
INTRODUCTION

Autophagy is an intracellular degradation pathway characterized 
by autophagosome containing cytosolic components delivered 
into lysosome for degradation [1, 2]. 

Autophagy is highly conserved from yeast to mammals. It 
generally has three major types; macroautophagy, chaperon-
mediated autophagy (CMA), and microautophagy. Although all 
three forms of autophagy occur degradation of cellular substrates 
within lysosomes, each pathway has unique features. Among 
three types of autophagy, macroautophagy has been mostly well 
characterized. Macroautophagy sequesters cytosolic components 

including proteins, lipids, sugar, RNA, and organelles such as 
mitochondria into autophagosomes which can be fused with 
lysosome for degradation [3-5]. Intriguingly, based on the type 
of organelles degraded in lysosomes, there are some examples 
of organelle specific autophagy such as mitophagy, ribophagy, 
reticulophagy, and pexophagy [6]. Although autophagy is 
generally known as a nonselective degradative process, chaperone-
mediated autophagy is a kind of selective degradative pathways. 
The proteins containing KFERQ-like peptide motif are targeted 
into lysosomes for their degradation [7]. The third form of 
autophagy, known as microautophagy, involves in pinocytosis 
of small quantities of cytoplasmic regions by lysosomes [8-10]. 
Although autopahgy is conserved from yeast to human, some 
of the types, such as CMA, have been characterized in higher 
eukaryotes but not in yeast [11]. 

Autophag y has been detected and known as a type II 
programmed cell death, autophagic cell death, which was 
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characterized as accumulation of autophagic vacuoles when cells 
were dying [12]. Excessive activity of autophagy may lead to self 
destruction and cell death or insufficient autophagic activity (or 
imbalanced autophagic fl ux) may contribute to cell death. 

Autophagy has been extensively studied in stress condition, 
such as starvation or accumulation of toxic components including 
proteins or damaged organelles. The primary role of autophagy 
under starvation is to provide the energy to the starved cells by 
degrading cellular substrates for cell survival [12]. 

Recent studies have demonstrated that autophagy pathway 
is involved in several physiological processes such as normal 
development, cellular homeostasis, life span expansion, 
tumor suppression, and immunity as well as stress associated 
conditions [13, 14]. Therefore, malfunction of autophagy causes 
several human diseases including infectious diseases, cancer, 
cardiovasicular diseases, and neurodegenerative diseases. 
Moreover, it has been also demonstrated that in several diseases 
autophagy is induced and activated to protect cells against 
neuronal cell death by removing toxic components in damaged 
cells [14].

Although all cell types have autophagy pathway, growing body of 
evidence suggest the importance of autophagic regulation in a cell 
type specifi c manner. Neurons have highly specialized structures, 
axon and dendrites in which a lot of molecules including proteins, 
RNA, and lipids are synthesized, delivered, and degraded for 
their dynamic functions in synaptic growth and synaptic activity. 
Another feature of neurons is that they are non dividing cells 
which are more sensitive to accumulation of toxic components 
than dividing ones. Th erefore, the tight control for degradation of 
cytoplasmic components under physiological and pathological 
conditions must be important for their survival and maintenance 
of specialized functions. Moreover, the brain requires a high 
energy depending on an external supply of nutrients may have 
a highly regulated mechanism to provide nutrients under even 
extreme starvation or diabetes [15]. Therefore, quality control 
of neuronal components including proteins and oraganelles by 
autophagy would be essential for their cell survival in specialized 
post-mitotic neurons. Indeed, inhibition of autophagy is known 
to cause neurodegneration in mature neurons indicating that 
autophagy may regulate neuronal homeostasis [16, 17]. In this 
review, I will briefly summarize the molecular mechanism 
of autophagy in mammals and focus on autophagy pathway 
in neuronal physiology and pathology. I will also discuss the 
implication of autophagy in neurodegenerative diseases.

