristics of the native and foreign-born 
populations. 2017 American Community Survey 1-Year Estimates.

U.S. Centers for Disease Control and Prevention, 2016 Online Tuberculosis Information System 
(OTIS), National Tuberculosis Surveillance System, United States, 1993-2014. CDC WONDER 
On-line Database, 2017.12.01. Available from: https://wonder.cdc.gov/tb.html.

U.S. Centers for Disease Control and Prevention, 2019 Reported Tuberculosis in the United States, 
2018.

US Census Bureau, 2019 Current Population Survey: Subject Definitions. Available from:https://
www.census.gov/programs-surveys/cps/technical-documentation/subject-
definitions.html#nativeborn.

Winston CA, Navin TR, Becerra JE, Chen MP, Armstrong LR, Jeffries C, et al., 2011 Unexpected 
decline in tuberculosis cases coincident with economic recession - United States, 2009. BMC 
Public Health 11, 846. [PubMed: 22059421] 

Wood SN, 2003 Thin-plate regression splines. J. R. Stat. Soc. Ser. B 65 (1), 95–114.

Wood SN, 2017 Generalized Additive Models: an Introduction with R, 2nd ed Chapman and Hall/
CRC.

World Health Organization, 2019 Tuberculosis (TB). Available from: https://www.who.int/tb/country/
data/download/en/.

Yelk Woodruff RS, Pratt RH, Armstrong LR, 2015 The US national tuberculosis surveillance system: a 
descriptive assessment of the completeness and consistency of data reported from 2008 to 2012. 
JMIR Public Health Surveill. 1 (2), e15. [PubMed: 27227133] 

Yuen CM, Kammerer JS, Marks K, Navin TR, 2016 Recent transmission of tuberculosis — United 
States, 2011–2014. PLoS ONE 11 (4), e0153728. [PubMed: 27082644] 

Hill et al. Page 10

Epidemics. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://wonder.cdc.gov/tb.html
https://www.census.gov/programs-surveys/cps/technical-documentation/subject-definitions.html#nativeborn
https://www.census.gov/programs-surveys/cps/technical-documentation/subject-definitions.html#nativeborn
https://www.census.gov/programs-surveys/cps/technical-documentation/subject-definitions.html#nativeborn
https://www.who.int/tb/country/data/download/en/
https://www.who.int/tb/country/data/download/en/


Fig. 1. 
Raw and predicted non-U.S.-born TB cases for 2016 by single year of age and entry period.
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Fig. 2. 
Estimated annual TB incidence per 100,000 among non-U.S.-born, by years since entry, for 

successive decade of entry cohorts in 2000–2016.
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Fig. 3. 
TB incidence predictions in non-U.S.-born residents by entry age and years since entry, for 

the 2016 entering cohort.
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Fig. 4. 
Incidence risk ratio among non-U.S.-born residents by entry year, relative to 2016 entry 

cohort.
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Fig. 5. 
Trends in incidence by birth country and entry year for the top 98 countries-of-origin by 

resident population size, categorized by relative gross domestic product. Three letter codes 

represent country ISO3 identifiers; see Supplemental Table for list.
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Fig. 6. 
TB incidence risk ratios in 2016 relative to overall non-U.S.-born incidence compared to 

WHO-estimated TB incidence in birth country.
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Table 1

Incidence risk ratios for 2016, relative to overall non-U.S.-born rate.

Country Incidence Raw IRR Adj. IRR (95 % CI)

Somalia 88.2 6.83 8.86 (6.78, 11.52)

Ethiopia 59.9 4.64 6.71 (5.16, 8.69)

Largest IRRs Myanmar (Burma) 78.4 6.07 6.37 (4.90, 8.27)

Liberia 38.3 2.96 5.58 (4.14, 7.50)

Kenya 33.4 2.59 5.56 (4.20, 7.35)

Mexico 9.7 0.75 0.64 (0.50, 0.81)

Philippines 37.3 2.89 2.58 (2.01, 3.30)

Most cases India 20.7 1.60 1.33 (1.04, 1.71)

Vietnam 34.8 2.70 3.15 (2.45, 4.05)

China 15.1 1.17 0.70 (0.54, 0.89)

United Kingdom 0.7 0.05 0.03 (0.02, 0.05)

Germany 0.2 0.01 0.03 (0.02, 0.05)

Smallest IRRs Netherlands 0.0 0.00 0.03 (0.01, 0.08)

Australia 0.0 0.00 0.02 (0.01, 0.05)

Canada 0.6 0.05 0.02 (0.01, 0.03)

Incidence refers to annual incidence rate per 100,000 population; IRR = incidence risk ratio relative to overall non-U.S.-born rate in 2016 of 12.9 
per 100,000; Adj. = adjusted; CI = confidence interval. Countries in ‘Most cases’ are in decreasing order of number of cases.
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