THE CORE MACHINERY OF AUTOPHAGY

Th e detailed autophagic machinery has been already extensively 
reviewed [1, 5]. Thus, only major autophagic components for 
understanding of basic concept of autophagy will be described in 
this review. Autophagy has several key steps for fi nal degradation 
of cytosolic component in lysosomes: initiation and nucleation of 
phagophore (isolation membrane), expansion of autophagosomes, 
maturation of autopahgosomes into amphisome/autolysosomes, 
and execution of autophagy (degradation) (Fig. 1). Several 
autophagy-related “atg” proteins and non atg proteins are known 
to regulate these processes [5]. 

Initiation and nucleation of phagophore 

Autophagy can be constitutively activated at a basal level to 
maintain cellular homeostasis. Autophagy can be also induced and 
activated by specialized stimuli for the cell to be adapted in cellular 
environment.

Once autophagy is activated, it begins with formation of 
phagophore (a precursor of autophagosomes) whose source 
was still under a considerable debate whether it comes from 
endoplasmic reticulum (ER), Golgi complex, mitochondria, 
or plasma membrane via clathrin mediated endocytosis [18-
21]. This process depends on the stepwise recruitment of 
specific proteins including atg proteins into newly forming 
autophagosomal membranes. There are two major essential 

Fig. 1. The cellular processes during autophagy. Autophagic process 
follows distinct stages: vesicle nucleation (formation of phagophore), 
vesicle expansion (autophagosome formation), maturation (fusion 
of autophagosome with MVB (multivesicular body)/lysosome, 
degradation (acidification). Once autophagy is induced by autophagic 
stimuli such as inhibition of mTOR, phagophore (isolation membrane) 
begin to be formed and then cytosolic components are sequestered by 
autophagosomes characterized by LC3-II-positive double membrane 
structure. Endosome such as MVB or lysosome can be fused with 
autophagosome to form amphisome or autolysosome, respectively. In 
fi nal step, cytosolic components are degraded in autolysosome. 
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components to regulate this process [22, 23]. Th e fi rst one is the 
class III phosphatidylinositol 3-kinase (PI3K) Vps 34 which can 
generate phosphatidylinositol-3-phosphate (PI-3-P) necessary for 
recruitment of autophagy specific proteins (ATG17, ATG13) in 
the region of phagophore formation [24]. Vps 34 could associate 
with other molecules involved in autophagosome formation 
such as Beclin1 (the mammalian orthologue of yeast Atg6), p150, 
UVRAG, Atg14, or Ambra1 [25-27]. The second component 
involved in the biogenesis of atuophagosomes is ULK1 which 
associates with FIP200 and ATG13. Their association is known 
to lead to proper localization of ULK1 and stimulate its kinase 
activity [28]. 

Th e expansion of autophagosomal membranes

The elongation of phagophores requires two ubiquitin-like 
conjugating systems. 1) ATG12-ATG5-ATG16L system: ATG12 
is conjugated into ATG5 via ATG7 (E1-like enzyme) and ATG10 
(E2-like enzyme) and then the conjugated ATG12-ATG5 
complex associates with ATG16L [29-32]. The ATG12-ATG5-
ATG16L complex is localized to outer membrane of elongating 
autophagosomes but it dissociates before the completion of 
autophagosome formation. However, recently it has been 
reported that there is ATG5/ATG7-independent alternative 
macroautophagy under a certain stress condition suggesting that 
there is an alternative pathway to form autophagosomes [33]. 
2) Phosphatidylethanolamine (PE)-LC3 system: As the other 
system, microtubule-associated protein 1 light chain 3 (MAP1-
LC3, simply LC3), mammalian orthologue of ATG8, is conjugated 
to PE. Cytosolic form of LC3, LC3-I is generated by cleavage of 
pro-LC by ATG4B and further processed by ATG7 and ATG3 to 
be conjugated to PE (LC3-II) [34]. LC3-II specifically associates 
with autophagosome membranes. Therefore, the number of 
autophagosomes correlates with the level of LC3-II. LC3 has been 
known to promote membrane tethering [35, 36].

Th e maturation of autophagosomes

Aft er completion of autophagosome formation, autophagosomes 
can be fused with endosomes or lysosomes resulting in the 
formation of amphisome or autolysosome, respectively [37, 
38]. Fusion firstly requires movement of autophagosome into 
endosomes or lysosomes along microtubules using dynein-
dynactin complex [39, 40]. Therefore, cytoskeletal complexes 
are important facilitators of autophagic process. In addition, for 
fusion of autophagosomes with endosome/lysosomes, non atg 
components such as endosomal sorting complex required for 
transport (ESCRT), soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (SNAREs), Rab proteins, ATPase, 

are required [41-44]. However, how exactly each component can 
contribute to each step of maturation of autophagosome remains 
elusive.

Th e execution of autophagy: degradation

In fi nal step, cytoplasmic components are actually degraded in 
autolysosomes. Therefore, the activity of lysosomes is necessary 
for degradation. Acidification by proton pump or V-ATPase 
is essential for fusion with lysosomes and degradation in 
autolysosomes [45]. The defects of lysosomal enzymes such as 
cathepsin induce blockage of degradation in autophagy pathway 
[46]. Intriguingly, recent study showed that post-translational 
modifi cation of substrates such as acetylation or phosphorylation 
could regulate the effi  ciency of autophagic degradation [47, 48].

In addition, specific defects in selective autophagy or in cargo 
selection process could induce neurodegeneration. Indeed, this 
hypothesis was supported by the studies using p62, NBR1, or 
ALFY involved in cargo recognition and degradation [49, 50]. Th e 
defects of any step during autophagy process can lead to abnormal 
accumulation of cytosolic components leading to disease states. 
Therefore, each step between autophagic processes should be 
tightly regulated for effi  cient autophagic degradation. 

AUTOPHAGY AS A HOUSEKEEPER IN NEURONAL HOMEO-
STASIS

Previous studies in vivo and in vitro using GFP-LC3, an auto-
phagosome marker, showed that autophagosmes are hardly 
detectable in healthy neurons under nutrient rich condition 
[51, 52]. There are two possibilities to explain the scarcity the 
autophagosomes in healthy neurons. One possibility is that 
autophagic activity is maintained at a low level in normal brain. 
Th e other possibility is that autophagic degradation is so effi  cient 
that autophagosomes could not be accumulated in healthy 
neurons at a detectable level. Th is interesting idea was supported 
by recent study which showed that inhibition of lysosomal 
degradation caused rapid accumulation of autophagosomes in 
primary cortical neurons suggesting the active possible role of 
constitutive autophagy even under nutrient rich condition [53, 
54]. Therefore, basal autophagy in healthy neurons seems to be 
relatively active. High efficiency of autophagic degradation was 
also supported by the observation that the intermediate forms of 
autophagosomes (immature autophagosomes) are relatively low in 
healthy brain [41, 55]. 

If autophagic activity is highly maintained in normal healthy 
neurons, what is the primary role of basal autophagy in neurons? 
The study using neuron specific atg5 or atg7 deficient mice 
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showed the abnormal protein accumulation and eventual 
neurodegeneration in central nervous system indicating that 
autophagy is constitutively active and essential for neuronal 
cell survival [16, 17]. Basically, the dysfunction of any molecule 
involved in autophagic process may cause neurodegeneration. 
Interestingly, increasing evidence suggests that neuronal 
constitutive autophagy may be an important regulatory pathway 
for axonal homeostasis. The loss of basal autophagy by either 
deletion of atg gene or inhibition of autophagic clearance 
in neurons caused disruption of axonal transport of vesicles 
containing substrates degraded in lysosomes and axonal swelling, 
leading to axonal dystrophy [16, 17, 54, 56]. Another evidence 
as an implication of axonal autophagy comes from the study of 
ATG1/Unc-51 (C. elegans uncoordinated-51). Unc-51 mutants 
in C. elegans showed disruptions in axonal membrane structures 
[57]. Furthermore, Unc51.1, the murine homologue, is required for 
neurite extension during axonal growth indicating its possible role 
in homeostasis of axonal membrane network [58-60]. In addition, 
neural specific deletion of FIP200 involved in autophagosome 
biogenesis caused neuronal cell death and axon degeneration 
leading to cerebellar degeneration [61]. Thus, defects of basal 
autophagy seem to be vulnerable to affect on axonal structure 
and function through retrograde axonal transport. However, 
autophagy pathway may also have important roles in dendrites 
in which active degradation and synthesis of various molecules 
occur. Indeed, autophagosomes are found in proximal and distal 
region of dendrites in neurons indicating their regulatory roles in 
dendritic regions under physiological or pathological condition 
[42, our unpublished data]. Notably, mTOR has been known to 
regulate post-synaptic long-term potentiation (LTP) or long-term 
depression (LTD) suggesting that autophagic regulation may be 
essential for synaptic plasticity. Th erefore, to dissect out the specifi c 
roles in axon or dendrites will give us a better understanding of 
autophagy pathway in various contexts of neuronal cell survival or 
neuronal signaling. 

AUTOPHAGY IN NEURODEGENERATIVE DISEASES 

Abnormal accumulation of autophagic vacuoles including 
autophagosomes or autolysosmes has been observed in affected 
neurons of brain in several neurodegenerative diseases. It is 
unclear, however, whether accumulated autophagic vacuoles 
in degenerating neurons reflect increase in autophagic flux 
(as measured by actual degradation of cytosolic contents). 
Autophagic contents could be increased by either increased 
autophagic flux or impaired flux. The sustained impairment of 
balance between autophagosome formation and degradation 

is known to cause “autophagic stress” [62]. Either excessive 
autophagic demand cannot be supported by cellular reserves 
or defects of fusion or lysosomal degradation of autophagic 
vacuoles could cause autophagic stress which is associated with 
neurodegeneration (Fig. 2). To find out how autophagic stress 
occurs in each neurodegenerative diseases would be a first 
step to understand the molecular pathogenesis of autophagy-
associated neurodegenerative diseases. I will briefly summarize 
the pathogenic mechanism associated with autophagy pathway.

AD

AD is the most common dementia and symptoms include 
confusion, irritability, trouble with language, and loss of long-term 
memory. Autophagic vacuoles have been found to accumulate 
in dystrophic neuritis and in cell body of brain of AD [55]. The 
accumulation of extracellular plaques including aggregated 
amyloid-β (Aβ) peptide and intracellular tangles is associated with 
the pathogenesis of AD. Since Aβ is generated in endo-lysosomal 
pathway, the produced Aβ is normally found in autophagosomes 
and in lysosomes. However, in disease state, impeded turnover of 
increased autophagic vacuoles due to reduced fusion or altered 
endocytic pathway could cause autophagic stress as shown 
in accumulation of autophagic components [63]. Although 
alteration mechanism in autophagy is complex in AD, induction 

Fig. 2. The balance of autophagic flux in neuronal cell survival. 
Autophagic fl ux indicates the balance between autophagosome formation 
and autophagic degradation. (A) If autophagosomes can be efficiently 
degraded in autolysosomes either at a basal level or at an activated level, 
neuronal cells maintain their homeostasis leading to neuronal cell 
survival. (B) When the rate of autophagosome formation highly exceeds 
the rate of autophagic degradation or (C) when late stage of autophagic 
process (maturation or degradation) has defects, autophagic degradation 
is impaired and causes accumulation of autophagic vacuoles leading to 
neurodegeneration [62].
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and activation of autophagy using autophagy-related protein 
such as beclin could promote degradation of Aβ and reduce AD 
pathology raising the possibility of inducers of autophagy as a 
therapeutic target of AD [64]. However, the other therapeutic 
modulation targeting late step in the autophagy pathway should 
be also considered since the impaired clearance of autophagic 
vacuoles has been observed in AD animal model and AD patients 
[53, 54].

HD

HD is one of the most common polyglutamine diseases which 
are a group of inherited neurodegenerative diseases caused by 
CAG trinucleotide expansion mutation. This disorder shows 
neuronal loss in striatum and cortex leading to progressive 
impairment of voluntary movement coordination. Protein 
aggregates and inclusion caused by mutant huntingtin protein have 
been shown to induce autophagy. Th eir inclusions can be degrad-
ed by autophagy pathway regardless of a debate about their role 
in cellular toxicity [65-67]. A growing body of evidence suggests 
that further stimulation and activation of autophagy are indeed 
beneficial for HD. Several studies suggest that pharmacological 
modifier of mTOR dependent or independent pathway could 
lead to a neuroprotection in cellular and animal HD model by 
reducing polyglutamine aggregation [23, 66]. Interestingly, CMA 
enhancement by the selective targeting of mutant huntingtin 
using fusion molecule consisting of polyglutamine binding 
peptide 1 (QBP1) and HSC70-binding motifs in vitro and in vivo 
facilitated degradation of mutant protein and ameliorated disease 
phenotype in HD animal model [68]. Therefore, induction of 
macroautophagy or CMA could be a new strategy for HD therapy. 

PD

PD is characterized by progressive degeneration of dopaminergic 
neurons of substantia nigra and the symptoms are tremor, rigidity 
and impaired balance and coordination [69]. α-synuclein whose 
mutations cause familiar PD is major protein component of Lewy 
bodies found in PD. Interestingly, recent studies showed that 
mutant α-synuclein protein was degraded via macroautophagy 
instead of CMA in which wild type protein was degraded. It has 
been demonstrated that inhibition of CMA by mutant protein 
was accompanied by compensatory activation of macroautophagy 
[70]. Therefore, autophagic modulation for the restoration of 
CMA function will be an eff ective therapeutic strategy in PD. 

The enhancement of autophagy pathway for the efficient 
turnover of dysfunctional mitochondria could be also considered 
as a therapeutic target in PD. Recent studies implicate that the 
defects in mitophagy may be an important pathogenic mechanism 

of PD. Parkin and PINK1 whose mutations cause autosomal 
recessive form of PD play important roles in mitophagy. The 
selective targeting of parkin into damaged mitochondria during 
mitophagy is dependent on wild type PINK1 but not mutant 
PINK1 suggesting the regulatory role of parkin and PINK1 in 
mitophagy [71, 72].

FTD

FTD is the second most common dementia under 65 and it is 
characterized by progressive degeneration of frontal and temporal 
lobe. Th e symptoms include the defects in personality, alteration 
of social behavior, aggressiveness. The rare mutation in the 
ESCRT subunit CHMP2B caused accumulation of ubiquitinated 
protein aggregates and autophagosomes by impairment of 
fusion of autophagosomes with lysosomes, eventually leading to 
neurodegeneration [42, 73]. Th e reduction of autohagic stress by 
inhibiting formation of autophagosome delayed neuronal cell loss 
indicating that excessive autophagosomes can contribute to disease 
pathogenesis [74]. Although reduction of autophagic stress by 
inhibiting autophagy temporally delay the neurodegeneration, the 
selective way to facilitate the delivery of autophagic components 
into lysosomes under pathological condition should be further 
investigated. 

CONCLUSION AND PERSPECTIVES 

Neuronal autophagy functions as a housekeeper to maintain 
their cellular homeostasis such as protein or organelle quality 
control. In contrast, neuronal autophagy could acts as a fighter 
under disease state such as accumulation of protein aggregates 
or damaged organelles to protect the cell. Either defect of auto-
phagic flux or excessive activity of autophagy can contribute to 
neurodegeneration and neuronal cell death. Therefore, thera-
peutic consideration for each autophagic failure type in each 
neurodegenerative disease would be essential for the development 
of therapeutic intervention through autophagic modulation. 
Th us, further studies to explore alternative approach to modulate 
autophagy are necessary. The target point to identify drug 
candidates could be the selective targeting of substrates into 
lysosomes, enhancement of autophagosome-lysosome fusion or 
facilitation of delivery of autophagic vacuoles to lysosomes. Th is 
will provide a broad spectrum of potential drug targets in various 
neurodegenerative diseases as well as a better understanding of 
signaling pathway in autophagic processes. 
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